


Natural Computing Series
Series Editors:  G. Rozenberg
Th. Bäck  A.E. Eiben  J.N. Kok  H.P. Spaink

Leiden Center for Natural Computing

Advisory Board:  S. Amari   G. Brassard   K.A. De Jong
C.C.A.M. Gielen   T. Head   L. Kari   L. Landweber   T. Martinetz
Z. Michalewicz   M.C. Mozer   E. Oja   G. Paun   J. Reif   H. Rubin
A. Salomaa   M. Schoenauer   H.-P. Schwefel   C. Torras
D. Whitley   E. Winfree   J.M. Zurada

°

C C
N



Kenneth V. Price ·Rainer M. Storn
Jouni A. Lampinen

Differential Evolution

With 292 Figures, 48 Tables and CD-ROM

APractical Approach to Global Optimization

123



Library of Congress Control Number: 2005926508

 ACM Computing Classification (1998): F.1–2, G.1.6, I.2.6, I.2.8, J.6

ISBN-10  3-540-20950-6 Springer Berlin Heidelberg New York
ISBN-13  978-3-540-20950-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.
The publisher and the authors accept no legal responsibility for any damage caused by improper
use of the instructions and programs contained in this book and the CD-ROM. Although the
software has been tested with extreme care, errors in the software cannot be excluded.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: KünkelLopka, Werbeagentur, Heidelberg
Typesetting: by the Authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Printed on acid-free paper 45/3142/YL  –  5 4 3 2 1 0

Authors
Kenneth V. Price

Owl Circle 836
Vacaville, CA 95687
USA

Rainer M. Storn

Rohde & Schwarz GmbH & Co.KG
Mühldorfstraße 15
81671 München
Germany

Jouni A. Lampinen

Lappeenranta University of Technology
Department of Information Technology
P.O.Box 20
53851 Lappeenranta
Finland

Series Editors

G. Rozenberg (Managing Editor)

rozenber@liacs.nl

Th. Bäck, J.N. Kok, H.P. Spaink

Leiden Center for Natural Computing
Leiden University
Niels Bohrweg 1
2333 CA Leiden,
The Netherlands

A.E. Eiben

Vrije Universiteit Amsterdam



KP: To my father 

RS: To my ever-supportive parents, to my beloved wife, Marion, and to 
my wonderful children, Maja and Robin 

JL:  To the memory of my little dog and best friend Tonique, for all the 
happy countryside and city memories we shared 



Preface

Optimization problems are ubiquitous in science and engineering. What 
shape gives an airfoil maximum lift? Which polynomial best fits the given 
data? Which configuration of lenses yields the sharpest image? Without 
question, very many researchers need a robust optimization algorithm for 
solving the problems that are fundamental to their daily work. 

Ideally, solving a difficult optimization problem should not itself be dif-
ficult, e.g., a structural engineer with an expert knowledge of mechanical 
principles should not also have to be an expert in optimization theory just 
to improve his designs. In addition to being easy to use, a global optimiza-
tion algorithm should also be powerful enough to reliably converge to the 
true optimum. Furthermore, the computer time spent searching for a solu-
tion should not be excessive. Thus, a genuinely useful global optimization 
method should be simple to implement, easy to use, reliable and fast. 

 Differential Evolution (DE) is such a method. Since its inception in 
1995, DE has earned a reputation as a very effective global optimizer. 
While DE is not a panacea, its record of reliable and robust performance 
demands that it belongs in every scientist and engineer’s “bag of tricks”. 

 DE originated with the Genetic Annealing algorithm developed by 
Kenneth Price and published in the October 1994 issue of Dr. Dobb’s 

Journal (DDJ), a popular programmer’s magazine. Genetic Annealing is a 
population-based, combinatorial optimization algorithm that implements 
an annealing criterion via thresholds. After the Genetic Annealing algo-
rithm appeared in DDJ, Ken was contacted by Dr. Rainer Storn, (then with 
Siemens while at the International Computer Science Institute at the Uni-
versity of California at Berkeley; now at Rohde & Schwarz GmbH, Mu-
nich, Germany) about the possibility of using Genetic Annealing to solve 
the Chebyshev polynomial fitting problem. Determining the coefficients of 
the Chebyshev polynomials is considered by many to be a difficult task for 
a general-purpose optimizer. 

Ken eventually found the solution to the five-dimensional Chebyshev 
problem with the Genetic Annealing algorithm, but convergence was very 
slow and effective control parameters were hard to determine. After this 
initial find, Ken began modifying the Genetic Annealing algorithm to use 
floating-point instead of bit-string encoding and arithmetic operations in-
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stead of logical ones. He then discovered the differential mutation operator 
upon which DE is based. Taken together, these alterations effectively 
transformed what had been a combinatorial algorithm into the numerical 
optimizer that became the first iteration of DE. To better accommodate 
parallel machine architectures, Rainer suggested creating separate parent 
and child populations. Unlike Genetic Annealing, DE has no difficulty de-
termining the coefficients of even the 33-dimensional Chebyshev polyno-
mial.

DE proved effective not only on the Chebyshev polynomials, but also 
on many other test functions. In 1995, Rainer and Ken presented some 
early results in the ICSI technical report TR-95-012, “Differential Evolu-
tion – A Simple and Efficient Adaptive Scheme for Global Optimization 
over Continuous Spaces”. These successes led Rainer and Ken to enter DE 
in the First International Contest on Evolutionary Optimization in Nagoya, 
Japan, that was held during May of 1996 in conjunction with the IEEE In-
ternational Conference on Evolutionary Computation. DE finished third 
behind two methods that scored well on the contest functions, but which 
were not versatile enough to be considered general-purpose optimizers. 
The first-place method explicitly relied on the fact that the contest func-
tions were separable, while the second-place algorithm was not able to 
handle a large number of parameters due to its dependence on Latin 
squares. Buoyed by this respectable showing, Ken and Rainer wrote an ar-
ticle on DE for DDJ that was published in April 1997 (Differential Evolu-
tion - A Simple Evolution Strategy for Fast Optimization). This article was 
very well received and introduced DE to a large international audience. 

Many other researchers in optimization became aware of DE’s potential 
after reading, “Differential Evolution – A Simple and Efficient Heuristic 
for Global Optimization over Continuous Spaces”, by Rainer and Ken. 
Published in the December 1997 issue of The Journal of Global Optimiza-

tion, this paper gave extensive empirical evidence of DE’s robust perform-
ance on a wide variety of test functions. Also about this time, Rainer estab-
lished a DE web site (http://www.icsi.berkeley.edu/~storn/code/html) to 
post code, links to DE applications and updates for the algorithm. 

Ken entered DE in the Second International Contest on Evolutionary 
Optimization that was to be held in Indianapolis, Indiana, USA in April 
1997. A lack of valid entries forced the cancellation of the actual contest, 
although those that qualified were presented. Of these, DE was the best 
performer. At this conference, Ken met Dr. David Corne who subsequently 
invited him to write an introduction to DE for the compendium, New Ideas 

in Optimization (1999). Since then, Ken has focused on refining the DE 
algorithm and on developing a theory to explain its performance. Rainer 
has concentrated on implementing DE on limited-resource devices and on 
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creating software applications in a variety of programming languages. In 
addition, Rainer has explored DE’s efficacy as a tool for digital filter de-
sign, design centering and combinatorial optimization. 

Prof. Jouni Lampinen (Lappeenranta University of Technology, Lap-
peenranta, Finland) began investigating DE in 1998. In addition to con-
tributing to the theory on DE and demonstrating DE’s effectiveness as a 
tool for mechanical engineering, Jouni has also developed an exceptionally 
simple yet effective method for adapting DE to the particular demands of 
both constrained and multi-objective optimization. Jouni also maintains a 
DE bibliography (http://www.lut.fi/~jlampine/debiblio.html). 

Like DE, this book is designed to be easy to understand and simple to 
use. It details how DE works, how to use it and when it is appropriate. 
Chapter 1, “The Motivation for DE”, opens with a statement of the general 
optimization problem that is followed by a discussion of the strengths and 
weaknesses of the traditional methods upon which DE builds. Classical 
methods for optimizing differentiable functions along with conventional 
direct search methods like those of Hooke–Jeeves and Nelder–Mead are 
discussed. Chapter 1 concludes with a look at some of the more advanced 
optimization techniques, like simulated annealing and evolutionary algo-
rithms.

Chapter 2, “The Differential Evolution Algorithm”, introduces the DE 
algorithm itself, first in an overview and then in detail. Chapter 3, 
“Benchmarking DE”, compares DE’s performance to that reported for 
other EAs. Several versions of DE are included in the comparison. Chapter 
4, “Problem Domains”, extends the basic algorithm to cover a variety of 
optimization scenarios, including constrained, mixed-variable and multi-
objective optimization as well as design centering. All these adaptations 
are of great practical importance, since many real-world problems belong 
to these domains. 

Chapter 5, “Architectural Aspects”, gives explicit advice on how to im-
plement DE on both parallel and sequential machine architectures. In addi-
tion, Chapter 5 presents algorithms for auxiliary operations. Chapter 6, 
“Computer Code”, provides instructions for using the software that ac-
companies this book on CD-ROM. Chapter 7, “Applications”, presents a 
collection of 12 DE applications that have been contributed by experts 
from many disciplines. Applications include structure determination by X-
ray analysis, earthquake relocation, multi-sensor fusion, digital filter de-
sign and many other very difficult optimization problems. An appendix 
contains descriptions of the test functions used throughout this book.  

Dr. Storn would like to thank Siemens corporate research, especially 
Prof. Dr. H. Schwärtzel, Dr. Yeung-Cho Yp and Dr. Jean Schweitzer for 
supporting DE research. In addition, Prof. Lampinen would like to express 
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his gratitude to members of his DE research group, Jani Rönkkönen, Jun-
hong Liu and Saku Kukkonen, for their help preparing this book. We espe-
cially wish to thank the researchers who have contributed their DE applica-
tions to Chapter 7. 

J.-P. Armspach, Institut de Physique Biologique, Université Louis Pasteur, 
Strasbourg, UMR CNRS-ULP 7004, Faculté de Médecine, F-67085, 
Strasbourg Cedex, France ; (Sect. 7.6) 

Keith D. Bowen, Bede Scientific Incorporated, 14 Inverness Drive East, 
Suite H-100, Englewood, CO, USA; (Sect. 7.10) 

Nirupam Chakraborti, Department of Metallurgical and Materials Engi-
neering, Indian Institute of Technology, Kharagpur (W.B) 721 302, 
India; (Sect. 7.1) 

David Corcoran, Department of Physics, University of Limerick, Ireland; 
(Sect. 7.2) 

Robert W. Derksen, Department of Mechanical and Industrial Engineering 
University of Manitoba, Canada; (Sect. 7.3) 

Drago Dolinar, University of Maribor, Faculty of Electrical Engineering 
and Computer Science, Smetanova 17, 2000 Maribor, Slovenia; (Sect. 
7.9)

Steven Doyle, Department of Physics, University of Limerick, Ireland; 
(Sect. 7.2) 

Kay Hameyer, Katholieke Universiteit Leuven, Department E.E. (ESAT), 
Division ELEN, Kaardinal Mercierlaan 94, B-3001 Leuven, Belgium; 
(Sect. 7.9) 

Evan P. Hancox, Department of Mechanical and Industrial Engineering, 
University of Manitoba, Canada; (Sect. 7.3) 

Fabrice Heitz, LSIIT-MIV, Université Louis Pasteur, Strasbourg, UMR 
CNRS-ULP 7005, Pôle API, Boulevard Sébastien Brant, F-67400 Ill-
kirch, France ; (Sect. 7. 6) 

Rajive Joshi, Real-Time Innovations Inc., 155A Moffett Park Dr, Sunny-
vale, CA 94089, USA; (Sect. 7.4) 

Michal Kvasni ka, ERA a.s, Pod bradská 186/56, 180 66 Prague 9, Czech 
Republic; (Sect. 7.5) 

Kevin M. Matney, Bede Scientific Incorporated, 14 Inverness Drive East, 
Suite H-100, Englewood, CO, USA; (Sect. 7.10) 

Lars Nolle, School of Computing and Mathematics, The Nottingham Trent 
University, Burton Street, Nottingham, NG1 4BU, UK; (Sect. 7.12) 

Guy-René Perrin, LSIIT-ICPS, Université Louis Pasteur, Strasbourg, 
UMR CNRS-ULP 7005, Pôle API, Boulevard Sébastien Brant, F-
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kirch, France ; (Sect. 7. 6) 

Arthur C. Sanderson, Rensselaer Polytechnic Institute, 110 8th St, Troy, 
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Amin Shokrollahi, Laboratoire d’algorithmique Laboratoire de mathé-
matiques algorithmiques, EPFL, I&C-SB, Building PSE-A, 1015 
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Rainer M. Storn, Rohde & Schwarz GmbH & Co. KG, Mühldorfstr. 15, 
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1 The Motivation for Differential Evolution 

1.1 Introduction to Parameter Optimization 

1.1.1 Overview 

In simple terms, optimization is the attempt to maximize a system’s desir-
able properties while simultaneously minimizing its undesirable character-
istics. What these properties are and how effectively they can be improved 
depends on the problem at hand. Tuning a radio, for example, is an attempt 
to minimize the distortion in a radio station’s signal. Mathematically, the 
property to be minimized, distortion, can be defined as a function of the 
tuning knob angle, x:

.
powersignal

powernoise
)( =xf

(1.1)

Because their most extreme value represents the optimization goal, 
functions like Eq. 1.1 are called objective functions. When its minimum is 
sought, the objective function is often referred to as a cost function. In the 
special case where the minimum being sought is zero, the objective func-
tion is sometimes known as an error function. By contrast, functions that 
describe properties to be maximized are commonly referred to as fitness

functions. Since changing the sign of an objective function transforms its 
maxima into minima, there is no generality lost by restricting the following 
discussion to function minimization only. 

Tuning a radio involves a single variable, but properties of more com-
plex systems typically depend on more than one variable. In general, the 
objective function, f(x) = f(x0, x1, …, xD -1), has D parameters that influence 
the property being optimized. There is no unique way to classify objective 
functions, but some of the objective function attributes that affect an opti-
mizer’s performance are: 

• Parameter quantization. Are the objective function’s variables continu-
ous, discrete, or do they belong to a finite set? Additionally, are all vari-
ables of the same type? 
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• Parameter dependence. Can the objective function’s parameters be op-
timized independently (separable function), or does the minimum of one 
or more parameters depend on the value of one or more other parame-
ters (parameter dependent function)? 

• Dimensionality, D. How many variables define the objective function? 
• Modality. Does the objective function have just one local minimum 

(uni-modal) or more than one (multi-modal)?  
• Time dependency. Is the location of optimum stationary (e.g., static), or 

non-stationary (dynamic)?  
• Noise. Does evaluating the same vector give the same result every time 

(no noise), or does it fluctuate (noisy)? 
• Constraints. Is the function unconstrained, or is it subject to additional 

equality and/or inequality constraints? 
• Differentiability. Is the objective function differentiable at all points of 

interest?

In the radio example, the tuning angle is real-valued and parameters are 
continuous. Neither mixed-variable types, nor parameter dependence is an 
issue because the objective function’s dimension is one, i.e., it depends on 
a single parameter. The objective function’s modality, however, depends 
on how the tuning knob angle is constrained. If tuning is restricted to the 
vicinity of a single radio station, then the objective function is uni-modal

because it exhibits just one (local) optimum. If, however, the tuning knob 
scans a wider radio band, then there will probably be several stations. If 
the goal is to find the station with least distortion, then the problem be-
comes multi-modal. If the radio station frequency does not drift, then the 
objective function is not time dependent, i.e., the knob position that yields 
the best reception will be the same no matter when the radio is turned on. 
In the real world, the objective function itself will have some added noise, 
but the knob angle will not be noisy unless the radio is placed on some vi-
brating device like a washing machine. The objective function has no ob-
vious constraints, but the knob-angle parameter is certainly restricted. 

Even though distortion’s definition (Eq. 1.1) provides a mathematical 
description of the property being minimized, there is no computable objec-
tive function – short of simulating the radio’s circuits – to determine the 
distortion for a given knob angle. The only way to estimate the distortion 
at a given frequency is to tune in to it and listen. Instead of a well-defined, 
computable objective function, the radio itself is the “black box” that 
transforms the input (knob angle) into output (station signal). Without an 
adequate computer simulation (or a sufficiently refined actuator), the ob-
jective function in the radio example is effectively non-differentiable. 
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Tuning a radio is a trivial exercise primarily because it involves a single 
parameter. Most real-world problems are characterized by partially non-
differentiable, nonlinear, multi-modal objective functions, defined with 
both continuous and discrete parameters and upon which additional con-
straints have been placed. Below are three examples of challenging, real-
world engineering problems of the type that DE was designed to solve. 
Chapter 7 explores a wide range of applications in detail. 

Optimization of Radial Active Magnetic Bearings 

The goal of this electrical/mechanical engineering task is to maximize the 
bearing force of a radial active magnetic bearing while simultaneously 
minimizing its mass (Štumberger et al. 2000). As Fig. 1.1 shows, several 
constraints must be taken into account. 

Objectives: maximal bearing force

minimum mass

Constraints: air gap δ0 = 0.4mm

stator radius rs = 52.5mm

shaft radius rsh = 35mm

rs = rsh + ry + δ0 + lp + sy

Parameters: stator yoke sy > 0

rotor yoke width ry > 0

pole width wp  > 0

axial length l > 0

rsh

sy

ry

wp

rsδ0

lp

Fig. 1.1. Optimizing a radial active magnetic bearing 

Capacity Assignment Problem 

Figure 1.2 shows a computer network that connects terminals to concentra-
tors, which in turn connect to a large mainframe computer. The cost of a 
line depends nonlinearly on the capacity. The goal is to satisfy the data de-
lay constraint of 4 ms while minimizing the cost of the network. A more 
detailed discussion appears in Schwartz (1977). 
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mainframe
(Manhattan)

concentrator
(Richmond)

concentrator
(Manhattan)

concentrator
(Bronx)

concentrator
(Brooklyn)

concentrator
(Queens)

15km

5km

20km

10km

18km

Objectives: minimize network cost

Constraints: average data delay between terminals < 4s

line capacities > 0

cost of line nonlinearly depending on capacity

Terminals transmit at 64kbps on average

Average message length is 1000 bits long

10 terminals
attached

15 terminals
attached

20 terminals
attached

10 terminals
attached

5 terminals
attached

Parameters: line capacities

Fig. 1.2. Optimizing a computer network 

Filter Design Problem 

The goal here is to design an electronic filter consisting of resistors, ca-
pacitors and an operational amplifier so that the magnitude of the ratio of 
output to input voltages, |V2(ω)/V1(ω)|  (a function of frequency ω), satis-
fies the tolerance scheme depicted in the lower half of Fig. 1.3. 

Classifying Optimizers 

Once a task has been transformed into an objective function minimization 
problem, the next step is to choose an appropriate optimizer. Table 1.1 
classifies optimizers based, in part, on the number of points (vectors) that 
they track through the D-dimensional problem space. This classification 
does not distinguish between multi-point optimizers that operate on many 
points in parallel and multi-start algorithms that visit many points in se-
quence. The second criterion in Table 1.1 classifies algorithms by their re-
liance on objective function derivatives. 



1.1 Introduction to Parameter Optimization      5 

V1(ω )

R1 R2 R3

C1

C2

C3

+

- V2(ω )

ω

Limhigh(ω )

Limhigh(ω )

Objectives: Fit |V2(ω)/V1(ω)| between

Constraints: 0 < Ci < Cmax

0 < Ri < Rmax

Ri, Ci from E24 norm series

Parameters: Resistors Ri, Capacitors Ci

Limhigh(ω) and Limlow(ω)

(discrete set)

|V2(ω )/V1(ω )|

Fig. 1.3. Optimizing an electronic filter 

Table 1.1. A classification of optimization approaches and some of their represen-
tatives

 Single-point Multi-point 

Derivative-based 
Steepest descent 

Conjugate gradient 
Quasi-Newton 

Multi-start and 
clustering techniques 

Derivative-free 
(direct search) 

Random walk 
Hooke–Jeeves 

Nelder–Mead 
Evolutionary algorithms 

Differential evolution 
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Not all optimizers neatly fit into these categories. Simulated annealing 
(Kirkpartick et al. 1983; Press et al. 1992) does not appear in this classifi-
cation scheme because it is a meta-strategy that can be applied to any de-
rivative-free search method. Similarly, clustering techniques are general 
strategies, but because they are usually combined with derivative-based 
optimizers (Janka 1999) they have been assigned to the derivative-based, 
multi-point category. As Table 1.1 indicates, differential evolution (DE) is 
a multi-point, derivative-free optimizer. 

The following section outlines some of the traditional optimization algo-
rithms that motivated DE’s development. Methods from each class in Ta-
ble 1.1 are discussed, but their many variants and the existence of other 
novel methods (Corne et al. 1999; Onwubolu and Babu 2004) make it im-
possible to survey all techniques. The following discussion is primarily fo-
cused on optimizers designed for objective functions with continuous 
and/or discrete parameters. With a few exceptions, combinatorial optimi-
zation problems are not considered. 

1.1.2 Single-Point, Derivative-Based Optimization 

Derivative-based methods embody the classical approach to optimization. 
Before elaborating, a few details on notation are in order. First, a D-
dimensional parameter vector is defined as: 

....
... 110

1

1

0
T

D

D

xxx

x

x

x

== −

−

x

(1.2)

Letters in lowercase italic symbolize individual parameters; bold lower-
case letters denote vectors, while bold uppercase letters represent matrices. 
Introducing several special operator symbols further simplifies formulation 
of the classical approach. For example, the nabla operator is defined as 

∂∂

∂∂
∂∂

=∇

−1

1

0

/

...

/

/

Dx

x

x (1.3)

in order to simplify the expression for the gradient vector:



1.1 Introduction to Parameter Optimization      7 

( ) ( )

( )

( )

( )

.

...

1

1

0

∂
∂

∂
∂
∂

∂

=⋅∇=

−Dx

f

x

f

x

f

f

x

x

x

xxg

(1.4)

It is also convenient to define the Hessian matrix:

( ) ( ) .
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101000
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(1.5)

The symbol 2∇ is meant to imply second-order (partial) differentiation, not 
that the nabla operator,∇ , is squared. 

Using these notational conveniences, the Taylor series for an arbitrary 
objective function becomes 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ...,
2

1

...
!2!1

)(

000000

0
0

2

00
0

0
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+−⋅∇⋅−+−⋅∇+=

xxxGxxxxxgx

xx
x

xxxx
x

xx

T

T

f

ff
ff

(1.6)

where x0 is the point around which the function f(x) is developed. For a 
point to be a minimum, elementary calculus (Rade and Westergren 1990) 
demands that 

( ) ,extr 0xg = (1.7)

i.e., all partial derivatives at x = xextr must be zero. In the third term on the 
right-hand side of Eq. 1.6, the difference between x and x0 is squared, so in 
order to avoid a negative contribution from the Hessian matrix, G(x0) must 
be positive semi-definite (Scales 1985). In the immediate neighborhood 
about x0, higher terms of the Taylor series expansion make a negligible 
contribution and need not be considered. 

Applying the chain rule for differentiation to the first three terms of the 
Taylor expansion in Eq. 1.6 allows the gradient about the arbitrary point x0

to be expressed as 
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( ) ( ) ( ) ,)( 0extr00extr 0xxxGxgx =−⋅+=∇f (1.8)

which reduces to 

( ) ( ) .00
1

0extr xxGxgx +⋅−= − (1.9)

where G
−1 is the inverse of the Hessian matrix. 

If the objective function, f(x), is quadratic, then Eq. 1.9 can be applied 
directly to obtain its true minimum. Figure 1.4 shows how Eq. 1.9 com-
putes the optimum of a (uni-modal) quadratic function independent of 
where the starting point, x0, is located. 

x1

x2

Start

contour lines
of f(x1,x2)

x0

xextr

Fig. 1.4. If the objective function is quadratic and differentiable, then Eq. 1.9 can 
determine its optimum. 

Even though there are applications, e.g., acoustical echo cancellation in 
speakerphones, where the objective function is a simple quadratic (Glentis 
et al. 1999), the majority of optimization tasks lack this favorable property. 
Even so, classical derivative-based optimization can be effective as long 
the objective function fulfills two requirements: 

R1 The objective function must be two-times differentiable.

R2 The objective function must be uni-modal, i.e., have a single mini-
mum. 
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A simple example of a differentiable and uni-modal objective function is 

( ).10),(
2
2

2
1 3

21
xx

exxf
+−−= (1.10)

 Figure 1.5 graphs the function defined in Eq. 1.10. 

Fig. 1.5. An example of a uni-modal objective function 

The method of steepest descent is one of the simplest gradient-based 
techniques for finding the minimum of a uni-modal and differentiable 
function. Based on Eq. 1.9, this approach assumes that G−1(x0) can be re-
placed with the identity matrix: 

.

1...00

............

0...10

0...01

=I

(1.11)

This crude replacement does not lead directly to the minimum, but to the 
point

( ).001 xgxx −= (1.12)
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Since the negative gradient points downhill, x1 will be closer to the 
minimum than x0 unless the step was too large. Adding a step size, γ, to the 
general recursion relation that defines the direction of steepest descent 
provides a measure of control: 

( )nnn xgxx ⋅γ−=+1
(1.13)

Figure 1.6 shows a typical pathway from the starting point, x0, to the opti-
mum xextr. Additional details of the classical approach to optimization can 
be found in Bunday and Garside (1987), Pierre (1986), Scales (1985) and 
Press et al. (1992). The point relevant to DE is that the classical approach 
reveals the existence of a step size problem in which the best step size de-
pends on the objective function. 

x1

x2

Start

contour lines
of f(x1,x2)

x0

xextr

Fig. 1.6. The method of steepest descent first computes the negative gradient, then 
takes a step in the direction indicated. 

Replacing the inverse Hessian, G
−1(x0), with the identity matrix intro-

duces its own set of problems and more elaborate techniques like Gauss–
Newton, Fletcher–Reeves, Davidon–Fletcher–Powell, Broyden–Fletcher–
Goldfarb–Shanno and Levenberg–Marquardt (Scales 1985; Pierre 1986) 
have been developed in response. These methods roughly fall into two 
categories. Quasi-Newton methods approximate the inverse Hessian by a 
variety of schemes, most of which require extensive matrix computations. 
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By contrast, conjugate gradient methods dispense with the Hessian matrix 
altogether, opting instead to use line optimizations in conjugate directions 
to avoid computing second-order derivatives. In addition to Quasi-Newton 
and conjugate gradient methods, mixtures of the two approaches also exist. 
Even so, all these methods require the objective function to be one-time or 
two-times differentiable. In addition, their fast convergence on quadratic 
objective functions does not necessarily transfer to non-quadratic func-
tions. Numerical errors are also an issue if the objective function exhibits 
singularities or large gradients. Methods that do not require the objective 
function to be differentiable provide greater flexibility.  

1.1.3 One-Point, Derivative-Free Optimization and the Step Size 
Problem

There are many reasons why an objective function might not be differenti-
able. For example, the “floor” operation in Eq. 1.14 quantizes the function 
in Eq. 1.10, transforming Fig. 1.5 into the stepped shape seen in Fig. 1.7. 
At each step’s edge, the objective function is non-differentiable: 

( )( )( ) 10/3exp1010floor),( 2
2

2
121 xxxxf −−−⋅= (1.14)

Fig. 1.7. A non-differentiable, quantized, uni-modal function 
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There are other reasons in addition to function quantization why an ob-
jective function might not be differentiable: 

• Constraining the objective function may create regions that are non-
differentiable or even forbidden altogether. 

• If the objective function is a computer program, conditional branches 
make it non-differentiable, at least for certain points or regions. 

• Sometimes the objective function is the result of a physical experiment 
(Rechenberg 1973) and the unavailability of a sufficiently precise actua-
tor can make computing derivatives impractical. 

• If, as is the case in evolutionary art (Bentley and Corne 2002), the ob-
jective function is “subjective”, an analytic formula is not possible. 

• In co-evolutionary environments, individuals are evaluated by how ef-
fectively they compete against other individuals. The objective function 
is not explicit. 

When the lack of a computable derivative causes gradient-based opti-
mizers to fail, reliance on derivative-free techniques known as direct

search algorithms becomes essential. Direct search methods are “generate-
and-test” algorithms that rely less on calculus than they do on heuristics 
and conditional branches. The meta-algorithm in Fig. 1.8 summarizes the 
direct search approach. 

Initialization();       //choose the initial base point
                        //(introduces starting-point problem)
while (not converged)   //decide the number of iterations
{                       //(dimensionality problem)
   vector_generation(); //choose a new point
                        //(introduces step size problem)
   selection();         //determine new base point
}

Fig. 1.8. Meta-algorithm for the direct search approach

The meta-algorithm in Fig. 1.8 reveals that the direct search has a selec-
tion phase during which a proposed move is either accepted or rejected. 
Selection is an acknowledgment that in all but the simplest cases, not all 
proposed moves are beneficial. By contrast, most gradient-based optimiz-
ers accept each point they generate because base vectors are iterates of a 
recursive equation. Points are rejected only when, for example, a line 
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search concludes. For direct search methods, however, selection is a cen-
tral component that can affect the algorithm’s next action. 

Enumeration or Brute Force Search 

As their name implies, one-point, direct search methods are initialized with 
a single starting point. Perhaps the simplest one-point direct search is the 
brute force method. Also known as enumeration, the brute force method 
visits all grid points in a bounded region while storing the current best 
point in memory (see Fig. 1.9). Even though generating a sequence of grid 
points is trivial, the enumerative method still faces a step size problem be-
cause if nothing is known about the objective function, it is hard to decide 
how fine the grid should be. If the grid is too coarse, then the optimum 
may be missed. If the grid becomes too small, computing time explodes 
exponentially because a grid with N points in one dimension will have ND

points in D dimensions. Because of this “curse of dimensionality”, the 
brute force method is very rarely used to optimize objective functions with 
a significant number of continuous parameters. The curse of dimensional-
ity demonstrates that better sampling strategies are needed to keep a search 
productive.

x1

x2

x1,low
x1,high

x2,low

x2,high

contour lines
of f(x1,x2)

evaluation path
of the brute force
search

Fig. 1.9. The brute force search tries all grid points in a given region. 
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Random Walk 

The random walk (Gross and Harris 1985) circumvents the curse of di-
mensionality inherent in the brute force method by sampling the objective 
function value at randomly generated points. New points are generated by 
adding a random deviation, ∆x, to a given base point, x0. In general, each 
coordinate, ∆xi, of the random deviation follows a Gaussian distribution 

( ) ( )
,5.0exp

2

1
2

2−∆⋅−
⋅

=∆
i

ii

i

i

x
xp

σ
µ

πσ

(1.15)

where σi and µi are the standard deviation and the mean value, respec-
tively, for coordinate i. The random walk’s selection criterion is “greedy” 
in the sense that a trial point with a lower objective function value than 
that of the base point is always accepted. In other words, if f(x0 + ∆x) ≤
f(x0), then x0 + ∆x becomes the new base point; otherwise the old point, x0,
is retained and a new deviation is applied to it. Figure 1.10 illustrates how 
the random walk operates. 

x1

: successful move

: unsuccessful move

x2

contour lines
of f(x1,x2)

Fig. 1.10. The random walk samples the objective function by taking randomly 
generated steps from the last accepted point. 

The stopping criterion for a random walk might be a preset maximum 
number of iterations or some other problem-dependent criterion. With 
luck, a random walk will find the minimum quicker than can be done with 
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a brute force search. Like both the classical and the brute force methods, 
the random walk suffers from the step size problem because it is very dif-
ficult to choose the right standard deviations when the objective function is 
not sufficiently well known.  

Hooke and Jeeves 

The Hooke–Jeeves method is a one-point direct search that attacks the step 
size problem (Hooke and Jeeves 1961; Pierre 1986; Bunday and Garside 
1987; Schwefel 1994). Also known as a direction or pattern search, the 
Hooke–Jeeves algorithm starts from an initial base point, x0, and explores 
each coordinate axis with its own step size. Trial points in all D positive 
and negative coordinate directions are compared and the best point, x1, is 
found. If the best new trial point is better than the base point, then an at-
tempt is made to make another move in the same direction, since the step 
from x0 to x1 was a good one. If, however, none of the trial points improve 
on x0, the step is presumed to have been too large, so the procedure repeats 
with smaller step sizes. The pseudo-code in Fig. 1.11 summarizes the 
Hooke–Jeeves method. Figure 1.12 plots the resulting search path. 

...
while (h > hmin)  //as long as step length is still not small enough

{
x1 = explore(x0,h); //explore the parameter space

    if (f(x1) < f(x0))  //if improvement could be made

    {
x2 = x1 + (x1 - x0);   //make differential pattern move

       if (f(x2) < f(x1)) x0 = x2;

       else x0 = x1;

    }
    else h = h*reduction_factor;
}
...

function explore(vector x0, vector h)

{  //---note that ei is the unit vector for coordinate i---

   for (i=0; i<D; i++) //for all D dimensions
   {
      if (f(x0+ei*h) < f(x0)) x0 = x0 + ei*h; //check coordinate i

      else if (f(x0-ei*h) < f(x0)) x0 = x0 - ei*h;

   }
   return(x0);

}

Fig. 1.11. Pseudo-code for the Hooke–Jeeves method 
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x1

x2

Start

: successful move

: unsuccessful move

contour lines
of f(x1,x2)

pattern move

pattern move

Fig. 1.12. A search guided by the Hooke–Jeeves method. Positive axis directions 
are always tried first. 

On many functions, its adaptive step sizes make the Hooke–Jeeves 
search much more effective than either the brute force or random walk al-
gorithms, but step sizes that shrink and never increase can be a drawback. 
For example, if steps are forced to become small because the objective 
function contains a “valley”, then they will be unable to expand to the ap-
propriate magnitude once the valley ends. 

1.2 Local Versus Global Optimization 

Both the step size problem and objective function non-differentiability can 
make even uni-modal functions a challenge to optimize. Additional obsta-
cles arise once requirement R2 is dropped and the objective function is al-
lowed to be multi-modal. Equation 1.16 is an example of a multi-modal 
function. As Fig. 1.13 shows, the “peaks” function in Eq. 1.16 has more 
than one local minimum: 
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Fig. 1.13. The “peaks” function defined by Eq. 1.16 is multi-modal. 

Because they exhibit more than one local minimum, multi-modal func-
tions pose a starting point problem. Mentioned briefly in the direct search 
meta-algorithm (Fig. 1.8), the starting point problem refers to the tendency 
of an optimizer with a greedy selection criterion to find only the minimum 
of the basin of attraction in which it was initialized. This minimum need 
not be the global one, so sampling a multi-modal function in the vicinity of 
the global optimum, at least eventually, is essential. Because the Gaussian 
distribution is unbounded, there is a finite probability that the random walk 
will eventually generate a new and better point in a basin of attraction 
other than the one containing the current base point. In practice, successful 
inter-basin jumps tend to be rare. One method that increases the chance 
that a point will travel to another basin of attraction is simulated annealing. 
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1.2.1 Simulated Annealing 

Simulated annealing (SA) (Kirkpatrick et al. 1983; Press et al. 1992), thor-
oughly samples the objective function surface by modifying the greedy cri-
terion to accept some uphill moves while continuing to accept all downhill 
moves. The probability of accepting a trial vector that lies uphill from the 
current base point decreases as the difference in their function values in-
creases. Acceptance probability also decreases with the number of function 
evaluations, i.e., after a reasonably long time, SA’s selection criterion be-
comes greedy. The random walk has traditionally been used in conjunction 
with SA to generate trial vectors, but virtually any search can be modified 
to incorporate SA’s selection scheme. Figure 1.14 describes the basic SA 
algorithm. 

...
fbest = f(x0);//start with some base point

T     = T0;   //and some starting temperature

while (convergence criterion not yet met)
{

∆x = generate_deviation(); //e.g., a Gaussian distribution
    if (f(x0+∆x) < f(x0))  //if improvement can be made

    {
fbest = f(x0+∆x);

x0 = x0+∆x; //new, improved base point

    }
    else
    {
       d = f(x0+∆x)-f(x0);//positive value

r = rand(); //generate uniformly distr. variable ex [0,1]
       if (r < exp(-d*beta/T)) //Metropolis algorithm
       {

x0 = x0+∆x; //new base point derived from uphill move

       }
    }

T = T*reduction_factor;
}
...

Fig. 1.14. The basic simulated annealing algorithm. In this implementation, the 
random walk generates trial points. 

The term “annealing” refers to the process of slowly cooling a molten 
substance so that its atoms will have the opportunity to coalesce into a 
minimum energy configuration. If the substance is kept near equilibrium at 
temperature T, then atomic energies, E, are distributed according to the 
Boltzmann equation 
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where k is the Boltzmann constant. 
By equating energy with function value, SA attempts to exploit nature’s 

own minimization process via the Metropolis algorithm (Metropolis et al. 
1953). The Metropolis algorithm implements the Boltzmann equation as a 
selection probability. While downhill moves are always accepted, uphill 
moves are accepted only if a uniformly distributed random number from 
the interval [0,1] is smaller than the exponential term: 

.exp
⋅−=Θ
T

d β (1.18)

 The variable, d, is the difference between the uphill objective function 
value and the function value of the current base point, i.e., their “energy 
difference”. Equation 1.18 shows that the acceptance probability, Θ, de-
creases as d increases and/or as T decreases. The value, β, is a problem- 
dependent control variable that must be empirically determined.  

One of annealing’s drawbacks is that special effort may be required to 
find an annealing schedule that lowers T at the right rate. If T is reduced 
too quickly, the algorithm will behave like a local optimizer and become 
trapped in the basin of attraction in which it began. If T is not lowered 
quickly enough, computations become too time consuming. There have 
been many improvements to the standard SA algorithm (Ingber 1993) and 
SA has been used in place of the greedy criterion in direct search algo-
rithms like the method of Nelder–Mead (Press et al. 1992). The step size 
problem remains, however, and this may be why SA is seldom used for 
continuous function optimization. By contrast, SA’s applicability to virtu-
ally any direct search method has made it very popular for combinatorial 
optimization, a domain where clever, but greedy, heuristics abound (Syslo 
et al. 1983; Reeves 1993). 

1.2.2 Multi-Point, Derivative-Based Methods 

Multi-start techniques are another way to extensively sample an objective 
function landscape. As their name implies, multi-start techniques restart 
the optimization process from different initial points. Typically, each sam-
ple point serves as the initial point for a greedy, local optimization method 
(Boender and Romeijn 1995). Often, the local search is derivative-based, 
but this is not mandatory and if the objective function is non-differentiable, 
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any direct search method may be used. Without detailed knowledge of the 
objective function, it is difficult to know how many different starting 
points will be enough, especially since many points might lead to the same 
local minimum because they all initially fell within the perimeter of the 
same basin of attraction. 

Clustering methods (Törn and Zelinkas 1989; Janka 1999) refine the 
multi-start method by applying a clustering algorithm to identify those 
sample points that belong to the same basin of attraction, i.e., to the same 
cluster. Ideally, each cluster yields just one point to serve as the base point 
for a local optimization routine. Density clustering (Boender and Romeijn 
1995; Janka 1999) is based on the assumption that clusters are shaped like 
hyper-ellipsoids and that the objective function is quadratic in the 
neighborhood of a minimum. Other methods, like the one described in Lo-
catelli and Schoen (1996), use a proximity criterion to decide if a local 
search is justified. Because this determination often requires that all previ-
ously visited points be stored, highly multi-modal functions of high dimen-
sion can strain computer memory capacity. As a result, clustering algo-
rithms are typically limited to problems with a relatively small number of 
parameters. 

1.2.3 Multi-Point, Derivative-Free Methods 

Evolution Strategies and Genetic Algorithms 

Evolution strategies (ESs) were developed by Rechenberg (1973) and 
Schwefel (1994), while genetic algorithms (GAs) are attributed to Holland 
(1962) and Goldberg (1989). Both approaches attempt to evolve better so-
lutions through recombination, mutation and survival of the fittest. Be-
cause they mimic Darwinian evolution, ESs, GAs, DE and their ilk are of-
ten collectively referred to as evolutionary algorithms, or EAs. 
Distinctions, however, do exist. An ES, for example, is an effective con-
tinuous function optimizer, in part because it encodes parameters as float-
ing-point numbers and manipulates them with arithmetic operators. By 
contrast, GAs are often better suited for combinatorial optimization be-
cause they encode parameters as bit strings and modify them with logical 
operators. Modifying a GA to use floating-point formats for continuous pa-
rameter optimization typically transforms it into an ES-type algorithm 
(Mühlenbein and Schlierkamp-Vosen 1993; Salomon 1996). There are 
many variants to both approaches (Bäck 1996; Michalewicz 1996), but be-
cause DE is primarily a numerical optimizer, the following discussion is 
limited to ESs. 
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Like a multi-start algorithm, an ES samples the objective function land-
scape at many different points, but unlike the multi-start approach where 
each base point evolves in isolation, points in an ES population influence 
one another by means of recombination. Beginning with a population of µ
parent vectors, the ES creates a child population of λ ≥  µ vectors by re-
combining randomly chosen parent vectors. Recombination can be discrete

(some parameters are from one parent, some are from the other parent) or 
intermediate (e.g., averaging the parameters of both parents) (Bäck et al. 
1997; Bäck 1996). Once parents have been recombined, each of their chil-
dren is “mutated” by the addition of a random deviation, ∆x, that is typi-
cally a zero mean Gaussian distributed random variable (Eq. 1.15). 

After mutating and evaluating all λ children, the (µ, λ)-ES selects the 
best µ children to become the next generation’s parents. Alternatively, the 
(µ + λ)-ES populates the next generation with the best µ vectors from the 
combined parent and child populations. In both cases, selection is greedy 
within the prescribed selection pool, but this is not a major drawback be-
cause the vector population is distributed. Figure 1.15 summarizes the 
meta-algorithm for an ES. 

Initialization();      //choose starting population of µ members
while (not converged)  //decide the number of iterations
{
   for (i=0; i<λ; i++) //child vector generation: λ > µ
   {

p1(i) = rand(µ);    //pick a random parent from µ parents

p2(i) = rand(µ);    //pick another random parent p2(i) != p1(i)

c1(i) = recombine(p1(i),p2(i)); //recombine parents

c1(i) = mutate(c1(i));          //mutate child

     save(c1(i));        //save child in an intermediate population

}
   selection();         //µ new parents out of either λ, or λ+µ
}

Fig. 1.15. Meta-algorithm for evolution strategies (ESs)

While ESs are among the best global optimizers, their simplest imple-
mentations still do not solve the step size problem. Schwefel addressed this 
issue in Schwefel (1981) where he proposed modifying the Gaussian muta-
tion distribution with a matrix of adaptive covariances, an idea that Re-
chenberg suggested in 1967 (Fogel 1994). Equation 1.19 generalizes the 
multi-dimensional Gaussian distribution to include a covariance matrix, C
(Papoulis 1965): 
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In Eq. 1.19, µ is the mean vector and C is the covariance matrix
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By permitting the otherwise symmetrical Gaussian distribution to be-
come ellipsoidal, the ES can assign a different step size to each dimension. 
In addition, the covariance matrix allows the Gaussian mutation ellipsoid 
to rotate in order to adapt better to the topography of non-decomposable 
objective functions. A decomposable function (Salomon 1996) can always 
be written as 

( ) ( ).
1

0

−

=

=
D

i

ii xff x
(1.23)

Because decomposable functions lack cross-terms, their parameters can be 
optimized independently. Thus, decomposability replaces the task of opti-
mizing one function having D dimensions with the much simpler task of 
optimizing D one-dimensional functions. The hyper-ellipsoid is a simple 
example of a decomposable function: 
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If, however, the hyper-ellipsoid is rotated in all dimensions, it becomes 
impossible to optimize one parameter independent of the others. This pa-
rameter dependence is often referred to as epistasis, an expression from 
biology (www 01). Salomon (1996) shows that unless an optimizer ad-
dresses the issue of parameter dependence, its performance on epistatic ob-
jective functions will be seriously degraded. This important issue is dis-
cussed extensively in Sect. 2.6.2.

Adapting the components of C requires additional “strategy parame-
ters”, i.e., the variances and position angles of the D-dimensional hyper-
ellipsoids for which C is positive definite (Sprave 1995). Thus, the ES 
with correlated mutations increases a problem’s dimensionality because it 
characterizes each individual by not only a vector of D objective function 
parameters, but also an additional vector of up to D⋅(D  1)/2 strategy pa-
rameters. For problems having many variables, the time and memory 
needed to execute these additional (matrix) calculations may become pro-
hibitive.

Nelder and Mead 

The Nelder–Mead polyhedron search (Nelder and Mead 1965; Bunday and 
Garside 1987; Press et al. 1992; Schwefel 1994), tries to solve the step size 
problem by allowing the step size to expand or contract as needed. The al-
gorithm begins by forming a (D + 1)-dimensional polyhedron, or simplex,
of D + 1 points, xi, i = 0, 1, …, D, that are randomly distributed throughout 
the problem space. For example, when D = 2, the simplex is a triangle. In-
dices of the points are ordered according to ascending objective function 
value so that x0 is the best point and xD is the worst point. To obtain a new 
trial point, xr, the worst point, xD, is reflected through the opposite face of 
the polyhedron using a weighting factor, F1:

( ).1 DmDr F xxxx −⋅+= (1.25)

The vector, xm, is the centroid of the face opposite xD:
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Figure 1.16 illustrates the reflection operation defined in Eq. 1.25. 
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Fig. 1.16. Reflection and expansion in the Nelder–Mead method where D = 2 

If a reflection through the centroid improves on the best point, x0, i.e., if 
f(xr) < f(x0), then the Nelder–Mead algorithm takes another step in the 
same direction based on the assumption that still further improvement may 
be possible. When weighted by a second scale factor, F2, this expansion

step generates a new trial point, xe:

( )Dmre F xxxx −⋅+= 2 (1.27)

If this expansion step also improves on x0, then xe replaces xD. This new 
set of D + 1 points becomes the next simplex and the procedure begins 
again by ordering points based on their objective function value. If, how-
ever, xe did not improve upon x0, then xr replaces xD. If xr did not improve 
upon x0 in the first place, then xr is compared to the next worst point, xD 1.
If xr is better than xD 1, then xr replaces xD. If, however, xr is worse than 
xD 1, a third scaling constant, F3, shrinks the entire simplex. Pseudo-code 
for the Nelder–Mead algorithm appears in Fig. 1.17. Figures 1.18–1.21 il-
lustrate how the simplex moves in a two-dimensional parameter space. 
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...
while (convergence criterion not yet met)
{

//---sort all D+1 points of the simplex according to-----
    //---ascending objective function value------------------
    sort(xi,D+1);

    //---compute centroid------------------------------------
xm = 0;

    for (i=0; i<D; i++) xm = xm + xi;

xm = xm/D;

    //---start exploration of surface------------------------
xr = xm + F1(xm - xD);//reflection

    if (f(xr) < f(x0))   //if best point is improved

    {
xe = xr + F2(xm - xD);//expansion

       if (f(xe) < f(x0)) xD = xe;

       else xD = xr;

    }
    else if (f(xr) < f(xD-1))//if next worst point is improved

    {
xD = xr;

    }
    else//if best and next worst point are not improved
    {
       if (f(xr) < f(xD))

       {
xD = xr;//replace worst point with reflected point

xc = xm + F3(xm - xD);//contract around centroid

       }
       else
       {

xc = xm - F3(xm - xD);//contract around centroid

       }
       if (f(xc) < f(xD))//if contraction was successful

       {
xD = xc;

       }
       else //contract around the best point
       {
          for (i=1; i<=D; i++) xi = 0.5*(x0 + xi);

       }
    }
}//end while
...

Fig. 1.17. Pseudo-code for the Nelder–Mead algorithm 
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Fig. 1.18. Evolution of the Nelder–Mead simplex: first iteration. The reflection 
succeeds but the following expansion fails.  

x1

x2

reflection succeeds

expansion fails

Fig. 1.19. Evolution of the Nelder–Mead simplex: second iteration. Again the re-
flection succeeds but the expansion fails. 
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Fig. 1.20. Evolution of the Nelder–Mead simplex: third iteration. This time, even 
the reflection fails so a contraction must be tried. The contraction is successful. 

x1

x2

reflection succeeds

expansion fails

Fig. 1.21. Evolution of the Nelder–Mead simplex: fourth iteration. The reflection 
succeeds, but the expansion does not. 
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The Nelder–Mead method is one of the oldest optimization algorithms 
to heavily rely on difference vectors for exploring the objective function 
landscape. One advantage of the Nelder–Mead method is that the simplex 
can shrink as well as expand to adapt to the current objective function sur-
face. This makes the step size a variable that depends on the topography of 
the objective function landscape. Like the Nelder–Mead method, DE also 
exploits vector differences but without the positional bias inherent in sim-
plex reflections. Section 2.6.3 explores this distinction in detail. 

Unlike DE, the Nelder–Mead algorithm restricts the number of sample 
points to D + 1. This limitation becomes a drawback for complicated ob-
jective functions that require many more points to form a clear model of 
the surface topography. Box (Box 1965; Bunday and Garside 1987;  
Schwefel 1994) suggested using a geometrical entity called a complex that, 
unlike a simplex, contains 2D points. Box also exploited the difference 
vectors formed by the centroid and all other points except for the worst 
one, but for multi-modal functions in particular, excessive reliance on the 
centroid as a reference point is meaningless, or, worse, the cause of prema-
ture convergence. 

x1

x2

xr

xw

: successful move

contour lines
of f(x1,x2)

Fig. 1.22. The CRS method applies Nelder–Mead’s reflections to a population of 
points. 
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...
while (convergence criterion not yet met)
{

//---sort all NP points according to---------------------

    //---ascending objective function value------------------
    sort(xi,NP);  //x0 is best, xD is worst point xw
    //---compute centroid (Points of centroid should be------
    //---all different. Code to achieve that is not shown.)--

j = rand(NP); //pick a random point from the population

                  //as a variant pick j=0 (best point)
xm = xj;

    for (i=1; i<D; i++)
    {

j = rand(NP); //pick a random point from the population

xm = xm + xj;

    }
xm = xm/D;

    //---start exploration of surface------------------------
xr = xm + F1(xm - xj);//reflection from last j, usually F1=1

    if (bounds_ok(xr) == TRUE)//if inside the region of interest

    {
       if (f(xr) < f(xD))   //if worst point is improved

       {
xD = xr;

       }
    }
    //---optionally there follows a local search-------------
    //---starting from the best points-----------------------
    ...
}//end while
...

Fig. 1.23. Pseudo-code for the CRS-type algorithms 

Controlled Random Search 

Price’s (no relation to the author of this book) controlled random search

(CRS) also uses difference vectors for reflection operations (Price 1978). 
CRS employs a Nelder–Mead-like simplex consisting of D + 1 points 
drawn at random from a population of Np > D + 1 vectors as shown in 
Figure 1.22. A reflection through the centroid generates a new point xr. If 
this point is better than the current worst point xw, xr replaces xw. Figure 
1.23 presents pseudo-code for the CRS. 

CRS resembles DE because the population size is a control variable and 
because vector differences generate new points. Like the Nelder–Mead al-
gorithm, though, CRS’s reflection operations are a form of arithmetic re-
combination (see Sect. 2.6.3), whereas DE’s vector operations more 
closely resemble a mutation operation (see Sect. 2.5). 
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One drawback of the CRS algorithm is that continually replacing the 
current worst point exerts high selective pressure that may force the popu-
lation to prematurely converge. Even though it is a multi-point strategy, 
this “replace worst” selection strategy also makes it difficult to implement 
the CRS algorithm in parallel. Conflicts can arise because the current 
worst point can change after every reflection. There have been several im-
provements to the CRS algorithm, most notably by Ali et al. (1997) and 
Ali and Törn (2004). 

1.2.4 Differential Evolution – A First Impression 

Price and Storn developed DE to be a reliable and versatile function opti-
mizer that is also easy to use. The first written publication on DE appeared 
as a technical report in 1995 (Storn and Price 1995). Since then, DE has 
proven itself in competitions like the IEEE’s International Contest on Evo-
lutionary Optimization (ICEO) in 1996 and 1997 and in the real world on a 
broad variety of applications. Recently, Mathematica  added DE to its 
numerical optimizer package. 

Like nearly all EAs, DE is a population-based optimizer that attacks the 
starting point problem by sampling the objective function at multiple, ran-
domly chosen initial points. Preset parameter bounds define the domain 
from which the Np vectors in this initial population are chosen (Fig. 1.24). 
Each vector is indexed with a number from 0 to Np − 1. Like other popula-
tion-based methods, DE generates new points that are perturbations of ex-
isting points, but these deviations are neither reflections like those in the 
CRS and Nelder–Mead methods, nor samples from a predefined probabil-
ity density function, like those in the ES. Instead, DE perturbs vectors with 
the scaled difference of two randomly selected population vectors (Fig. 
1.25). To produce the trial vector, u0, DE adds the scaled, random vector 
difference to a third randomly selected population vector (Fig. 1.26). In the 
selection stage, the trial vector competes against the population vector of 
the same index, which in this case is number 0. Figure 1.27 illustrates the 
select-and-save step in which the vector with the lower objective function 
value is marked as a member of the next generation. Figures 1.28–1.29 in-
dicate that the procedure repeats until all Np population vectors have com-
peted against a randomly generated trial vector. Once the last trial vector 
has been tested, the survivors of the Np pairwise competitions become par-
ents for the next generation in the evolutionary cycle. 
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Fig. 1.24. Initializing the DE population 
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Fig. 1.25. Generating the perturbation: xr1 − xr2
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Fig. 1.26. Mutation 
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Fig. 1.27. Selection. Because it has a lower function value, u0 replaces the vector 
with index 0 in the next generation. 
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Fig. 1.28. A new population vector is mutated with a randomly generated pertur-
bation.
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Fig. 1.29. Selection. This time, the trial vector loses. 
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Figure 1.30 presents pseudo-code for DE’s most basic idea. 

...
while (convergence criterion not yet met)
{

//---xi defines a vector of the current vector population-------

    //---yi defines a vector of the new vector population-----------

    for (i=0; i<NP; i++)

    {
r1 = rand(NP); //select a random index from 1, 2, ..., Np
r2 = rand(NP); //select a random index from 1, 2, ..., Np
r3 = rand(NP); //select a random index from 1, 2, ..., Np
ui = xr3 + F*(xr1 - xr2);

       if (f(ui) <= f(xi))

       {
yi = ui;

       }
       else
       {

yi = xi;

       }
    }
}//end while
...

Fig. 1.30. Pseudo-code for a simplified form of DE’s generate-and-test operations 

Even though the scheme described above already works remarkably 
well, DE’s performance can be improved and its methodology adapted to a 
wide variety of optimization scenarios. The following chapters provide ad-
ditional insight into how and why DE works, including a convergence 
proof, performance comparisons with other global optimization algo-
rithms, practical applications, and computer code for solving real-world 
tasks.
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2  The Differential Evolution Algorithm 

2.1 Overview 

2.1.1 Population Structure 

DE’s most versatile implementation maintains a pair of vector populations, 
both of which contain Np D-dimensional vectors of real-valued parame-
ters. The current population, symbolized by Px, is composed of those vec-
tors, xi,g, that have already been found to be acceptable either as initial 
points, or by comparison with other vectors: 
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Indices start with 0 to simplify working with arrays and modular arithme-
tic. The index, g = 0, 1, ..., gmax, indicates the generation to which a vector 
belongs. In addition, each vector is assigned a population index, i, which 
runs from 0 to Np − 1. Parameters within vectors are indexed with j, which 
runs from 0 to D − 1. 

Once initialized, DE mutates randomly chosen vectors to produce an in-
termediary population, Pv,g, of Np mutant vectors, vi,g:
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Each vector in the current population is then recombined with a mutant to 
produce a trial population, Pu, of Np trial vectors, ui,g:
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During recombination, trial vectors overwrite the mutant population, so a 
single array can hold both populations. 
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2.1.2 Initialization 

Before the population can be initialized, both upper and lower bounds for 
each parameter must be specified. These 2D values can be collected into 
two, D-dimensional initialization vectors, bL and bU, for which subscripts 
L and U indicate the lower and upper bounds, respectively. Once initializa-
tion bounds have been specified, a random number generator assigns each 
parameter of every vector a value from within the prescribed range. For 
example, the initial value (g = 0) of the jth parameter of the ith vector is

( ) .)1,0(rand L,L,U,0,, jjjjij bbbx +−⋅= (2.4)

The random number generator, randj(0,1), returns a uniformly distributed 
random number from within the range [0,1), i.e., 0 ≤ randj(0,1) < 1. The 
subscript, j, indicates that a new random value is generated for each pa-

rameter. Even if a variable is discrete or integral, it should be initialized 
with a real value since DE internally treats all variables as floating-point 
values regardless of their type. 

2.1.3 Mutation 

Once initialized, DE mutates and recombines the population to produce a 
population of Np trial vectors. In particular, differential mutation adds a 
scaled, randomly sampled, vector difference to a third vector. Equation 2.5 
shows how to combine three different, randomly chosen vectors to create a 
mutant vector, vi,g:

( ).,2,1,0, grgrgrgi F xxxv −⋅+= (2.5)

The scale factor, F ∈ (0,1+), is a positive real number that controls the rate 
at which the population evolves. While there is no upper limit on F, effec-
tive values are seldom greater than 1.0. 

The base vector index, r0, can be determined in a variety of ways, but 
for now it is assumed to be a randomly chosen vector index that is differ-
ent from the target vector index, i. Except for being distinct from each 
other and from both the base and target vector indices, the difference vec-

tor indices, r1 and r2, are also randomly selected once per mutant. Figure 
2.1 illustrates how to construct the mutant, vi,g, in a two-dimensional pa-
rameter space. 
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xr1,g

xr2,g

F⋅(xr1,g-xr2,g)

xr0,g

vi,g = xr0,g+F⋅(xr1,g-xr2,g)

x0

x1

Fig. 2.1. Differential mutation: the weighted differential, F⋅(xr1,g− xr2,g), is added 
to the base vector, xr0,g, to produce a mutant, vi,g.

2.1.4 Crossover 

To complement the differential mutation search strategy, DE also employs 
uniform crossover. Sometimes referred to as discrete recombination,
(dual) crossover builds trial vectors out of parameter values that have been 
copied from two different vectors. In particular, DE crosses each vector 
with a mutant vector: 
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The crossover probability, Cr ∈ [0,1], is a user-defined value that con-
trols the fraction of parameter values that are copied from the mutant. To 
determine which source contributes a given parameter, uniform crossover 
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compares Cr to the output of a uniform random number generator, 
randj(0,1). If the random number is less than or equal to Cr, the trial pa-
rameter is inherited from the mutant, vi,g; otherwise, the parameter is cop-
ied from the vector, xi,g. In addition, the trial parameter with randomly 
chosen index, jrand, is taken from the mutant to ensure that the trial vector 
does not duplicate xi,g. Because of this additional demand, Cr only ap-
proximates the true probability, pCr, that a trial parameter will be inherited 
from the mutant. Figure 2.2 plots the possible trial vectors that can result 
from uniformly crossing a mutant vector, vi,g, with the vector xi,g.

xr1,g

xr2,g

F⋅(xr1,g-xr2,g)
xr0,g

x0

x1

xi,g

u''
i,g

u
'
i,g

vi,g=ui,g

Fig. 2.2. The possible additional trial vectors u′i,g , u″i,g when xi,g and vi,g are uni-
formly crossed 

2.1.5 Selection 

If the trial vector, ui,g, has an equal or lower objective function value than 
that of its target vector, xi,g, it replaces the target vector in the next genera-
tion; otherwise, the target retains its place in the population for at least one 
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more generation (Eq. 2.7). By comparing each trial vector with the target 
vector from which it inherits parameters, DE more tightly integrates re-
combination and selection than do other EAs: 
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Once the new population is installed, the process of mutation, recombina-
tion and selection is repeated until the optimum is located, or a pre-
specified termination criterion is satisfied, e.g., the number of generations 
reaches a preset maximum, gmax.

2.1.6 DE at a Glance 

Here are three different ways to describe the DE algorithm known as 
“classic DE”. 

Generate-and-Test 

The simplicity of DE’s generate-and-test loop becomes apparent once Eqs. 
2.5–2.7 are combined: 

( ) ( )

{ }

{ }

( ) ( )≤
=

≠≠≠−∈
=

−=
−∈−=

=≤−⋅+
=

+ otherwise.

,if

210,1,...,1,02,1,0

,...,1,0

1,...,1,0

1,...,1,0;1,...,1,0

otherwise.

,or)1,0(randif,

,

,,,

1,

max

rand

,,

rand,2,,1,,0,

,,

gi

gigigi

gi

gij

jgrjgrjgrj

gij

ff

irrrNprrr

gg

Npi

DjDj

x

jjCrxxFx
u

x

xuu
x

(2.8)

C-Style Pseudo-code 

Figure 2.3 presents C-style pseudo-code for classic DE. The vector indices 
r0, r1 and r2 are all different and distinct from the target index, i. In addi-
tion, selection is delayed until the trial population is complete. 
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// initialize...

do // generate a trial population
{
   for (i=0; i<Np; i++)  // r0!=r1!=r2!=i
   {
      do r0=floor(rand(0,1)*Np); while (r0==i);
      do r1=floor(rand(0,1)*Np); while (r1==r0 or r1==i);
      do r2=floor(rand(0,1)*Np); while (r2==r1 or r2==r0 or r2==i);

jrand=floor(D*rand(0,1));

      for (j=0; j<D; j++)  // generate a trial vector
      {
         if (rand(0,1)<=Cr or j==jrand)
         {

uj,i=xj,r0+F*(xj,r1-xj,r2);  //check for out-of-bounds ?

         }
         else
         {

uj,i=xj,i;

         }
      }
   }

   // select the next generation

   for (i=0; i<Np; i++)
   {
      if ( f(ui)<=f(xi) ) xi=ui;

   }
} while (termination criterion not met);

Fig. 2.3. Classic DE; 0 ≤ rand(0,1) < 1 so that indices never equal Np. 

Flow Chart 

Figure 2.4 shows a flow chart of DE. That r0, r1, r2 and i are distinct indi-
ces is not made explicit in this figure. 
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Fig. 2.4. A flow chart of DE’s generate-and-test loop 

2.1.7 Visualizing DE 

The Difference Vector Distribution 

Figure 2.5a shows the difference vectors formed by all possible pairings of 
nine vectors. Transporting the difference vectors to a common origin more 
clearly shows their distribution (Fig. 2.5b). Because all difference vectors 
have both a negative counterpart and an equal chance of being chosen, 
their distribution’s mean is zero. 
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a) Vector differences b) Difference vector distribution

7

Fig. 2.5. Nine vectors a, and their corresponding difference distribution b

Scaling vector differences ensures that trial vectors do not duplicate ex-
isting points (Fig. 2.6a). In addition, scaling can shift the focus of the 
search between local and global. Figure 2.6b illustrates that the difference 
vector distribution contains a substantial number of vectors whose consid-
erable length reduces the probability that vectors will become trapped in a 
local minimum. 
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prevents duplicating an
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Perturbing an
outer point
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region.

a) Effects of scaling b) Effects of large differences

Fig. 2.6. The effects of scaling a, and large vector differences b

Contour Matching 

One of the biggest advantages that difference vectors afford is that both a 
step’s size and its orientation automatically adapt to the objective function 
landscape. The series of plots in Figs. 2.7–2.13 demonstrate this property 
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for the “peaks” function (Eq. 1.16). For clarity, the difference vector dis-
tribution plot only shows the difference vector endpoints. 

As it evolves, the population coalesces around competing minima (Figs. 
2.7–2.10). During this phase, the difference distribution is multi-modal, 
like the function itself. It contains not only steps adapted to searching 
within each basin, but also larger steps capable of transporting vectors be-
tween basins and beyond. Once the population settles into the optimal ba-
sin (Figs. 2.11–2.13), the difference vector distribution becomes uni-modal 
and steps exhibit both a scale and an orientation that is appropriate for a 
local search. 
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Fig. 2.7. Generation 1: DE’s population and difference vector distributions 
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Fig. 2.8. Generation 6: The population coalesces around the two main minima 
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Fig. 2.9. Generation 12: The difference vector distribution contains three main 
clouds – one for local searches and two for moving between the two main minima. 
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Fig. 2.10. Generation 16: The population is concentrated on the main minimum. 
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Fig. 2.11. Generation 20: Convergence is imminent. The difference vectors auto-
matically shorten for a fine-grained, local search. 
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Fig. 2.12. Generation 26: The population has almost converged. 
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Fig. 2.13. Generation 34: DE finds the global minimum. 

2.1.8 Notation 

The technical name for the method illustrated in this overview is 
“DE/rand/1/bin” because the base vector is randomly chosen, 1 vector dif-
ference is added to it and because the number of parameters donated by the 
mutant vector closely follows a binomial distribution. More often, how-
ever, this book refers to this method simply as “classic DE”. This version 
will probably suffice for most applications, but a number of variations are 
possible, each with its own strengths and weaknesses. The most successful 
of these alternative strategies will be explored later in this chapter, but first 
the next few sections examine the details missing from this brief overview. 
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2.2 Parameter Representation 

DE encodes all parameters as floating-point numbers, regardless of their 
type. Even integer and discrete variables are encoded as real values to add 
diversity to their difference distributions. Specific advice for handling in-
teger and discrete variables is given in Sect. 4.2. The point being made 
here is that encoding continuous parameters as floating-point numbers and 
manipulating them with arithmetic operators offer several significant ad-
vantages over the traditional GA “bit flipping” approach to continuous pa-
rameter optimization. Advantages include: 

• ease of use 
• efficient memory utilization 
• lower computational complexity – scales better on large problems 
• lower computational effort – faster convergence 
• greater freedom in designing a mutation distribution. 

The next subsection exposes the shortcomings of the standard GA coding 
scheme, while the subsequent subsection elaborates the advantages that 
floating-point arithmetic confers on a real-parameter optimizer. 

2.2.1 Bit Strings 

Standard GA Encoding 

Typically, GAs encode a continuous parameter, x, as an integer string of q
bits, ak, k = 0, 1, … q − 1, each of which is a coefficient for a power of 2: 
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When decoded, integers are normalized by a factor of 2q − 1 and multiplied 
by bU− bL so that values span the range between a parameter’s upper and 
lower bounds, bU and bL, respectively. Assuming that equal resources are 
devoted to each parameter, a vector of D parameters will require l = q⋅D
bits in all. 

For functions with independent parameters, both theory and experiment 
suggest that the optimal mutation rate, i.e., the probability that a bit should 
be inverted, or “flipped”, is pm= 1/ l (Mühlenbein 1992; Potter and DeJong 
1994). The problem with the GA approach is that even on uni-modal ob-
jective functions, the computational effort to optimize a parameter is a 
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function of l that depends on a parameter’s value. For example, if the ini-
tial parameter value is x = 15 (x = 01111 binary) and the optimal value is x
= 16 (x = 10000 binary), then 5 bits must simultaneously be flipped to 
make the final improving move. When pm= 1/l, the probability of this event 
is p = (1/l)5. Because this “Hamming cliff” prevents incremental improve-
ment, x = 15 is one of many local optima even if the objective function is 
uni-modal. In effect, the function that maps bit strings to real-parameter 
values is itself multi-modal (Bäck 1993). 

By contrast, progress does not depend on simultaneously flipping multi-
ple bits if the optimum happens to be x = 0. Instead, inverting non-zero bits 
in any sequence produces a series of parameter values each of which is 
closer to x = 0 than the last. If the objective function is separable and uni-
modal, these intermediate steps constitute improving moves. In this very

special case, the computational complexity to optimize a parameter is con-
stant at O(l⋅ln(l)) (Salomon 1996b). The factor, ln(l), occurs because the 
neighborhoods around parameters that are already optimized continue to 
be re-sampled (Salomon 1997). In the worst case scenario, however, all q
bits must be inverted to make an improving move, so the upper bound on 
the computational complexity for optimizing an independent parameter of 
a uni-modal function becomes O(lq⋅ln(l)). 

The requirement that all q bits simultaneously be inverted is also a de-
mand when the objective function is separable and multi-modal. For ex-
ample, it may be that two competing local minima are positioned at points 
whose representations differ at each bit position. Since an improving move 
from one local minimum to the other must simultaneously change all q

bits, the complexity is O(lq⋅ln(l)) (Salomon 1996b). That the computational 
complexity to optimize an independent parameter is the same in the worst 
case regardless of whether the function is uni- or multi-modal reflects the 
aforementioned fact that the standard GA coding scheme imposes multi-
modality on even uni-modal objective functions (Bäck 1993).

Gray Codes 

Gray codes eliminate Hamming cliffs by reassigning bit groupings to inte-
gers so that representations for adjacent integers differ by a single bit, i.e., 
so that the Hamming distance between consecutive integers is 1 (Wright 
1991). As long as the objective function is both uni-modal and separable, 
sequentially flipping single bits in Gray-coded variables can always pro-
duce monotonously decreasing objective function values regardless of both 
the starting point and the optimal parameter value. Since it no longer mat-
ters what the optimal parameter value is, the complexity for optimizing a 
separable, uni-modal function with Gray codes when pm= 1/l is constant at 



50      2  The Differential Evolution Algorithm 

O(l⋅ln(l)) (Salomon 1996b). Because of their constant low complexity, 
Gray codes are more efficient than the standard GA representation when 
the objective function is uni-modal (Bäck 1993). If, however, the objective 
function is multi-modal, then all bits must be inverted simultaneously in 
the worst case scenario, so the computational complexity again rises to 
O(lq⋅ln(l)) – the same complexity demonstrated for standard GA coding 
(Salomon 1996b). 

2.2.2 Floating-Point 

Unlike the standard GA representation in which all bits are potentially sig-
nificant, the floating-point format retains only a limited number of signifi-
cant digits. For example, the ANSI C float data type encodes a real num-
ber with q = 32 bits. Twenty-four bits are dedicated to precision, while the 
remaining eight bits are assigned to an exponent that locates the decimal 
point. By contrast, a fixed-point integer variable requires 256+ bits to span 
as many orders of magnitude as the float data type. In the final answer, 
most of the bits in this very long integer format will be either leading zeros 
or bits of unneeded precision. By contrast, the floating-point format retains 
only a limited number of significant bits while spanning a vast dynamic 
range with minimal resources.  

The floating-point format is convenient not only because it can effi-
ciently handle parameter values that span a wide dynamic range, but also 
because most modern programming languages support common floating-
point formats. No special routines are needed to define, input, manipulate 
or output a floating-point value. When representing continuous parameters 
in floating-point, the encoding process is transparent to the user. 

Logical Versus Arithmetic Operators 

GAs typically operate on bit strings with logical operators like the XOR 
(exclusive or) which has the effect of inverting specified bits. By contrast, 
DE and other floating-point optimizers add a floating-point deviation to 
one or more parameters. Compared to bit flipping, arithmetic provides two 
benefits: it reduces the complexity of the algorithm and it provides greater 
flexibility in designing a mutation distribution. 

The most efficient way for an EA to optimize a function with independ-
ent parameters is to change one parameter at a time before evaluating the 
result (Salomon 1996a). Typically, both standard and Gray-coded GAs 
implement this strategy by setting pm= 1/l so that, on average, only one pa-
rameter value changes per function evaluation (Potter and DeJong 1994). 
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For EAs that add a small deviation to a floating-point parameter, the corre-
sponding mutation probability is pm= 1/D – a value which also, on average, 
perturbs just one parameter before evaluating the result (Mühlenbein and 
Schlierkamp-Voosen 1993; Salomon 1996a). 

When the objective function is multi-modal, all bits in an independent

floating-point parameter may have to be set to the correct value to make 
progress. If there are q bits in the floating-point representation, then the 
probability of making progress in this worst case scenario is (1/2)q. While 
this number may be very small, it is constant and independent of D. As a 
result, the computational complexity for optimizing separable, multi-modal 
functions with floating-point representations and arithmetic operators is 
O(D⋅ln(D)) (Salomon 1996a). Compared to the O(lq⋅ln(l)) complexity for 
optimizing an independent, Gray-coded parameter of a multi-modal func-
tion, the floating-point format representation is faster by a factor of up to 
q⋅lq −1⋅(1 + ln(q)/ln(l)). The rules of complexity mathematics (Beckman 
1980), however, replace leading constants, like q, with 1 and substitute 0 
for terms like ln(q)/ln(l) that are negligible for large l. Under these rules, 
the ratio of Gray to floating-point complexities reduces to lq −1 (Salomon 
1996b).

Parameter dependence amplifies this disparity between the computa-
tional complexity of the Gray and floating-point approaches. For example, 
if a multi-modal function has two parameters that depend on each other, 
then progress in the worst case scenario will require flipping all bits in 
both parameters simultaneously. The probability of this event is p = (1/l)2q

and the corresponding computational complexity is O(l2q⋅ln(l)). Under 
similar circumstances, all bits in both parameters’ floating-point represen-
tations also must be changed. When pm= 1/D, this event occurs with a 
probability of (1/D)2, so the computational complexity for optimizing two, 
dependent, floating-point parameters of a multi-modal function is 
O(D2⋅ln(D)). Under the rules of complexity mathematics, the gain over 
Gray-coded parameters rises to l2(q −1).

Crafting a Mutation Distribution 

Arguably the most important advantage that floating-point arithmetic con-
fers on a real-parameter optimizer is the freedom to decide how perturba-
tions are distributed. Because floating-point’s computational complexity 
does not depend on the mutation operator’s probability density, distribu-
tions can be crafted to implement a particular search strategy (Salomon 
1996b). For example, the Breeder Genetic Algorithm perturbs parameters 
with non-adaptive step sizes that are distributed according to a power law 
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(Mühlenbein and Schlierkamp-Voosen 1993). Evolution Strategies (Bäck 
and Schwefel) and Fast Evolution Strategies (Yao and Liu 1997) adap-
tively modify steps sampled from Gaussian and Cauchy distributions, re-
spectively. The same freedom that these floating-point optimizers enjoy 
also allows DE to tap the pool of vector differences as its mutation distri-
bution.

2.2.3 Floating-Point Constraints 

The number of bits that a floating-point format dedicates to an exponent 
limits the minimum and maximum values that it can represent. These lim-
its are rarely exceeded in practical applications because physical properties 
of such extreme magnitude are uncommon. Of greater consequence for DE 
is the number of significant digits (precision) that a format supports. If the 
objective function contains terms that differ by many orders of magnitude, 
contributions from smaller terms will be lost if there are not enough sig-
nificant bits available. For example, the float data type holds about seven 
decimal digits of precision. If two numbers differ by more than seven 
decimal orders of magnitude, then the smaller contribution is not taken 
into account.  
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For the same reason, the lack of precision can be a problem not only when 
computing the objective function, but also when forming vector differ-
ences. Because DE relies on vector differences, the inability to record the 
effect of small perturbations might cause DE to stagnate (Zimmons n.d.). 

In most cases, the double format with 15 digits of decimal precision 
will be enough. Because they evaluate high-order polynomials, however, 
functions like the high-dimensional versions of the Chebyshev function 
(see Appendix) require long doubles. Except for requiring additional 
memory and bandwidth, there is little penalty for declaring long doubles
and their 19 digits of decimal precision because floating-point units com-
pute values to full precision by default. 
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2.3 Initialization 

In order for DE to work, the initial population must be distributed through-
out the problem space. One-point optimizers do not require this initial di-
versity and even the (1, λ)-ES begins with a single point. If, however, DE 
is initialized with Np replicas of a single vector, uniform crossover and dif-
ferential mutation will only clone more replicas. Consequently, DE re-
quires a predefined probability distribution function, or PDF, to seed the 
initial population. When specifying an initial distribution, steps must be 
taken to ensure that its scale sufficiently broad. 

2.3.1 Initial Bounds 

As a matter of convenience, test function parameters are often initialized 
with values that are constrained to lie between a single set of upper and 
lower bounds. By contrast, bounds for parameters that define real-world 
objective functions are seldom equal, often because the parameters they 
delimit correspond to different physical or mathematical entities. In many 
cases, the existence of natural physical limits or logical constraints makes 
prescribing bounds for each parameter straightforward. For example, ordi-
nary optical glass can never have an index of refraction less than or equal 
to 1, nor can a gear have less than one tooth. In cases like these where pa-
rameter limits are inviolable, initialization bounds should not only delimit 
the initial population, but also constrain the subsequent search. Section 
4.3.1 discusses several methods for keeping parameters constrained within 
pre-specified bounds. 

Far Initialization 

When parameters exhibit no obvious limits, their upper and lower bounds, 
bj,U and bj,L, respectively, should be set so that the initial bounding box 
they define encompasses the optimum. If the optimum’s general location is 
uncertain, then the possibility exists that it lies outside the initial bounding 
box. Figure 2.14 shows an example of far initialization in which the upper 
parameter limit has been reduced to the point where the initial bounding 
box no longer contains the optimum, x*. In cases of far initialization, 
bounds on otherwise unconstrained parameters must be ignored once the 
population has been initialized so that DE can explore beyond the initial 
bounding box. 

Table 2.1 records the effect that far initialization has on DE’s ability to 
discover the optima of ten common test functions (descriptions of test 
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functions can be found in the Appendix). Although each function has a dif-
ferent set of initialization bounds, in each case, these bounds define a D-
dimensional box that encloses the function’s global optimum. 

x1

x0

b0,L

b1,L

b1,U

b0,U

x*

b1,Far

b0,Far

Fig. 2.14. Far initialization shrinks the initial bounding box so that it no longer 
contains the optimum, x*.

For the results in Table 2.1, each parameter was initialized with a uni-
formly distributed random value from within a range that has been reduced 
by a factor, h, when compared to the originally prescribed bounds: 

( ).)1,0(rand L,U,L,0,, jjjjij bbhbx −⋅⋅+= (2.11)

After far initializing the population with the given value of h, bounds were 
relaxed to their normal values to constrain the subsequent search. 

For each of the functions in Table 2.1, the initial bounding box encloses 
the optimum when h = 1. Setting h ≤ 0.1 far initializes the population by 
restricting it to a corner of the original bounding box where it cannot sur-
round the optimum. Table 2.1 reports the average number of function 
evaluations (“Evals.”) taken to find a point whose objective function value 
differs from the optimum objective function value by less than a preset 
minimum. Finding such a point within the maximum allowed number of 
generations constitutes a success; otherwise, the trial is considered to be a 
failure. (See the Appendix for details on the minimum function value to 
reach.) Only “successes” contribute to the results in Table 2.1. The fraction 
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of successful trials, P, records the impact of failures. Results are 100-trial 
averages obtained using classic DE with F = Cr = 0.9 and r0 ≠ r1 ≠ r2 ≠ i

(distinct indices). 

Table 2.1. The effects of far initializing DE with a uniformly random population 

h = 1 h = 0.1 h = 0.01 Function D Np 
Evals. P Evals. P Evals. P 

Sphere 10 30 30,994.5 1 31,514.9 1 31,722.2 1 
Ridge 10 30 48,520.2 1 48,825.5 1 48,820.2 1 

Rosenbrock 10 30 59,643.4 1 59,721.9 1 60,315.4 1 
Chebyshev 9 30 69,522.1 1 72,211.3 1 71,068.5 1 

Ackley 10 30 48,385.2 1 49,853.3 0.90 – 0 
Rastrigin 5 100 59,840.4 1 60,199.2 1 – 0 
Schwefel 5 100 16,245.6 1 22,432.4 0.25 – 0 

Griewangk 5 100 19,4202 0.98 19,5551 0.99 19,4921 0.99 
Langerman 5 100 38,405.7 0.98 37,196.1 0.54 34,873.2 0.21 

Michalewicz 5 100 27,749.5 1 29,291.6 0.95 32,061.6 0.96 

As Table 2.1 shows, far initialization’s effect on the sphere, ridge, 
Rosenbrock, Chebyshev, Michalewicz and Griewangk functions is mini-
mal. In most cases, far initialization penalizes these six functions with a 
very slight increase in the average number of function evaluations and a 
very slight decrease in the estimated probability of success. For both the 
sphere and ridge functions, this result is not surprising. Both functions are 
uni-modal and convex, so neither poses obstacles to the population’s ex-
pansion toward the minimum. (Pictures of the two-dimensional versions 
for many of the test functions used in this book appear in the Appendix.) 
Rosenbrock’s function is also uni-modal, but unlike the sphere it is non-
convex. At least in the case of Rosenbrock’s function, non-convexity does 
not impede DE’s ability to locate the minimum when far initialized. 

Unlike the sphere, ridge or Rosenbrock functions, the remaining func-
tions in Table 2.1 are all multi-modal. Optimal parameter values for the 
Chebyshev function vary greatly in magnitude and restricting initial values 
to a small range means that some parameter values must inflate many or-
ders of magnitude to be on par with their optimal values. Table 2.1 shows 
that except for a slight increase in the number of function evaluations, di-
minishing the value of h did not significantly impact DE’s ability to con-
verge on the Chebyshev optimum. Similarly, far initialization did not sig-
nificantly affect DE’s performance on either Michalewicz’s or 
Griewangk’s function. 

DE became unreliable, however, when far initializing Langerman’s 
function and failed altogether on the Ackley, Rastrigin and Schwefel func-
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tions once h = 0.01. For these highly multi-modal functions, the entire ini-
tial population can land inside a single, non-optimal, local basin of attrac-
tion when h becomes too small. If competing basins are sufficiently far 
apart, then classic DE cannot generate difference vectors large enough to 
escape the local basin. Thus, it is important to use a bounding box of suffi-
cient size when initializing multi-modal functions with a uniform random 
distribution.

Initializing with a Constant 

Occasionally, it may prove productive to experiment with a design by 
holding one or more of its parameters constant while optimizing the re-
maining variables. DE automatically leaves a parameter unchanged during 
optimization if every vector is initialized with the same value for the given 
parameter. When all vectors have the same value for a parameter, every 
differential they combine to create for that parameter will be zero. Fur-
thermore, uniform crossover does not change parameter values, so a pa-
rameter initialized with a single constant value will never change. 

2.3.2 Initial Distributions 

DE can be initialized with either a uniform or a non-uniform distribution. 
The decision regarding which to use depends on how much is known about 
the location of the optimum. If the optimum’s location is fairly well 
known, a Gaussian distribution may prove somewhat faster, although it 
may also increase the probability that the population will converge prema-
turely. In general, uniform distributions are preferred, since they best re-
flect the lack of knowledge about the optimum’s location. The next section 
looks at two common uniform distributions.  

Uniform Distributions 

Distributing initial points with random uniformity is not mandatory, but 
experience has shown randj(0,1) to be very effective in this regard. In gen-
eral, any distribution that uniformly covers the search domain and contains 
a degree of irregularity or randomness should serve well for initializing the 
vector population. For example, Hammersley and Halton point sets are of-
ten used in the field of numerical integration (Halton and Weller 1964). 
Based on prime numbers, these pseudo-random distributions are both uni-
form and irregular, but lack points in close proximity, i.e., they have a 
minimum resolution that increases as the number of points in the sample 
increases. Figure 2.15 gives C-style pseudo-code for computing Halton 
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points in up to ten dimensions. The function, halton(i,j), takes the popula-
tion and parameter indices as input and returns a (rational) number belong-
ing to the interval [0,1). 

halton(i,j)
{
   prime[10]=[2,3,5,7,11,13,17,19,23,29];

p1=prime[j];
p2=p1;

   sum=0;

   do
   {
      x=i%p1; // "%" is the modulo operator
      sum=sum+x/p2;
      i=floor(i/p1);

p2=p2*p1;
   }while (i>0);

   return(sum);
}

Fig. 2.15. C-style pseudo-code for generating Halton point sets, D ≤ 10 

rand(0,1)

0

1

0 1

halton(i ,j )

0

1

0 1

Fig. 2.16. Two hundred points distributed with random uniformity (left) and ac-
cording to a two-dimensional Halton point set (right). 
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Figure 2.16 compares the uniform random and Halton distributions in 
two dimensions. The Halton distribution is more even, but the random dis-
tribution displays a wider range of difference vector magnitudes. 

Table 2.2 shows how the random and Halton distributions affect DE’s 
performance by reporting the average number of function evaluations 
(“Evals.”) taken to find a point whose objective function value differs from 
the optimum objective function value by less than a preset minimum. Find-
ing such a point within the maximum allowed number of generations con-
stitutes a success; otherwise, the trial is considered to be a failure. (See 
Appendix for details on the minimum function value to reach.) Only “suc-
cesses” contribute to the results in Table 2.2. The fraction of successful tri-
als, P, records the impact of failures. Results are 100-trial averages ob-
tained with classic DE, F = Cr = 0.9, distinct indices and with bound 
constraints imposed. Results for the random uniform distribution have 
been copied from Table 2.1 (h = 1). 

Table 2.2. Comparing the effects of uniform initial distributions on performance 

randj(0,1) halton(i,j)Function D Np 
Evals. P Evals. P 

Sphere 10 30 30,994.5 1 30,971.1 1 
Ridge 10 30 48,520.2 1 48,346.8 1 

Rosenbrock 10 30 59,643.4 1 59,406.2 1 
Chebyshev 9 30 69,522.1 1 72,611.6 1 

Ackley 10 30 48,385.2 1 48,354.7 1 
Rastrigin 5 100 59,840.4 1 60,019.2 1 
Schwefel 5 100 16,245.6 1 16,203.2 1 

Griewangk 5 100 19,4202 0.98 18,8279 1 
Langerman 5 100 38,405.7 0.98 39,610.2 0.99 

Michalewicz 5 100 27,749.5 1 27,130.7 0.98 

As Table 2.2 shows, it matters little whether the population is initialized 
with randj(0,1), or according to 

( ).),(halton L,U,L,0,, jjjjij bbjibx −⋅+= (2.12)

In every case, both the fraction of successful trials and the average number 
of function evaluations they required were virtually the same regardless of 
which uniform distribution initialized the population. To generate a differ-
ent point set, a different range of prime numbers should be used. 
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Gaussian Distribution 

Uniform distributions are reliable, but populations can also be non-
uniformly initialized. For example, Fig. 2.17 plots 200 points distributed 
according to a two-dimensional multi-normal distribution whose mean 
vector value is µ = 0.5 and whose covariance matrix is C = σ  2⋅I, where σ
= 0.5 and I is the identity matrix, i.e., N(0.5, 0.25⋅I). This choice centers 
the (symmetrical) distribution in the bounding box and places standard de-
viates (along coordinate axes) on its surface. Unlike the Halton distribution 
in Eq. 2.12, the multi-normal distribution, whose output is a vector, is 
sampled only once per initial vector. 

N(0.5,0.25*I)

0

0.5

1

0 0.5 1

Fig. 2.17. A two-dimensional Gaussian-distributed initial population with mean of  
0.5 and a standard deviation of 0.5, i.e., N(0.5, 0.25⋅I)

Table 2.3 details how classic DE’s performs when the initial population 
is distributed according to a multi-normal distribution. Unlike Eq. 2.12 in 
which a new random value is generated for each parameter, the distribu-
tion used in both Fig. 2.17 and Table 2.3 generates a single instance of a 
multi-normally distributed random vector for each initial point. In both 
cases, the distribution’s mean vector is µ = (0.5, 0.5, ... 0.5) and its covari-
ance matrix is C = 0.25⋅I. A comparison with Table 2.2 shows that when 
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the population is not far initialized (h = 1), it makes little difference 
whether the initial distribution is uniform or Gaussian. The sole exception 
is Ackley’s function. Although initializing Ackley’s function with a Gaus-
sian distribution left convergence speed unchanged, it significantly de-
graded DE’s probability of success. 

Once the population is far initialized (h ≤ 0.1), failures become more 
likely. When compared with Table 2.1, the results in Table 2.3 show that a 
population far initialized with a Gaussian distribution is less likely to be 
successful on multi-modal functions than a uniformly distributed one. In 
every case where uniform distributions failed, the Gaussian-distributed 
population failed more often. 

Table 2.3. Far initialization with a ten-dimensional multi-normal distribution 

h = 1 h = 0.1 h = 0.01 Function D Np 
Evals. P Evals. P Evals. P 

Sphere 10 30 31,801.1 1 31,937.7 1 32,967.6 1 
Ridge 10 30 48,483.9 1 48,919.4 1 49,569.9 1 

Rosenbrock 10 30 60,198.4 1 60,897.4 1 61,056.4 1 
Chebyshev 9 30 72,972.6 1 72,233.6 1 70,129.5 1 

Ackley 10 30 48,472.5 0.02 – 0 – 0 
Rastrigin 5 100 59,627.1 1 61,125.9 0.71 – 0 
Schwefel 5 100 17,406.2 0.97 33,750.1 0.67 – 0 

Griewangk 5 100 19,0872 1 19,6362 0.99 19,2462 0.99 
Langerman 5 100 34,005.4 0.60 32,630.6 0.09 32,254.3 0.04 

Michalewicz 5 100 28,219.8 0.96 31,005.8 0.98 30,828.1 0.73 

Clustering the initial population significantly decreased success prob-
abilities not only for Ackley’s function, but also for the Rastrigin, Schwe-
fel and Langerman functions, although in each case the average number of 
function evaluations was not seriously affected. This result reinforces the 
idea that when the objective function is multi-modal, it is important to dis-
perse the initial population widely enough to contain the optimum. Results 
also suggest that the penalty for expanding bounds is a small increase in 
the average number of function evaluations but the reward is often a sig-
nificantly enhanced probability of success. 

DE is based on evolution with vector differences, so it is not surprising 
that the way in which differences are chosen can have an impact on the op-
timization process. The following section examines what happens when 
the base and difference vectors are chosen both with and without restric-
tions.
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2.4 Base Vector Selection 

There are four vector indices in classic DE’s generating equation (e.g., Eq. 
2.8). The target index, i, specifies the vector with which the mutant is re-
combined and against which the resulting trial vector competes. The re-
maining three indices, r0, r1 and r2, determine which vectors combine to 
create the mutant. Typically, both the base index, r0, and the difference 
vector indices, r1 and r2, are chosen anew for each trial vector from the 
range [0, Np − 1]. 

When indices are randomly selected, the possibility exists that some 
vectors may be chosen repeatedly while others may be omitted altogether. 
Both omitted and duplicated indices affect DE’s performance. Duplicating 
an index can reduce DE’s novel search strategy to a conventional one, 
while omitting an index may deprive a vector of the opportunity to serve as 
a base vector. After presenting several alternative schemes for selecting 
base vectors, this section explores the effects of degenerate vector combi-
nations.

2.4.1 Choosing the Base Vector Index, r0

Random Without Restrictions 

The base index, r0, specifies the vector to which the scaled differential is 
added. The classic version of DE employs a uniform distribution to ran-
domly select r0 anew for each trial vector. To ensure that the index is al-
ways less than Np, randi(0,1) must return a value that is strictly less than 1. 

r0=floor(randi(0,1)*Np);

Fig. 2.18. Base vector selection without restrictions 

While base index selection without restrictions (Fig. 2.18) treats all vec-
tors equally in a statistical sense, it may pick some vectors more than once 
per generation, causing others to be omitted. Stochastic universal sampling 
provides a more representative population sample. 

Stochastic Universal Sampling 

Randomly selecting the base vector without restrictions is known in EA 
parlance as roulette wheel selection. Roulette wheel selection chooses Np
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vectors by conducting Np separate random trials, much like Np passes at a 
roulette wheel whose slots are proportional in size to the selection prob-
ability of the vector they represent. In many GAs, selection probabilities 
are biased toward better solutions, meaning that better vectors are assigned 
proportionally wider slots, but in classic DE, each vector has the same 
chance of being chosen as a base vector, so all slots are of equal size, just 
like a real roulette wheel.

0

DE GA

Roulette wheel selection: Do Np times

1 2 3 4

0 1 2 3 4

Stochastic universal sampling: Do once

0 1 2 3 4

0 1 2 3 4

Fig. 2.19. Stochastic universal sampling and roulette wheel selection compared. 
The fraction of the space allotted to a vector in DE is constant, but in the GA it 
depends on the vector’s objective function value. 

Because samples drawn by roulette wheel selection suffer from a large 
variance, the preferred method for sampling a distribution is stochastic
universal sampling because it guarantees a minimum spread in the sample 
(Baker 1987; Eiben and Smith 2003). The relation of stochastic universal 
sampling to roulette wheel selection is best illustrated if the ball used in 
real roulette is replaced with a stationary pointer. Once the roulette wheel 
stops, the vector corresponding to the slot pointed to is selected. Instead of 
spinning a roulette wheel Np times to select Np vectors with a single 
pointer, stochastic universal sampling uses Np equally spaced pointers and 
spins the roulette wheel just once. In the GA, slot sizes are based on a vec-
tor objective function value, with better vectors being assigned more 
space. In DE, each candidate has the same probability of being accepted, 
so slots are of equal size. Consequently, each of the Np pointers selects one 
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and only one vector regardless of how the roulette wheel is spun (Fig. 
2.19)

The following vector selection methods adhere to stochastic universal 
sampling as it applies to DE since all vectors serve as base vectors once 
and only once per generation. Both methods described below also establish 
the one-to-one correspondence needed to pair each target vector with a 
unique base vector.

2.4.2 One-to-One Base Vector Selection 

Permutation Selection 

To ensure that each vector serves as a base vector just once per generation, 
permutation selection draws consecutive base vector indices from an array 
containing a random permutation of the sequence [0, 1,..., Np − 1]. In this 
scheme, the (target) vector with index i is crossed with is the base vector 
whose index is the ith element of the permutation. The permutation array 
can be initialized with consecutive integers and r0 can be computed with a 
single call to a uniform random number generator and one swap of array 
elements. Another way to permute base vectors assigns to i the vector 
whose index is the product, modulo Np, of i and an integer that is rela-
tively prime to Np. Details of both methods can be found in Sect. 5.2. 

Random Offset Selection 

The random offset method is another way to stochastically assign each tar-
get vector a unique base vector. Simpler than the permutation method, the 
random offset method computes r0 as the sum, modulo Np, of the target 
index and a randomly generated offset, rg. The modulo operator, %, in Fig. 
2.20 divides the operand, (i + rg), by Np and returns the integral remainder. 

r0=(i+rg)%Np;

Fig. 2.20. The base vector is the sum, modulo Np, of the target index, i, and the 
randomly generated offset, rg (see Fig. 2.21). 

rg=floor(randg(0,1)*Np);

Fig. 2.21. The random offset, rg, is chosen anew at the start of each generation.



64      2  The Differential Evolution Algorithm 

Each of the Np possible values for rg defines a one-to-one mapping be-
tween target and base vectors. These Np rotational mappings are a subset 
of the set of Np! permutations. The symbol, “!” is the factorial operator. 
The value of n! is just the product of all of the positive integers less than or 
equal to n. Figure 2.22 gives examples for each of the aforementioned base 
vector assignment methods. The target index is the population’s running 
index, i, so each method automatically ensures that each vector serves as a 
target vector once per generation. Only the last two methods, however, 
also ensure that each vector serves as a base vector once per generation. 
permute[i] refers to the ith element of an array containing a randomly gen-
erated permutation of the sequence [0, 1,…, Np − 1] (Np = 7 in Fig. 2.22). 
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r0=floor(randi(0,1)*Np) r0=permute[i] r0=(i+rg)%Np, (rg=2)

Fig. 2.22. Three ways to stochastically pair base and target vectors 

2.4.3 A Comparison of Random Base Index Selection Methods 

Using the ten-dimensional sphere as a test function, Table 2.4 compares 
the performance of the three stochastic base vector selection methods. (See 
the Appendix for test function details.) As Table 2.4 shows, all vector se-
lection methods respond similarly when Np is increased. Before conver-
gence becomes regular, increasing Np not only improves the probability of 
success, but also decreases the number of function evaluations needed to 
reach the optimum. Once convergence becomes regular, however, addi-
tional increases in Np only marginally improve the probability of conver-
gence while the number of function evaluations begins to climb. As a re-
sult, each method exhibits an optimal population size for which the 
number of function evaluations is a minimum. In the case of the ten-
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dimensional sphere, all three stochastic selection methods perform best 
when Np = 9, (F = Cr = 0.9 and i ≠ r0 ≠ r1 ≠ r2), with each converging re-
liably in about 6000 function evaluations. Some performance disparities 
arise, however, once degenerate vector combinations are allowed. 

Table 2.4. When best efforts are compared, all the three stochastic selection 
methods perform similarly. Results are 1000-trial averages of the number of func-
tion evaluations needed to reach the optimum to within a pre-specified limit and 
within the maximum allowed number of generations (see the Appendix for the 
function value to reach). P is the fraction of trials that were successful. For these 
results, F = Cr = 0.9 and i ≠ r0 ≠ r1 ≠ r2.

r0 = floor(randi(0,1)⋅Np) r0 = permute[i] r0 = ( i + rg)%Np
Np

Evals. P Evals. P Evals. P 
5 36,616.0 0.001 17,929.0 0.004 – 0 
6 14,215.0 0.074 16,804.2 0.309 17,627.9 0.583 

7 12,917.2 0.889 10,017.1 0.961 9047.00 0.977 

8 7097.05 0.982 6582.3 0.979 7086.11 0.995 

9 6006.70 0.994 5954.05 0.995 5927.24 0.998 
10 6039.08 0.996 5969.34 1.0 6669.14 1.0 

11 6433.55 0.998 6431.55 0.999 6843.09 1.0 

12 71,10.87 0.999 7195.95 1.0 8213.57 1.0 

13 79,86.33 0.999 8031.48 1.0 8856.00 1.0 

14 90,15.09 1.0 9040.13 1.0 10,509.7 1.0 

15 10,095.4 1.0 10,214.1 1.0 11,557.2 1.0 

2.4.4 Degenerate Vector Combinations 

If indices are chosen without restrictions, there is no guarantee that i, r0, r1
and r2 will be distinct. When these indices are not mutually exclusive, 
DE’s novel trial vector-generating strategy reduces to uniform crossover 
only, duplication of the base vector, an alternative form of recombination, 
or mutation only. These possibilities are explored below, first by looking at 
the three degenerate combinations of indices that comprise the mutant vec-
tor, r0, r1 and r2, and then by considering the three interactions of the tar-
get index, i, with the mutant indices.  



66      2  The Differential Evolution Algorithm 

Degenerate Combinations of Mutant Indices: r0, r1, r2 

r1 = r2: No Mutation. If r1 = r2, then the differential formed by the corre-
sponding vectors will be zero and the base vector, xr0,g, will not be mu-
tated:

.:)0(21 0,, grgirrr xv === (2.13)

When indices are chosen without restrictions, r1 will equal r2 on average 
once per generation, i.e., with probability 1/Np. The probability that all 
three indices will be equal is (1/Np)2, but either way, the result is the same: 
a randomly chosen base vector that has not undergone mutation is recom-
bined with the target vector by means of conventional uniform crossover: 
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Requiring the base vector to contribute a parameter when j = jrand en-
sures that the trial vector will not simply reproduce the vector with which 
it is compared, i.e., the target vector, xi,g. If, however, Cr is greater than 0, 
the possibility exists that the trial vector will duplicate the base vector. 
When Cr = 1, and r1 = r2, duplication is a certainty: 

grgigiCrrrr 0,,,:1)0(21 xvu ===∧== . (2.15)

More generally, the probability that the base vector will be duplicated is 
the product of the probability that r1 = r2 and the probability that all pa-
rameters are inherited from the mutant, vi,g. Since Cr mediates a random 
process having just two possible outcomes (mutant or target), the number 
of parameters inherited from the mutant is governed by a binomial distri-
bution. Thus, the probability of inheriting x mutant parameters in n tries is 
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Since one parameter is certain to be taken from the mutant, n = D − 1. 
Thus, the probability, given Cr, that all D − 1 of the remaining parameters 
will also be inherited from the mutant (x = D − 1) is 
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When difference indices are chosen without restrictions, the probability 
that the base vector will not be mutated is 1/Np, making CrD –1/Np the 
probability that a base vector will be duplicated. 

r1 = r0 or r2 = r0: Arithmetic Recombination. Another special case oc-
curs when either of the difference indices, r1 or r2, equals the base index, 
r0. When indices are chosen without restrictions, each coincidence occurs 
on average once per generation. Equation 2.18 elaborates the two possibili-
ties that result when DE’s three-vector mutation formula (Eq. 2.5) reduces 
to a linear relation between the base vector and a single difference vector: 
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Each two-vector linear combination defines a line that connects the base 
vector to one of the two difference vectors (Fig. 2.23). F plays the role of a 
coefficient of combination that determines which point along the line is 
targeted. In the parlance of evolutionary computation, this “line search” is 
usually called either continuous or arithmetic recombination. This book 
adopts the term “arithmetic recombination”. Section 2.6 explores this 
process more thoroughly. 

xr1,g (= xr0,g)

xr2,g (= xr0,g)

vi,g= xr0,g+F⋅(xr0,g-xr2,g)

vi,g= xr0,g+F⋅(xr1,g-xr0,g)

xr2,g

xr1,g

Fig. 2.23. Mutation degenerates into two-vector arithmetic recombination when 
either r1 = r0 (left) or r2 = r0 (right). 

Degenerate Combinations Involving the Target Index, i 

r0 = i: Mutation Only. If the base index, r0, is not different from the tar-
get index, i, then crossover reduces to mutation of the target vector. In this 
scenario, Cr plays the role of a mutation probability: 
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When base vector indices are randomly selected without restrictions, these 
degenerate vector combinations occur with probability 1/Np.

i = r1 or i = r2. Each of the coincidental events, i = r1 and i = r2, occurs 
with probability 1/Np when indices are chosen without restrictions. Neither 
coincidence reduces DE’s generating process to a conventional one; mu-
tants are still three-vector combinations and crossover recombines distinct 
base and target vectors (assuming r0 ≠ i).

Table 2.5 summarizes the possible degenerate vector combinations that 
can occur when difference indices are chosen without restrictions, i.e., in-
dex = floor(randi(0,1)⋅Np).

Table 2.5. First-order degenerate combinations 

Event Degenerate process Prob. Result 
Uniform crossover 1/Np vi,g = xr0,g

r1 = r2
Duplication of base vector CrD −1/Np ui,g = xr0,g

r0 = r1 Intermediate recombination 1/Np vi,g = xr0,g + F⋅(xr0,g − xr2,g)

r0 = r2 Intermediate recombination 1/Np vi,g = xr0,g + F⋅(xri,g − xr0,g)

i = r0 Differential mutation 1/Np vi,g = xi,g + F⋅(xr1,g − xr2,g)

i = r1 None 1/Np vi,g = xr0,g + F⋅(xi,g − xr2,g)

i = r2 None 1/Np vi,g = xr0,g + F⋅(xr1,g − xi,g)

Higher Order Degenerate Combinations 

The above index pairings are first-order degenerate combinations in which 
only two of four indices are coincident. If indices are chosen without re-
strictions, the same index may be chosen more than twice. In practice, the 
effects of higher order degenerate combination are small because their 
probability is inversely proportional to powers of Np ≥ 2. 

2.4.5 Implementing Mutually Exclusive Indices 

Enforcing i ≠ r0 

If base indices are chosen randomly, as they are in classic DE, then r0 = i
can be prevented by using a “do–while” loop to reselect r0 until it no 
longer equals the target vector index (Fig. 2.24). 
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do
{

r0=floor(randi(0,1)*Np);

}while(r0==i);

Fig. 2.24. To ensure that base and target vectors are different, r0 should be rese-
lected.

Similarly, if base vectors are the elements of a permutation, then r0 can 
be redrawn from the remaining list of unused indices, except when i is the 
last element of the permutation. In the random offset method, choosing rg

from the more restricted range [1, Np − 1], ensures that r0 = i does not oc-
cur.

Mutually Exclusive Indices: i ≠ r0 ≠ r1 ≠ r2 

Once the base vector has been determined, difference indices can be cho-
sen. Perhaps the simplest way to implement mutually exclusive indices is 
to use a pair of “do–while” loops (Fig. 2.25) to reselect any difference in-
dex that happens to equal the target, base or a previously chosen difference 
index.

do
{

r1=floor(randi(0,1)*Np);

}while(r1==i || r1==r0); // "||" is "or"
do
{

r2=floor(randi(0,1)*Np);

}while(r2==i || r2==r0 || r2==r1);

Fig. 2.25. Given r0 ≠ i, distinct indices should be selected with a pair of do–while 
loops.

Distinct difference indices can be taken from arrays of random permuta-
tions of the sequence [0, 1,…, Np − 1]. Methods for generating random 
permutations are presented in Sect. 5.2 and as an option in the Matlab code 
on this book’s companion CD-ROM.
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2.4.6 Gauging the Effects of Degenerate Combinations: The 
Sphere

Table 2.6 calls upon the ten-dimensional sphere to reveal how the presence 
of degenerate combinations affects both the speed and probability with 
which each of three stochastic base index selection methods converges. 
Because it is simple, the sphere provides a good way to interpret the effect 
of degenerate vector combinations. Performance is measured at the value 
of Np that minimizes the average number of function evaluations. The first 
row of results, labeled “All”, shows the combined effect of all degenerate 
combinations (any r0, r1, r2). For the final row of results, labeled “None”, 
indices are mutually exclusive (i ≠ r0 ≠ r1 ≠ r2) and degenerate combina-
tions are forbidden. The middle rows record what happens when only the 
designated index coincidence is permitted. 

Table 2.6. DE’s performance is influenced by the way in which trial vector indi-
ces are chosen. Here, the effects of degenerate vector combinations on the three 
base index selection schemes are compared. Results are 1000-trial averages, with 
F = Cr = 0.9. The value of Np is that which yields the answer in the fewest num-
ber of function evaluations, while P is the corresponding probability of success. 
Data for the last row “None”, has been copied from Table 2.4. 

r0 = floor(randi(0,1)⋅Np) r0 = permute[i] r0 = (i + rg)%NpAllowed
event Np Evals. P Np Evals. P Np Evals. P 
All 14 6479.79 0.992 14 6359.32 0.996 13 6549.55 1.0 

r1 = r2 13 6585.71 0.797 14 6522.19 0.881 13 6568.55 0.993 

r0 = r1 9 6388.09 0.967 9 6341.93 0.976 9 6371.36 0.994 

r0 = r1 13 5832.56 1.0 13 5743.42 1.0 13 5769.72 1.0 

i = r0 9 6067.18 0.991 9 5940.59 0.993 10 10,829.5 1.0 

i = r1 9 6009.60 0.992 9 6007.01 0.998 9 6204.13 0.999 

i = r2 9 5955.17 0.992 9 5847.14 0.998 9 5729.59 1.0 

None 9 6006.70 0.994 9 5954.05 0.995 9 5927.24 0.998 

All: Any r0, r1 and r2

The first row of data summarizes the combined influence of all degenerate 
combinations, including higher order degenerate combinations. Although 
the large optimal population size helps to keep convergence probability 
competitive, it also slows convergence speed. 
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r1 = r2 

Except for the anomalous behavior of the random offset method when r0 = 
i, all three base index selection methods exhibit their worst performance 
when equal difference indices are allowed (r1 = r2). At Cr = 0.9, a signifi-
cant fraction of these events (about 39%) duplicate base vectors. Re-
evaluating duplicated vectors wastes time and accepting them reduces the 
population’s effective size. Indeed, Table 2.6 shows that when r1 = r2 is 
allowed, all three base index selection methods require relatively large 
populations. In this case, increasing Np to compensate for duplicated en-
tries slows convergence without making it reliable. 

r0 = r1 

Because difference vector xr2,g is preceded by a minus sign, r0 = r1 places 
the recombinant farther away from xr2,g than was xr1,g whenever F > 0 (re-
fer back to Fig. 2.23). For the sphere, accepting this recombinant slows 
convergence and compromises reliability. This form of recombination also 
tends to slow convergence on multi-modal functions, but its effect on the 
probability of convergence will not always be detrimental. 

r0 = r2 

By contrast, all three base index selection methods performed best when 
they allowed r0 = r2 to transform differential mutation into arithmetic re-
combination. This is because when 0 < F < 2, r2 = r0 produces a recombi-
nant that lies closer to xr1,g than was xr2,g. This contractile mapping im-
proves optimization speed even though Np must be increased to 
compensate for the additional convergence “pressure”. Allowing this index 
combination typically speeds optimizations of multi-modal functions as 
well, but unlike the case of the sphere, it is less common that convergence 
probability will also improve. 

i = r0 

A careful examination of Table 2.6 shows that the random offset method 
(last column) exhibits the best probability of convergence under all cir-
cumstances. In addition, its speed of convergence is competitive except for 
the case i = r0, when the number of function evaluations balloons to nearly 
twice that of the other two methods. It may seem curious that permitting 
the combination r0 = i affects the performance of the random offset 
method so much more than it does the random selection method, even 
though r0 = i occurs on average once per generation in both cases. The 
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performance disparity arises because when the random offset equals zero 
(rg = 0), an entire generation of target–base pairings is turned into degener-
ate combinations, whereas unrestricted random selection spreads them uni-
formly over the generations. When allowed, the same “identity mapping” 
of target and base vectors also occurs in the permutation method, but its ef-
fect is negligible since it occurs on average only once every Np! genera-
tions.

i = r1 and i = r2 

The influence of i = r1 and i = r2 is more difficult to analyze than that of 
the corresponding pair of events r0 = r1 and r0 = r2, but it mirrors their 
behavior, with one event speeding convergence (i = r2) and the other re-
tarding it (i = r1). Although its convergence speed distinguishes i = r1
from i = r2, both events have little effect on either convergence probability 
or optimal population size when compared to the case of mutually exclu-
sive indices (i.e., “None”). 

None

Excluding all degenerate target, base and difference vector combinations, 
i.e., i ≠ r0 ≠ r1 ≠ r2, enables DE to achieve both good convergence speed 
and probability with a relatively small population. Imposing restrictions 
eliminates the function-dependent effects of degenerate search strategies 
and ensures that both crossover and differential mutation play a role in the 
creation of each trial vector. 

The effect that degenerate vector combinations have on DE’s perform-
ance depends in some degree on the objective function. For the hyper-
sphere, however, only i = r0 dramatically affected DE’s performance. In 
practice, even these first-order degenerate combinations play only a lim-
ited role in the optimization process simply because they become increas-
ingly infrequent as the population grows. 

2.4.7 Biased Base Vector Selection Schemes 

In GAs, better vectors are more likely to be chosen for recombination 
(Holland 1973). Similarly, some versions of DE select the base vector 
based on its objective function value. For example, the algorithm 
DE/best/1/bin (Storn 1996) always selects the best-so-far vector (best) as 
the base vector, adds a single (1) scaled vector difference to it, then creates 
a trial vector by uniformly crossing (bin) the resulting mutant with the tar-
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get vector. In this algorithm, the base vector always has the lowest objec-
tive function value in the current population 

( ) ( ).),1,...,1,0(if,best0 ,,best gig ffNpir xx ≤−∈∀= (2.20)

When compared to random base vector selection at the same Np, best-so-
far base vector selection usually speeds convergence, reduces the odds of 
stagnation and lowers the probability of success. Chapter 3 examines this 
trade-off between speed and reliability when the performance of 
DE/rand/1/bin and DE/best/1/bin are compared.  

Two alternative base vector selection schemes have been proposed that 
bias solutions toward better vectors without creating the intense selection 
pressure that the “best” method applies. In Price (1997), a base vector’s 
objective function value must be less than or equal to that of the target vec-
tor, xi,g:

( ) ( ).if,better0 ,,better gig ffr xx ≤= (2.21)

The other method, DE/target-to-best/1/bin (called “rand-to-best” in (Storn 
1996)), uses arithmetic recombination (see Sect. 2.6.3) to generate a base 
vector that lies on a line between the target vector and the best-so-far vec-
tor:

( ) [ ] .constant1,0,,,best,,0 =∈−⋅+= kk giggigr xxxx (2.22)

The constant, k, in Eq. 2.22 controls the bias toward the best-so-far solu-
tion.

Compensating for Lost Diversity 

Compared to random base vector selection, setting r0 = best lowers the di-
versity of the pool of potential trial vectors. Increasing the population size 
is both a simple and effective way to enhance the diversity of the pool of 
potential trial vectors, but several other schemes have also been proposed. 
One idea was to expand the set of vector differences by adding two differ-

ence vectors together (Price 1996; Storn 1996). Because they are larger 
than their single difference counterparts, differentials composed of two dif-
ferences typically require a smaller F to match the convergence rate that 
one-difference differentials produce. Except for a few early successes on 
relatively simple functions, this method has not shown much promise, per-
haps because adding difference vectors destroys the correlation that the ob-
jective function’s topography imparts to the one-difference vector differen-
tials (see contour matching in Sect. 2.17).  
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Making F a random variable is another way to enhance the pool of po-
tential trial vectors. This technique, which is covered extensively in Sect. 
2.5.2, has proven useful in cases where stagnation threatens, or when con-
vergence is very slow. In particular, R. Storn has found randomizing the 
scale factor, F, to be crucial when designing digital filters (Sect. 7.8). 

2.5 Differential Mutation 

Most dictionaries define mutation as an alteration or change. In the context 
of genetics and EAs, however, mutation is also seen as change with a ran-
dom element. Thus, real-valued EAs typically simulate the effects of muta-
tion with additive increments that are randomly generated by a predefined 
probability distribution function, or PDF. DE, however, uses a uniform 
PDF not to generate increments, but to randomly sample vector differ-
ences:

( )2121, rrrr xxx −=∆ . (2.23)

In a population of Np distinct vectors, there will be Np⋅(Np − 1) non-
zero vector differences and Np null differences having zero magnitude giv-
ing a total of Np2 vector differences. Figure 2.26 pictures an arbitrary 
population of 5 vectors and the sheaf of 20 non-null difference vectors that 
they generate. 

x0,g

x1,g

x2,g

x3,g

x4,g

Fig. 2.26. The figure on the right displays the sheaf of 20 vector differences gen-
erated by the population of 5 vectors shown on the left. Here, differentials have 
been scaled by half (F = 0.5), and transported to a common origin. Note that the 
distribution is symmetric about zero. 

The distribution of difference vectors will depend on the distribution of 
vectors and this will be different for each objective function. Each distribu-
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tion, however, will be symmetric about zero because every pair of vectors 
gives rise to two opposite but equal difference vectors, since reversing the 
order of the vectors in the differential reverses the sign of the differential: 

( ) ( ) grrgrgrgrgrgrr 1,2,1,2,2,1,2,1, xxxxxx ∆−=−−=−=∆ . (2.24)

Since each difference vector can be paired with a differential of equal 
value but opposite sign, and since all vector differences are equally prob-
able, both the sum and average over all Np2 difference vectors are zero. 
Equation 2.25 sums the Np2 vector differences (including the Np cases 
when i = k and ∆x = 0) and normalizes the result. The brackets, , indicate 
that ∆x is an (ensemble) average taken over all population members, not an 
expectation or a time average: 
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2.5.1 The Mutation Scale Factor: F

Limits on F 

Upper. The stated range for F is (0,1), although 1.0 is an empirically de-
rived upper limit in the sense that no function that has been successfully 
optimized has required F > 1. This is not to say that solutions are not pos-
sible when F > 1, but only that they tend to be both more time consuming 
and less reliable than if F < 1. When F = 1 exactly, otherwise distinct vec-
tor combinations become indistinguishable: 
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This discontinuity at F = 1 reduces the number of mutants by half and can 
result in erratic convergence unless Cr < 1, since Cr = 1 further restricts 
the pool of possible trial vectors by not crossing mutant and target parame-
ters.

Lower. In general, selection tends to reduce the diversity of a population, 
whereas mutation increases it. To avoid premature convergence, it is cru-
cial that F be of sufficient magnitude to counteract this selection pressure. 
Zaharie (2002) recently demonstrated the existence of what is effectively a 
lower limit for F, finding that if F is too small, the population can con-
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verge even if selection pressure is absent. In her study, Zaharie measured 
population diversity as the variance of its parameter values. Because all 
variables are independent in the absence of selection pressure, population 
diversity can be measured by tracking the variance of a single parameter of 
the population. In Eq. 2.27, the subscript, “x”, in Px,g is set in italics to em-
phasize that the variance and mean are computed using one parameter

from each vector in the population (the particular parameter is not speci-
fied):
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Using a methodology pioneered by H.-G. Beyer (1999), Zaharie com-
puted the expected variance of DE’s mutant and trial populations given the 
variance of the population. The goal was to determine which combinations 
of DE control parameters were likely to result in premature convergence 
due solely to the inability of the algorithm to generate a trial population as 
diverse as the population. To simplify her analysis, Zaharie dropped DE’s 
usual demand that base and target vectors be different, although the re-
quirement that base and difference vectors be distinct was retained. By 
dropping the demand that at least one trial parameter be inherited from the 
mutant, Zaharie also assumed that Cr is a true crossover probability, pCr. In 
order to compute the expected population variance, Zaharie further modi-
fied the standard DE algorithm by multiplying F by a Gaussian random 
variable, ξj, that is chosen anew for each parameter
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With these caveats, Zaharie determined that the expected variance of the 
mutant population is related to the variance of the population by the for-
mula: 
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If this mutant population is then crossed with the original population, the 
expected trial population variance becomes: 
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Consequently, DE control parameter combinations that satisfy the equa-
tion:



2.5 Differential Mutation      77 

0
2

2 2 =+−
Np

p

Np
F Cr (2.31)

can be considered to be critical since they result in a population whose 
variance remains constant except for random fluctuations. When selection 
is “turned off”, Eq. 2.31 predicts that F will display a critical value, Fcrit,
such that the population variance decreases when F < Fcrit and increases 
when F > Fcrit. Solving Eq. 2.31 for F gives Fcrit as 
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Thus, Fcrit establishes a lower limit for F in the sense that smaller values 
will induce convergence even on a level objective function landscape. Fig-
ure 2.27 confirms the prediction by Zaharie that F = 0.1341 is a critical 
value when Np = 50 and pCr= 0.2. 
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Fig. 2.27. The evolution of the variance of a single parameter is displayed for four 
different values of F. Note that F ~ 0.134 is critical in the sense that the variance is 
nearly constant. Results are for evolution on a flat surface, i.e., all trial vectors are 
accepted (no selection pressure). These results are 100-trial averages and were 
generated using Zaharie’s modified version of DE, with Np = 50 and pCr = 0.2. 
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Objective function landscapes are seldom flat. In practice, F must be 
larger than Fcrit to counteract the additional reduction in variance that se-
lection induces. For example, Zaharie empirically examined three test 
functions using Np = 50, pCr = 0.2 and found that F ~ 0.3 was the smallest 
reliable scale factor and that Fcrit= 0.1341 was too small to forestall prema-
ture convergence. 

Figure 2.28 illustrates the effect of this additional selection pressure 
produced by the 30-dimensional Rastrigin function on the population’s 
variance over time at several different values for F.
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Fig. 2.28. Even though F is above the critical value, the population variance still 
decreases over time due to the selection pressure exerted by the objective function, 
in this case the thirty-dimensional Rastrigin function. Results are 100-trial aver-
ages obtained with Zaharie’s version of DE, with Np = 50 and pCr = 0.2. 

A DE control parameter study by Gamperle et al. (2002) explored DE’s 
performance on two of the same test functions that Zaharie used and con-
cluded that F < 0.4 was not useful. In Ali and Törn (2000), C–Si clusters 
were optimized with F never falling below F = 0.4. On the other hand, 
Chakraborti et al. (2001; Sect. 7.1) had success minimizing the binding en-
ergy of Si–H clusters using values for F ranging from 0.0001 to 0.4, with F
= 0.2 often proving effective. Such low values for F, however, appear to be 
atypical. The lower limits suggested by Zaharie and Gamperle et al. more 
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accurately reflect the norm. Zaharie concluded that for the test functions 
examined, modifying vector differences with a Gaussian distribution did 
not significantly alter DE’s performance compared to when F is held con-
stant. The next section tests this claim and examines several other methods 
for transforming F into a random variable. 

2.5.2 Randomizing the Scale Factor 

When compared to the ES, DE shifts the responsibility for adapting step 
sizes from the mutation distribution’s pre-factors to the distribution itself. 
More specifically, the ES adapts pre-factors (strategy parameters) and mul-
tiplies them by the output from a stationary, multi-dimensional PDF, 
whereas DE multiplies the constant pre-factor, F, by a sample vector dif-
ference from an adaptive distribution. Whereas the ES “strategy” parame-
ters adapt to the absolute step size, F only affects the relative step size 
since the distribution of vector differences is itself adaptive. Thus, F can 
be kept constant during optimization without compromising DE’s ability to 
generate steps of the required size. Indeed, keeping F constant has proven 
effective in the sense that no function that has been solved has required F
to be a random variable. Nevertheless, randomizing F offers potential 
benefits.

Transforming F into a random variable effectively broadens the spec-
trum of vector differentials beyond the possibilities allowed for by com-
bining vectors. Such an enhanced distribution of differentials might be use-
ful if the population is small and/or symmetrically distributed, since 
without access to a mutation distribution of sufficient diversity, DE can 
stagnate. When stagnant, DE can no longer find improved solutions be-
cause no combination of vector and vector difference leads to a better solu-
tion. Instead of coalescing to a single solution, a stagnant population of 
vectors remains static while still distributed throughout the problem space. 
The case explored by Lampinen and Zelinka (2000) is hypothetical and 
subsequent attempts to induce stagnation in test functions with classic DE 
have been unsuccessful. Nevertheless, randomizing the scale factor is a 
way to increase the pool of potential trial vectors and minimize the risk of 
stagnation without increasing the population size. 

Transforming F into a random variable also makes the analysis of DE 
dynamics tractable. By invoking the normal (Gaussian) distribution, Za-
harie succeeded not only in predicting critical control parameter combina-
tions, but also in constructing a limited convergence proof (Zaharie 2002). 
Zaharie based her proof on the general EA convergence criteria set forth 
by G. Rudolph (1996). Briefly, an evolutionary search algorithm can be 
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proven to converge to within ε > 0 of the global optimum in the long-time 
limit if its operators fulfill two (sufficient, but not necessary) conditions: 

1. The transition probability, through mutation, between any two points in 
the problem space is strictly positive. 

2. Selection is elitist, i.e., that the best-so-far solution is always retained. 

DE selection is elitist because the population’s current best vector can only 
be replaced by a better vector. By multiplying F by a normally distributed 
variable, Zaharie ensured that the unbounded, multi-normal distribution 
could access any point given enough time. The possibility does exist, how-
ever, that all members of a population may have the same value for one or 
more parameters, in which case no new possibilities for that parameter are 
generated. Zaharie considers this set to be of zero measure and that it has 
no impact on the proof that DE is convergent when mutation is augmented 
by a Gaussian random variable. 

Converting F into a random variable, however, involves both selecting a 
PDF and deciding how often it should be sampled. Zaharie, for example, 
sampled a zero-mean, normally distributed random variable anew for each 
parameter, but this is not the only possibility. The next two subsections 
explore how both the sampling frequency and PDF affect the optimization 
process.

PDF Sampling Frequency: Dither and Jitter 

In Zaharie’s version of DE, Fj is a normally distributed random variable 
that is generated anew for each parameter. For convenience, the practice of 
generating a new value of F for every parameter is called jitter and it is 
signified by subscripting F with the parameter index, j. Alternatively, 
choosing F anew for each vector, or dithering, is indicated by subscripting 
F with the population’s running index, i. Dithering scales the length of 
vector differentials because the same factor, Fi, is applied to all compo-
nents of a difference vector (Fig. 2.29). As such, dithering does not dra-
matically depart from traditional DE in which each component of a differ-
ential is scaled by the same constant, F. Jitter, however, multiplies each 
component of the difference vector by a different scale factor, Fj, and this 
changes not only the scale of the differential, but also its orientation. The 
rotation that it introduces makes jitter a fundamentally different process 
than classic DE mutation with F = constant.

When Cr = 0, only one trial vector parameter is inherited from the mu-
tated base vector, so it impossible to distinguish jitter from dither, since in 
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both cases only a single instance of F as a random variable occurs per trial 
vector. In order to compare how jitter and dither affect the optimization 
process, it is necessary to plot DE’s performance versus Cr.

∆x1

x1

x0∆x0Fi∆x0

Fi∆x1

∆x1

x1

x0∆x0F0∆x0

F1∆x1

Fig. 2.29. Dithering (left) scales vector differentials, while jitter (right) both scales 
and rotates them. 
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Fig. 2.30. The graph on the left illustrates how implementing jitter and dither with 
the N(0,1) PDF affects convergence speed compared to holding F constant. Plot-
ted as a function of Cr is the minimum number of function evaluations required to 
optimize the ten-dimensional hyper-sphere. The graph on the right plots the corre-
sponding optimal Np at which the minimum number of evaluations occurred. For 
example, at Cr = 0.8, the graph on the left shows that jitter took a little more than 
3000 evaluations, while the graph on the right shows that the population used to 
produce this result was Np = 8 (at Cr = 0.8). Results are 1000-trial averages 
which, except for the indicated randomization method, were obtained with F =
0.9, r0 = randi(0,1)⋅Np, except r0 ≠ r1 ≠ r2 ≠ i (i.e., classic DE). 

Using the normal (Gaussian) PDF, N(0,1), to drive dither and jitter, Fig. 
2.30 plots both the minimum number of function evaluations and the cor-
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responding optimal population size at which the minimum occurred versus

Cr for each of the three methods when applied to the ten-dimensional hy-
per-sphere objective function. An inspection of the graphs in Fig. 2.30 re-
veals that: 

• As expected, both jitter and dither exhibit the same number of function 
evaluations and the same optimal population size (Np = 7) when Cr =
0.

• At Cr = 0.2 (Zaharie’s choice), all three methods require about the 
same number of function evaluations, with both jitter and dither also 
having the same optimal population size (Np = 8). 

• Over the range of Cr, jitter was the fastest technique and the optimal 
population size was virtually constant at Np = 8. 

• In terms of the number of function evaluations, F = constant and dither 
perform similarly, but dither requires a larger population. 

The data in Fig. 2.30 casts suspicion on Zaharie’s contention that multi-
plying each component of a differential by a normally distributed variable 
does not affect DE’s performance. Even for a function as simple as the hy-
per-sphere, classic DE with its constant F and Zaharie’s method of jitter 
perform similarly only when Cr = 0.2 and this performance discrepancy 
grows as Cr increases. 

Not shown in Fig. 2.30 is the fact that all trials conducted with both 
dither and jitter at their optimal Np were successful, but convergence was 
less than perfect when F was kept constant, as Table 2.7 shows. A slight 
increase in Np, however, would put the convergence probability on a par 
with that of dither and jitter, but then the average number of function 
evaluations would also increase. 

Table 2.7. The fraction of trials that were successful when optimizing the ten-
dimensional hyper-sphere using classic DE and F = constant = 0.9. By contrast, all 
trials with dither and jitter were successful at the specified optimal Np.

Cr 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
P 0.966 0.884 0.95 0.931 0.916 0.881 0.865 0.957 0.971 0.991 1 

Also not shown in Fig. 2.30 are the data points associated with Cr = 1. 
These points are not plotted in Fig. 2.30 simply because the large values 
for dither and F = constant would overwhelm the data for Cr ≤ 0.9. In-
stead, Table 2.8 reports both the average minimum number of function 
evaluations and the population size at which this minimum occurred for 
each of the three methods when Cr was set equal to 1. When compared to 
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trials using Cr ≤ 0.9, all three methods required significantly larger popula-
tions to offset the loss of diversity that occurs when Cr = 1, exactly. In this 
case, the penalty for enlisting larger populations is slower convergence. 

Table 2.8. When Cr = 1, both the optimal population size and the number of func-
tion evaluations balloon for both dither and F = constant and even jitter takes 
twice as long to converge as it does when Cr = 0.9. Results are 1000-trial averages 
for the ten-dimensional hyper-sphere using classic DE except for the indicated 
randomization method using a normal distribution: N(0,1). 

Process Evaluations Np

F=constant 49,809.5 41 
Dither 33,640.1 109 

Jitter 6037.11 13 

The hyper-ellipsoid (Eq. 2.33) poses a stiffer challenge to optimization 
algorithms because unlike the symmetrical hyper-sphere, the optimal step 
size depends on the direction in which the step is taken: 

−

=

=
1

0

2
ellipsoid 2)(

D

j

j
j xf x .

(2.33)

Figure 2.31 shows a single contour of constant function value for the two-
dimensional version of this function. 

x0

x1
fellipse(x)=constant

x*
(√2,0)

(0,1)

Fig. 2.31. The ellipse is a single contour of the two-dimensional version of the el-
lipsoidal function described by Eq. 2.33. The optimum, x*, is located at the origin, 
(0,0). The principal axes of the ellipse are aligned with the coordinate axes. Tak-
ing large steps along x0 and smaller steps along x1 efficiently optimizes this func-
tion.
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Fig. 2.32. The graph on the left illustrates the effects of jitter, dither and F = con-
stant by plotting, as a function of Cr, the minimum number of function evaluations 
needed to optimize the ten-dimensional hyper-ellipsoid. The graph on the right 
plots the corresponding optimal Np at which the minimum number of evaluations 
occurred. For example, at Cr = 0.9, the graph on the left shows that jitter took 
about 4000 function evaluations when using the population indicated in the graph 
on the right at Cr = 0.9, i.e., Np = 8. Results are 1000-trial averages, F = 0.9 and 
classic DE except for randomizing F with a normal distribution N(0,1). 

Figure 2.32 profiles how both jitter and dither influence DE’s ability to 
optimize the ten-dimensional hyper-ellipsoid. Except for requiring roughly 
15% more function evaluations, the performance profiles for the hyper-
ellipsoid are virtually indistinguishable from those generated for the hyper-
sphere.

Before taking these profiles to be universal, it is instructive to perform 
the same experiment, except that this time, trial vectors are evaluated in a 
coordinate system that has been rotated 45° with respect to the principal 
axes of the ellipse (Fig. 2.33). 

In two dimensions, this rotated version of the ellipse defined by Eq. 2.33 
is

( ) ( )2
110

2
0ellipse 2 xxxxf +−=x . (2.34)

As a result of this rotation, the ellipse, which is separable as defined in 
Eq. 2.33, becomes nonlinear, i.e., parameters become dependent. The 
cross-term, x0x1, in Eq. 2.34 embodies this parameter dependence (see 
Sects. 1.2.3 and 2.6.2). Even though rotation does not alter the objective 
function’s topography, the parameter dependence that it induces compro-
mises DE’s efficiency in the presence of jitter. 
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x1
fellipse(x)=constant

x*
(1,0)

(0,1)

Fig. 2.33. Once rotated, the parameters of the ellipse function become dependent. 
An efficient search of the long axis along the diagonal now requires that large 
steps in both coordinate directions occur simultaneously, i.e., that they be corre-
lated.

As Fig. 2.34 illustrates, transforming the hyper-ellipsoid from a separa-
ble function into one with dependent parameters via a coordinate system 
rotation dramatically alters the performance profiles of all three methods. 
In particular, the data plotted in Fig. 2.34 show that: 

• In contrast to results for the separable hyper-ellipsoid, the fastest solu-
tions now occur at high Cr.

• Jitter is now the worst performing method even though population 
sizes remain relatively small. 

• F = constant is the fastest method except when Cr = 1, in which case 
dithering is faster. 

At Cr < 0.5, the fastest run-times begin to occur at population sizes that 
are too small to produce reliable convergence. To be fair, the number of 
function evaluations for different methods must be compared at the same 
probability of convergence. In previous examples, convergence probabili-
ties were so close to 1 that the small differences between them did not 
compromise the validity of the performance comparisons. A method for 
evaluating algorithm performance that gives proper weight to convergence 
probabilities will be presented in Chap. 3 when several version of DE are 
tested. For now, higher run-times and worse convergence probabilities 
make it easy to say that DE’s performance on the parameter-dependent (ro-
tated) hyper-ellipsoid deteriorates at low Cr.
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Fig. 2.34. Once rotation induces parameter dependence in the ten-dimensional hy-
per-ellipsoid, the three techniques become inefficient at low Cr. Population sizes 
used to produce the graph on the left are plotted in the graph on the right at the 
corresponding value of Cr. For example, jitter still uses small populations but is 
slow nonetheless. Despite using large populations, dither is more efficient than jit-
ter when Cr > 0.6 and more efficient than F = constant = 0.9 when Cr = 1. Keep-
ing F constant, however, uses relatively small populations and gives the overall 
fastest result at Cr = 0.9. All results are 1000-trial averages with classic DE, ex-
cept for the indicated randomization scheme. For this experiment, the PDF was the 
normal distribution, N(0,1). 

 Since it was the fastest method when the hyper-ellipsoid was separable 
and was competitive with both dither and F = constant on the rotated hy-
per-ellipsoid at Cr = 1, jitter would seem to be a good strategy as long as 
Cr is chosen wisely. The case of the Chebyshev polynomial, however, 
suggests differently (see the Appendix for a function description). Like the 
rotated hyper-ellipsoid, the Chebyshev polynomial fitting problem is a 
function with dependent parameters that requires correlating step sizes that 
differ greatly in magnitude from one parameter to the next. Unlike the hy-
per-ellipsoid, the Chebyshev function is multi-modal. Figure 2.35 com-
pares the number of function evaluations taken by dither to those needed 
by F = constant to find the coefficients of the nine-dimensional Chebyshev 
polynomial. 

The results in Fig. 2.35 are remarkably similar to those displayed by 
dither and F = constant for the rotated hyper-ellipsoid in Fig. 2.34, except 
that now dither gives the overall fastest solution (when Cr = 1). Missing 
from Fig. 2.35 are the results for jitter. Like the case of the rotated hyper-
ellipsoid, jitter was most effective when Cr = 1, but unlike the case of the 
rotated hyper-ellipsoid, run-times at this optimal crossover setting were not 
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Fig. 2.35. Dither and F = constant perform similarly on the nine-dimensional 
Chebyshev function, with dither converging in fewer function evaluations than F
= constant at Cr = 1. Results for jitter are not shown, as run-times were in excess 
of 6 million function evaluations and convergence was erratic even for large popu-
lations. Results are 100-trial averages with Np = 40. Both dither and jitter (not 
shown) used the normal PDF; otherwise, the algorithm was classic DE. 

competitive with those turned in by either dither or F = constant. Not only 
was convergence erratic even with large populations, but the number of 
function evaluations taken by successful trials never averaged less than 6 
million, making jitter over 100 times slower than either dither or F = con-
stant. Clearly, these results refute Zaharie’s contention that DE’s perform-
ance is not significantly affected by transforming F into a Gaussian ran-
dom variable that is sampled anew for each parameter. 

Although jitter is effective on separable functions, its poor performance 
on non-separable, multi-modal functions makes it a questionable strategy 
for non-linear global optimization with DE unless the deviations it gener-

ates are very small, e.g., d = 0.001 in the case of uniform jitter (see next 
subsection). The next subsection explores this possibility with some alter-
natives to the Gaussian PDF. 

Other Distributions 

The effectiveness of both jitter and dither can be improved by moderating 
the amount of variation in Fj and Fi, respectively. The problem with Za-
harie’s formulation in this regard is that as the standard deviation, σ, of the 
normal (Gaussian) distribution approaches zero, so does Fj (or Fi):
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( ) 0lim);,0(N 0 =⋅= → jjj FFF σσ (2.35)

To circumvent this difficulty, F can be multiplied by a PDF whose aver-
age value is 1, not 0. This way, both dither and jitter revert to the F = con-
stant model as the amount of variation, e.g., σ, approaches zero. Further-
more, the order in which difference vectors are chosen determines the sign 
of a differential, so a PDF need only generate positive values in order to 
scale differential magnitudes. A normal distribution can be given an aver-
age value of 1 simply by adding one to the zero mean normal PDF, N(0,1), 
but the resulting distribution will still generate both positive and negative 
values. The traditional PDF for perturbing scale factor magnitudes is the
log-normal distribution. 

Log-normal. In the ES, not only are the objective function variables mu-
tated and recombined, but so too are the components of the adaptive corre-
lation matrix. Of the correlation matrix’s D2 components, D are scale fac-
tors while the remaining D⋅(D − 1) are rotation angles. Although the ES 
perturbs rotation angles with normally distributed random variables, it 
turns to the log-normal PDF to mutate the strategy parameters that regulate 
step sizes (Bäck 1996). An instance of a log-normal random variable for

DE can be computed as 

−=
2

)1,0(exp
ττ jj NFF .

(2.36)

The factor, τ, controls the spread of the distribution while the termτ/2 is 
an empirically derived factor that normalizes the expected value of the dis-
tribution to 1.0. When τ  = 0, the average value of the log-normal PDF is 
the constant value 1, so all Fj = F. In this model, the distribution’s variance 
can be controlled independently of F. Figure 2.36 shows how the spread of 
the log-normal distribution affects DE’s ability to optimize both the rotated 
hyper-ellipsoid and the Chebyshev polynomial fitting problem. 

In both plots, jitter requires an increasing number of function evalua-
tions as τ increases. For the Chebyshev polynomial fitting problem, this 
increase is explosive. By contrast, dither actually shows a slight decrease

in the number of function evaluations when compared to F = constant, 
with the best performance occurring near τ = 0.4. The improvement 
amounts to roughly 10% for the rotated hyper-ellipsoid and just over 40% 
for the Chebyshev problem. 
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Fig. 2.36. Jitter performs worse as the variance of the log-normal distribution is 
increased from zero. By contrast, dither is faster than F = constant (τ = 0) on both 
the rotated hyper-ellipsoid (while τ > 0.6) and the Chebyshev problem (while τ ≤
0.9). In both cases, the fastest convergence occurs near τ = 0.4. Data points are 
1000-trial averages for the rotated hyper-ellipsoid and 100-trial averages for the 
Chebyshev problem. Results were obtained using classic DE except for the indi-
cated randomization method with a log-normal PDF. Np = 40.  

Uniform. The uniform distribution can also be transformed into a PDF 
whose average value is F and whose spread is an independent variable. 
Equation 2.37 illustrates one possibility: 

( )( ) FddFF jj 2,5.01,0rand <−⋅+= . (2.37)

To keep Fi positive, d must be less 2F. Like τ in the log-normal PDF, d
controls the amount of variation in the uniform PDF. The log-normal PDF, 
however, occasionally generates both very large and very small perturba-
tions, both of which can degrade DE’s performance because they tend to 
slow progress toward the optimum. The uniform distribution with d ~ F ef-
fectively eliminates these extremes. Figure 2.37 compares DE’s perform-
ance on both the rotated hyper-ellipsoid and Chebyshev polynomial fitting 
problem as a function of the spread, d.

Figure 2.37 shows that as long as d < 0.1, jitter remains competitive, al-
though once d > 0.2, its performance quickly deteriorates. It should be em-
phasized, however, that a very small amount of jitter can prove useful, 
sometimes providing solutions that would otherwise be impossible with F
= constant. 
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Fig. 2.37. The profiles generated by the uniform and log-normal PDFs are very 
similar. Jitter’s performance worsens as the variation increases and dither con-
verges faster than F = constant (d = 0) when 0 < d < 1.4. Dither’s best perform-
ance in this case occurs when d = 0.9 (not plotted). Results are 1000-trial averages 
for the rotated hyper-ellipsoid and 100-trial averages for the Chebyshev problem. 
In both cases, all trials were successful. The algorithm was classic DE except for 
the specified randomization technique with the uniform PDF. Np = 40. 

In particular, experiments with the digital filter design program FIWIZ 
(Sect. 7.8). have shown that uniform jitter on the order of d = 0.001 is of-
ten indispensable. In addition, jitter can reduce the size of the population 
that DE needs to solve a given problem. 

Dither’s performance changes little when log-normal noise replaces the 
uniform PDF. The slightly larger optimal population size posted by the 
log-normal PDF suggests that the small steps present in the log-normal 
PDF but excluded by the uniform PDF only marginally inflate the optimal 
population size. The similarly of the two results also suggests that the very 
large steps generated when τ = 0.4 are too infrequent to have much impact 
on convergence speed. 

Power Law. Just as choosing a PDF complicates the optimization task, so 
too does having to decide what level of variability is suitable for the nor-
mal, log-normal and uniform models. One PDF that avoids this difficulty 
is based on a power law. An instance of a power law variable can be gen-
erated by raising a uniformly distributed random value, rand(0,1), to the 
power, q, where q = (1/F) − 1: 

( )( ) ( ) 1
1

,1,0rand,1,0randpow −===
F

qqF
q

jjj .
(2.38)
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This distribution has F as its average value and when F is between 0 and 1, 
Fj will also lie in this interval. For example, when F = 0.5 and q = 1, the 
distribution is uniform between (0,1). As F approaches either 1 or 0, the 
amount of variation decreases so that when F = 1 all Fj = 1 and when F = 0 
all Fj = 0. When F > 1, q is negative and all Fj are greater than 1. Table 2.9 
reports DE’s performance on both the rotated hyper-ellipsoid and the Che-
byshev polynomial fitting problems when Fj is a random variable distrib-
uted according to the power law in Eq. 2.38. 

Table 2.9. At F = 0.9, the power law distribution has a small variance, so results 
for jitter and dither on the ten-dimensional rotated hyper-ellipsoid are close to 
those for Fi = constant. Nevertheless, the variation is large enough to inflate jitter’s 
function evaluations to twice that of dither in the case of the Chebyshev polyno-
mial fitting problem. Results are 1000-trial averages for the rotated hyper-ellipsoid 
and 100-trial averages for the Chebyshev function. The algorithm was classic DE 
except for the stated randomization method using a power law PDF. All trials 
were successful (P = 1.0). 

Function Rotated hyper-ellipsoid 
Cr = 0.9 

Chebyshev 
Cr = 1 

Process Np Evals. P Np Evals. P 
F = constant = 0.9 16 23,208.2 1.0 36 43,608.8 1.0 

Dither 16 23,060.5 1.0 34 35,966.8 1.0 
Jitter 15 25,212.4 1.0 22 70,358.4 1.0 

In both cases, dither’s fast convergence did not require a compensating 
increase in population size. Jitter, although competitive on the rotated hy-
per-ellipsoid, took twice as many function evaluations to solve the Cheby-
shev problem as did dither, even though it operated with a smaller popula-
tion. Still, this is much faster than the 6 million function evaluations that 
jitter took when driven by the normal PDF, N(0,1). In this model, the 
amount of jitter cannot be chosen independently of F. For example, using a 
very small amount of jitter will require F to be very close to 1.

2.6 Recombination 

Recombination randomly exchanges or merges parameters from two or 
more vectors to create one or more trial vectors. Discrete recombination,
also known as crossover, is an operation in which trial vector parameters 
are copied from randomly selected vectors. Since it only copies informa-
tion, crossover can be applied to binary, real-valued or even symbolic data. 
By contrast, continuous or arithmetic recombination expresses trial vectors 
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as linear combinations of vectors, so it is inapplicable to symbolic data and 
inappropriate for binary variables. Both crossover and arithmetic recombi-
nation have a variety of implementations. Those with particular relevance 
to DE are described below. 

2.6.1 Crossover 

It was originally thought that crossover could exponentially increase the 
probability of above-average parameter groupings (alleles) while exponen-
tially decreasing the likelihood of less than average groupings (Holland 
1973). More recent analysis shows that growth is not exponential because 
the selective advantage of a parameter grouping decreases as it becomes 
more prevalent (Macready and Wolpert 1998). Empirical evidence also ex-
ists suggesting that (uniform) crossover does not decrease the time com-
plexity of an EA but merely speeds convergence by a constant factor 
(Mühlenbein and Schlierkamp-Voosen 1993). Nevertheless, crossover 
plays a significant role in most EAs. 

Global discrete recombination refers to the case where both vectors are 
chosen anew for each trial parameter (Bäck and Schwefel 1993). The ES 
globally recombines its strategy variables, but like DE and most GAs, it 
crosses objective function parameters from just two vectors (dual cross-

over). Both DE and ES also use crossover to create a single trial vector, 
whereas most GAs cross two vectors to produce two trial vectors, often by 
one-point crossover. 

12 26 51 8 30 50 75 95

12 26 51 13 44 11 54 39

7 104 68 13 44 11 54 39

crossover point

Vector 1

Vector 2

Trial

Fig. 2.38. One-point crossover. Each string represents a vector of parameters. In 
this figure, D = 8 and values are integral, although real-valued or symbolic data 
could also have been used. Each vector contributes a contiguous series of parame-
ter values to the trial vector. The crossover point is randomly chosen. In this case, 
it occurs between the third and fourth parameters. 
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One-Point Crossover 

There are several ways to assign donors to trial parameters. For example, 
one-point crossover randomly selects a single crossover point such that all 
parameters to the left of the crossover point are inherited from vector 1, 
while those to the right are copied from the vector 2 (Fig. 2.38) (Holland 
1995). GAs often construct a second trial vector by reversing the roles of 
the vectors, with vector 2 contributing the parameters to the left of the 
crossover point and vector 1 supplying all trial parameters to the right of 
the crossover point. 

N-Point Crossover 

N-point crossover randomly subdivides the trial vector into n + 1 partitions 
such that parameters in adjacent partitions are inherited from different vec-
tors. If n is odd (e.g., one-point crossover), parameters near opposite ends 
of a trial vector are less likely to be taken from the same vector than when 
n is even (e.g., n = 2) (Eshelman et al. 1989). This dependence on parame-
ter separation is known as representational or positional bias, since the 
particular way in which parameters are ordered within a vector affects al-
gorithm performance. Studies of n-point crossover have shown that re-
combination with an even number of crossover points reduces the repre-
sentational bias at the expense of increasing the disruption of parameters 
that are closely grouped (Spears and DeJong 1991). To reduce the effect of 
their individual biases, DE’s exponential crossover employs both one- and 
two-point crossover.

Exponential Crossover 

DE’s exponential crossover achieves a similar result to that of one- and 
two-point crossover, albeit by a different mechanism. One parameter is ini-
tially chosen at random and copied from the mutant to the corresponding 
trial parameter so that the trial vector will be different from the vector with 
which it will be compared (i.e., the target vector, x i,g). The source of sub-
sequent trial parameters is determined by comparing Cr to a uniformly dis-
tributed random number between 1 and 0 that is generated anew for each 
parameter, i.e., randj(0,1). As long as randj(0,1) ≤ Cr, parameters continue 
to be taken from the mutant vector, but the first time that randj(0,1) > Cr,
the current and all remaining parameters are taken from the target vector. 
The example in Fig. 2.39 illustrates a case in which the exponential cross-
over model produced two crossover points. 
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12 26 51 8 30 50 75 95

7 104 68 8 30 50 54 39

7 104 68 13 44 11 54 39

Vi,g

Xi,g

Ui,g

0 1 2 3 4 5 6 7j =

jrand

Start r2≤Crr1≤Cr

r3>Cr

Fig. 2.39. Exponential crossover. Starting at the randomly chosen parameter in-
dex, jrand (= 3), trial parameters are inherited from the mutant, vi,g, as long as 
randj(0,1) ≤ Cr  (e.g., j = 4, 5). The first time that randj(0,1) > Cr, all the remain-
ing trial parameters (e.g., j = 6, 7, 0, 1, 2) are inherited from the target vector, xi,g.
Indices are computed modulo D = 8. 

Figure 2.40 describes the process in C-style pseudo-code. Parameter in-
dices are computer modulo D. The exponential method’s name reflects the 
fact that the number of inherited mutant parameters is an exponentially dis-
tributed random variable. For example, the probability that the initial, ran-
domly chosen parameter is the trial vector’s only mutant parameter is 
equal to the chance that the first comparison of randj(0,1) and Cr results in 
a failure, i.e., that randj(0,1) > Cr. Thus, the odds of crossover resulting in 
exactly one mutant parameter are 

.1)1( Crxp −== (2.39)

jr=floor(rand(0,1)*D); // 0<=jr<D
j=jr;
do
{
   uj,i=vj,i;  // Child inherits a mutant parameter

   j=(j+1)%D;// Increment j, modulo D
}while(rand(0,1)<Cr && j!=jr); // Take another mutant parameter?
while(j!=jr) //Take the rest, if any, from the target
{
   uj,i=vj,i;

   j=(j+1)%D;
}

Fig. 2.40. C-style pseudo-code for DE’s exponential crossover scheme 
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Similarly, the probability that two mutant parameters are inherited is the 
same as the chance that there will be one success before the first failure: 

( ) .1)2( CrCrxp ⋅−== (2.40)

In general, the probability that the trial vector will inherit exactly n mutant 
parameters is 

( ) .1)( 11 nnn CrCrCrCrnxp −=⋅−== −− (2.41)

Summing these terms gives the cumulative distribution function. Once 
summed, only the first and last terms remain, since consecutive contribu-
tions contain identical terms of opposite sign that cancel. As a result, the 
probability that n or fewer parameters are inherited from the mutant is 

.1)(
1

1 n
n

k

kk CrCrCrnxp −=−=≤
=

−
(2.42)

One way to eliminate any representational bias associated with the 
crossover process is to shuffle the vector indices, perform crossover and 
then un-shuffle the trial vector indices (Caruana et al. 1989). Alternatively, 
the representational bias inherent in n-point crossover can be eliminated if 
donors are determined by D independent random trials. This alternative, 
known as uniform crossover, is the discrete recombination method that DE 
employs most often. 

Uniform (Binomial) Crossover 

G. Syswerda defined uniform crossover as a process in which independent 
random trials determine the source for each trial parameter (Syswerda 
1989). Crossover is uniform in the sense that each parameter, regardless of 
its location in the trial vector, has the same probability, pCr, of inheriting its 
value from a given vector. For this reason, uniform crossover does not ex-
hibit a representational bias. Syswerda’s original definition also allows for 
the possibility that donors are chosen with different probabilities, but pCr = 
0.5 is the most commonly cited value (both donors are equally probable). 

When the vectors being crossed are randomly chosen from the same 
population, pCr and 1 − pCr create the same pool of trial vectors. For exam-
ple, both pCr = 0.3 and pCr = 0.7 produce a vector that on average inherits 
30% of its parameters from one vector and 70% from another. In particu-
lar, when two vectors, A and B, are crossed with pCr = 0.3, trial vectors 
will inherit, on average, 30% of their parameters from A and 70% from B. 
It is equally probable, however, that B will be drawn first and A second, in 
which case trial vectors inherit, on average, 30% of their parameters from 
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B and 70% from A. These trial vectors could also have been generated by 
taking A first, B second and pCr = 0.7. Reversing the roles of the donor 
vectors has the same effect as using 1 − pCr instead of pCr. Since the order 
in which vectors are chosen is random, pCr potentially generates the same 
population as does 1 − pCr. DE on the other hand crosses vectors from dif-
ferent populations and their order of crossover is not random. In DE, each 
value of Cr ~ pCr generates a different trial population. 

As with exponential crossover, DE’s version of uniform crossover be-
gins by taking a randomly chosen parameter from the mutant so that the 
trial vector will not simply replicate the target vector. Comparing Cr to 
randj(0,1) determines the source for each remaining trial parameter. If 
randj(0,1) ≤ Cr, then the parameter comes from the mutant; otherwise, the 
target is the source. Figure 2.41 illustrates the process. 

12 26 51 8 30 50 75 95

7 26 68 8 30 11 54 95

7 104 68 13 44 11 54 39

Vi,g

Xi,g

Ui,g

0 1 2 3 4 5 6 7j =

jrand

Start

r2>Cr

r1≤Cr

r3>Crr7>Crr5>Cr

r6≤Cr r4≤Cr

Fig. 2.41. Uniform crossover. Once an initial, randomly chosen parameter is in-
herited from the mutant (e.g., jrand = 3), D − 1 independent trials are conducted to 
determine the source of the remaining parameters. If randj(0,1) ≤ Cr, the mutant 
donates a parameter value; otherwise, parameters are copied from the target. 

The number of inherited mutant parameters follows a binomial distribu-
tion, since parameter origins are determined by a finite number of inde-
pendent trials having two outcomes with constant probabilities. In particu-
lar, the odds of successfully inheriting only one parameter from the mutant 
is the probability that there will be D − 1 “failures” occurring with prob-
ability 1 − Cr

( ) .1)1( 1−−== D
Crxp (2.43)

More generally, the probability, given D, that exactly n parameters are 
inherited from the mutant is 
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The term D – 1Cn – 1 represents the number of combinations of D − 1 items 
taken n − 1 at a time. Summing the first n terms of Eq. 2.44 gives the prob-
ability that the trial vector will inherit at least n mutant parameters. Unlike 
exponential crossover, the cumulative binomial distribution does not re-
duce to a simple expression. Because the distribution of inherited mutant 
parameters is binomial, most DE literature refers to this method as “bino-
mial crossover” to distinguish it from exponential crossover. 

Lampinen and Zelinka (2000) have shown that the number of possible 
trial vectors, ntrial, that can be created with DE’s uniform (binomial) cross-
over is 

( )
( )+−⋅⋅

=+−⋅⋅
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(2.45)

Although the number of possible trial vectors is constant when 0 < Cr <
1, uniform crossover suffers from a distribution bias because not all con-
figurations are equally likely (Spears and DeJong 1991). DE does not 
eliminate distribution bias but relies on Cr to provide the means for con-
trolling it. At one extreme, Cr ~ 0 minimizes disruption by incrementally 
altering just a few parameters of a vector at a time, while at the other ex-
treme, Cr ~ 1 favors exploration by drawing most trial vectors directly 
from the mutant population. The next section examines the conditions un-
der which reinforcement and incremental change are useful and in what 
contexts exploration becomes crucial. 

2.6.2 The Role of Cr in Optimization

Despite mediating a crossover process, Cr can also be thought of as a mu-

tation rate, i.e., the (approximate) probability that a parameter will be in-
herited from a mutant. In DE, the average number of parameters mutated 
for a given Cr depends on the crossover model (e.g., exponential or bino-
mial) but in each, a low Cr corresponds to a low mutation rate. Many GAs 
recommend a mutation rate of 1/D, meaning that, on average, only one 
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trial parameter is mutated (Potter and DeJong 1994). Indeed, Zaharie’s re-
sults for Rastrigin, Griewangk and the sphere, as well as those for the sim-
ple hyper-ellipsoid in Fig. 2.33, consistently found low Cr to be the most 
effective values. Similarly, optimizing the extensive test beds in Storn and 
Price (1997) showed that all functions could be solved with either 0 ≤ Cr ≤
0.2 or 0.9 ≤Cr ≤1. The reason for the bifurcation of the crossover control 
space was not at first appreciated until it was realized that functions solv-
able with low Cr were inevitably decomposable, while those requiring Cr

~ 1 were not. 

Limitations of a Low Mutation Rate 

As Sect. 1.2.3 mentioned, a decomposable function can be written as a 
sum of D one-dimensional functions (not necessarily all the same) 

( ) ( ).
1

0

−

=

=
D

j

jj xff x
(2.46)

Decomposability simplifies the task of optimization because each parame-
ter can be optimized independently, allowing the task of optimizing a sin-
gle D-dimensional function to be broken up into D one-dimensional prob-
lems. Once the optima of the D one-dimensional functions have been 
located, they can be combined to specify the optimum of the original D-
dimensional function 

( ) ( ) ( ) .1,...,1,0),()(min,,...,, **
1

*
1

*
0

* −=== − Djxfxfxxxff jjjjDx (2.47)

For such functions, changing just one parameter (e.g., Cr = 0) before each 
evaluation can be viewed as a single step in an independent, one-
dimensional optimization. If the parameter being modified is randomly se-
lected, then the D one-dimensional optimizations proceed as arbitrarily se-
quenced tasks (Salomon 1996a). 

Any decomposable uni- or multi-modal function can be optimized in 
linear time, O(D), but randomly interleaving the order in which these one-
dimensional optimization tasks are executed causes EAs to incur an addi-
tional penalty of ln(D), raising their total computational complexity for de-
composable functions to O(D⋅ln(D)) (Salomon 1996a). Thus, DE and other 
GAs with low mutation rates should not be expected to compete with dedi-
cated decomposable function solvers. Such was the case at the First Inter-
national Contest of Evolutionary Optimizers, held in Kyoto, Japan, where 
DE finished behind a method that exploited the fact that the contest func-
tions were decomposable (Storn and Price 1996). Even so, the ln(D) pen-
alty incurred by EAs when using low mutation rates on decomposable 
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functions is not prohibitive. Once parameters become dependent, however, 
the penalty incurred by algorithms using low mutation rates does become 
prohibitive. 

Salomon provides two reasons why a low mutation rate is an ill-advised 
strategy when optimizing parameter-dependent functions (Salomon 1996). 
The first reason, mentioned briefly in conjunction with the rotated ellipse 
of Sect. 2.5.2, is illustrated by Fig. 2.42. The picture on the left shows con-
tours of an elliptical objective function whose principal axes are parallel to 
the coordinate axes. Any trial vector that is interior to the contour on 
which xi resides constitutes an improving move. If only one parameter is 
changed per evaluation, then xi can move at most ∆x0 in the x0 direction or

∆x1 in the x1 direction before it produces an unacceptable result. For this 
ellipse, these intervals are large enough to permit the optimum to be lo-
cated in just two moves, first to either xi + 0.5⋅∆x0 or to xi + 0.5⋅∆x1, and 
then to x* on the next move.  

x0

x1

∆x0

∆x1

x i

x*

x0

x1

∆x0

∆x1

x i

x*

Fig. 2.42. When the principal axes of the ellipse are aligned along coordinate axes, 
improvement intervals are large compared to those available once the coordinate 
axes have been rotated by 45°. In the figure on the left, a single pair of moves exe-
cuted in either order would be able to reach the minimum, but in the figure on the 
right it takes at least three moves parallel to the coordinate axes to reach the opti-
mum. 

By contrast, rotation shortens the improvement intervals to the point 
where the optimum can no longer be reached in just two consecutive 
moves if each step is taken parallel to a coordinate axis. These additional 
steps slow convergence and raise the algorithm’s time complexity above 
O(D⋅lnD). Both the dimension and eccentricity of the hyper-ellipsoid ex-
acerbate this performance loss. Indeed, the experiments in Sect. 2.5.2 con-
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firmed Salomon’s predictions that low Cr, though efficient on the decom-
posable ellipse, is inefficient on its rotated, non-decomposable counterpart. 

As the example of the rotated ellipse in Fig. 2.42 demonstrates, a low-
Cr DE strategy can suffer a loss of performance even if the function is uni-
modal. Salomon’s second reason for not using low mutation rates applies 
only to multi-modal functions whose local minima are not aligned with the 
coordinate axes. Figure 2.43 shows the contours of a hypothetical multi-
modal function having two local optima located on a diagonal. The only 
way to reach the optimum at x* from inside the penultimate basin of at-
traction is by moving in both the (positive) x0 and x1 directions simultane-

ously. Since the current vector is in a local optimum, no single move paral-
lel to a coordinate axis will be acceptable and improving moves into a 
basin of equal or lower function value will have components in both axes. 

x*

x1

x0

Fig. 2.43. Multi-modal functions with dependent parameters pose additional chal-
lenges to low-Cr strategies. The only improving move out of the penultimate basin 
of attraction requires making changes in both coordinates simultaneously. 

Salomon has shown that at O(DD) = O(exp(D⋅ln(D))), a low mutation rate 
can actually take longer than a random search to optimize a parameter-
dependent, multi-modal function (Salomon 1997). Time complexity of this 
order is prohibitive in all but the most trivial cases. 

In summary, the role of Cr is to provide the means to exploit decom-
posability, if it exists, and to provide extra diversity to the pool of possible 
trial vectors, especially near Cr = 1. In the general case of parameter-
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dependent functions, Cr should be close to 1 so that the performance losses 
associated with using a low mutation rate are minimized.

Rotational Invariance 

An algorithm whose performance depends on the objective function being 
aligned with a privileged coordinate system is a poor choice in general be-
cause it is unlikely that the optimal orientation will be known in advance. 
What is needed instead is a search algorithm that is rotationally invariant – 
one whose performance does not depend on the orientation of the coordi-
nate system in which the objective function is evaluated. For classic DE, 
this means that Cr = 1, i.e., mutation only and no crossover. 

That crossover is not rotationally invariant can be seen in Fig. 2.44, 
which plots the trial vectors generated by a pair of vectors both before and 
after a coordinate rotation. Although rotation leaves the position of the 
vectors with respect to one another unaltered, trial vector placement rela-
tive to the vector population depends on the angle of rotation. Since each 
angle samples different regions of the objective function, performance is 
rotation dependent. 

x1

x0

x1'

x0'

xa

xb

u

u

u'

u'

Fig. 2.44. Crossover is not a rotationally invariant process. The trial vectors de-
rived by crossover from vectors xa and xb change from u to u´ as the coordinate 
system is reoriented. 
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Fig. 2.45. The average number of function evaluations to solve the ten-
dimensional hyper-ellipsoid is a function of the angle between the hyper-
ellipsoid’s principal axes and the axes of the coordinate system in which it is 
evaluated. Only when Cr = 1 (mutation only) is the algorithm’s performance inde-
pendent of the rotation angle. Results are 100-trial averages obtained with classic 
DE (DE/rand/1/bin) and F = 0.9. 

Figure 2.45 shows how the time taken by classic DE to optimize the ten-
dimensional hyper-ellipsoid depends on the orientation of the hyper-
ellipsoid’s principal axes with respect to the coordinate system axes in 
which the trial vector is evaluated. Only when Cr = 1 is the number of 
function evaluations independent of the coordinate system orientation. 

Without crossover, classic DE operates by mutation alone. Setting Cr =
1, however, ensures that mutation is rotationally invariant only if jitter is 
absent. For example, Fig. 2.46 shows the regions where jitter relocates the 
head of a difference vector when Fj = F + d⋅(randj(0,1) − 0.5) where d =
0.5. Because it permits each differential component to be perturbed inde-
pendently, jitter is an angle-dependent search. The relatively large random 
deviation illustrated in Fig. 2.46 is necessary to clearly illustrate jitter’s ro-
tational dependence, but in practice, such a large value for d would seri-
ously degrade DE’s performance on epistatic objective functions. In prac-
tice d should be much smaller, e.g., d = 0.001. 
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x1

x0

x1'

x0'
xr2

xr1

Fig. 2.46. Jitter is not a rotationally invariant process because components of the 
differential are altered independently. Dashed boxes outline the areas in which jit-
ter with Fj = 0.5 + 0.5⋅randj(0,1) can place the head of the difference vector, xr1 −
xr2. As the coordinate axes are reoriented, the range of possibilities changes. 

Figure 2.47 shows that even with a mutation-only strategy, DE’s per-
formance is rotationally dependent if jitter is present (top line). The magni-
tude of the dependence increases as the magnitude of jitter’s deviation in-
creases. On the other hand, dither, like the F = constant model profiled in 
Fig. 2.45, is rotationally invariant as the lower line in Fig. 2.47 shows. The 
middle line shows that when jitter is very small (e.g., d = 0.001), the pen-
alty for rotational invariance is also small. 

Salomon’s warnings notwithstanding, DE performs well on parameter-
dependent multi-modal functions in practice as long as rotationally invari-
ant processes are the dominant strategies, e.g., when Cr is “close” to 1, 
say, Cr = 0.98, and when jitter’s PDF has a “small” variance, e.g., d =
0.001 in Eq. 2.37. 

The value of such a small value for jitter appears to be that the diversity 
it adds to the pool of trial vectors lowers the odds that DE will stagnate, 
particularly when Np is relatively small. This added diversity seems to be 
of particular benefit to the algorithm DE/best/1/bin, for which reliance on 
the best-so-far vector as a base vector lowers diversity in the pool of possi-
ble trial vectors. In addition, jitter with a suitable PDF makes DE provably 
convergent. It should be emphasized, however, that jitter’s practical value 
is still a matter of debate. 
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Fig. 2.47. When using jitter, DE’s performance on the ten-dimensional hyper-
ellipsoid depends on the orientation of the coordinate system relative to the princi-
pal axes of the hyper-ellipsoid. Plotted are the number of function evaluations that 
DE needed to optimize the ten-dimensional hyper-ellipsoid using both jitter and 
dither in a mutation-only strategy (Cr = 1). Unlike jitter, dither is rotationally in-
variant, but when the level of variation in jitter is very small (d = 0.001), rotation 
does not significantly affect run-times. Results were obtained using Np = 50, Cr =
1 and classic DE except that Fi = 0.9 + d⋅(randi(0,1) − 0.5) with d = 0.2 for dither 
and Fj = 0.9 + d⋅(randj(0,1) – 0.5) with both d = 0.2 and d = 0.001 for jitter. 

If a strictly rotationally invariant scheme is demanded, then Cr = 1 and 
the pool of potential trial vectors is limited to the mutant population. With-
out crossover or jitter, the only rotationally invariant way to increase the 
pool of potential trial vectors is by increasing Np or by using dither. If, 
however, dither’s PDF has a high proportion of small perturbations, then 
optimal population sizes may be larger than if no dithering is used at all. 
Alternatively, certain forms of arithmetic recombination – unlike discrete 
recombination – can add diversity and complement the mutation search 
strategy without becoming rotationally dependent. 

2.6.3 Arithmetic Recombination 

Although crossover creates new combinations of parameters, it leaves the 
parameter values themselves unchanged. Continuous or arithmetic recom-

bination, however, operates on individual trial parameter values by ex-
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pressing them as linear combinations of parameters. Arithmetic recombi-
nation’s global variant selects both vectors anew for each parameter of a 
recombinant vector, wi,g (Bäck and Schwefel 1993), but most EAs select 
just one set of vectors for all parameters of wi,g:

( ).010 ,gr,gri,gri,g k xxxw −+= (2.48)

The coefficient of combination, ki, can be a constant (e.g., ki = 0.5 is uni-

form arithmetic recombination (Eiben and Smith 2003)), or a random vari-
able (e.g., rand(0,1)). More generally, if ki is either constant or a random 
variable that is sampled anew for each vector, then the resulting process is 
called line recombination (Eq. 2.48) (Mühlenbein and Schlierkamp-
Voosen 1993). If, however, the coefficient of combination is sampled 
anew for each parameter, then the process is known as intermediate re-

combination (Mühlenbein and Schlierkamp-Voosen 1993): 

( ).121 ,gj,r,gj,rj,gj,rj,i,g xxkxw −+= (2.49)

Not all sources agree on this terminology. For example, in ES terminol-
ogy, the coefficient of combination is chosen anew for each parameter 
only in the global version, i.e., when vectors are also chosen anew for each 
parameter (Bäck and Schwefel 1993). This book equates intermediate re-
combination with the two-vector linear combination in Eq. 2.49, where kj

is a random variable that is sampled anew for each parameter, but vectors 
are chosen once per trial vector. If kj is allowed to assume values outside 
the range (0,1), then the process is called extended intermediate recombi-

nation (Mühlenbein and Schlierkamp-Voosen 1993). 
Figure 2.48 compares the regions searched by discrete, line and inter-

mediate recombination when the coefficient of combination is distributed 
with random uniformity between 0 and 1. The two vectors occupy oppos-
ing corners of a hypercube whose remaining corners are the trial vectors 
created by discrete recombination. Line recombination, as its name sug-
gests, searches along the axis connecting vectors, while intermediate re-
combination explores the entire D-dimensional volume contained within 
the hypercube. 

Since the hypercube’s corners are the possible outcomes of discretely 
recombining two vectors, intermediate recombination, like both jitter and 
crossover, is not a rotationally invariant process. Rotation relocates the hy-
percube’s corners, which in turn redefine the area that intermediate recom-
bination searches. On the other hand, line recombination is rotationally in-
variant. Given that both differential mutation and line recombination are 
rotationally invariant schemes for adding a weighted vector difference to 
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an existing vector, the question arises: what real difference is there be-
tween the two operations? 

discrete 

discrete 
xb

xa

line random 
intermediate 

x0

x1

Fig. 2.48. Domains of the possible recombinant vectors generated using discrete, 
line and intermediate recombination. The coefficient of combination is drawn 
from the interval [0,1]. 

Distinguishing Line Recombination from Differential Mutation 

Why should some vector differences be associated with recombination and 
the others not? The reason is that the presence of the base vector in recom-
bination differentials constitutes a bias that makes recombination’s dynam-
ics different from those of differential mutation. For example, shifting the 
base vector’s position with respect to the population does not influence its 
mutation differentials, but it does alter the size and orientation of its re-
combination differentials. Figure 2.49 shows that if the base vector moves 
from the population’s outer boundary to a more central position, its re-
combination differentials will become shorter and more symmetrically dis-
tributed, whereas mutation differentials – defined by the remaining vectors 
whose positions are unchanged – are unaffected. 

Recombination’s positional dependence allows trial vectors to be delib-
erately placed into the population in locations that mutation can reach only 
by chance. For example, ki = 0.5 (Eq. 2.48) places the trial vector midway 
between the base vector and the vector xr1. Moreover, ki = 1 reduces re-
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combination to a replacement operation by placing the trial vector at xr1.
By contrast, non-zero mutation differentials place trial vectors on, between 
or in relation to other vectors only by chance, not by intention. 

Old base vector

New base vector

Fig. 2.49. Recombination differentials change in response to a shift in the base 
vector’s position relative to the population. 

When a trial vector is a linear combination of only two vectors, the dif-
ferential’s dependence on the base vector is inevitable. For example, let u
be a trial vector that is a linear combination of two, randomly chosen vec-
tors

.1100 rr kk xxu ⋅+⋅= (2.50)

To prevent trial vectors from expanding (k0 + k1>1) or contracting (k0 + k1 <
1) over the course of many generations due only to the generating process 
itself, the coefficients k0 and k1 are subject to a normalization constraint

that requires their sum to equal 1. For a linear combination of m vectors,  
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Substituting 1 − k1 for k0 in Eq. 2.50 yields the familiar formula for line re-
combination in which the base vector, xr0, also appears in the difference 

term:
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Once three vectors are linearly combined, however, the positional bias 
inherent in two-vector combinations can be eliminated. For example, a 
mutant is a three-vector linear combination that is subject to two con-
straints. The normalization constraint, k0+ k1+ k2 = 1, eliminates one of the 
three coefficients of combination (k0) and reduces the expression for a 
general linear combination of three vectors to 

).()( 0220110 rrrrr kk xxxxxu −⋅+−⋅+= (2.53)

Imposing the mutation constraint
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both eliminates a second coefficient (k1) and removes xr0 from the differ-
ence term 

vxxxu =−⋅+= )( 2120 rrr k . (2.55)

Satisfying Eq. 2.54 cancels out the base vector’s contribution to the m − 1 
differential terms. The one remaining coefficient of combination, k2, is the 
mutation scale factor, F. Like the increments generated by a PDF, the mu-
tation differentials contain no reference to the vector they modify.  

Two-vector line recombination’s positional dependence complements a 
mutation-driven search, but the existence of only Np − 1 possible recombi-
nation axes limits its explorative power. More than two vectors can be re-
combined and elevating line recombination to a three-vector process places 
it on an equal footing with differential mutation as both consist of a linear 
combination of three vectors. 

Three-Vector Recombination 

Equation 2.51 appears to be missing the differential mutation operator be-
cause it expresses a trial vector as the sum of the base vector and two re-
combination differentials that contain the base vector.  The reciprocal roles 
played by recombination and mutation in three-vector linear combinations 
become clearer once Eq. 2.53 is rewritten with a change of variables that 
decomposes any normalized, three-vector linear combination into separate 
recombination and mutation components, K and F, respectively. First, let 
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Replacing k1 and k2 in Eq. 2.53 with the expressions in 2.56 yields 
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Multiplying out the expressions in Eq. 2.57 and collecting terms reorgan-
izes Eq. 2.53 into a recombination term that contains the base vector and a 
mutation term from which the base vector is absent: 
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The change of variables laid out in Eq. 2.56 defines a 45° rotation of the 
K–F plane with respect to the k1–k2 plane (Fig. 2.50). The mutation con-
straint, k1= −k2, defines a mutation axis, F, that passes through the origin 
and has a slope of −1, while the recombination constraint, k1= k2, defines a 
recombination axis, K, that also passes through the origin but has a slope 
of +1. The advantage of the K–F decomposition is that it permits two 
search processes with different dynamics to be controlled independently. 

The coordinates, (k1,k2), locate the trial vector, u, relative to the base 
vector xr0 using two-vector recombination differentials as basis vectors. 
Coordinate k1 measures the distance of the trial vector from the base vector 
in the direction of the differential (xr1 − xr0), while k2 measures the distance 
from xr0 in the direction of the differential (xr2 − xr0). Similarly, K and F
measure the distance of the trial vector from the base vector along the di-
rection of the three-vector recombination and mutation axes, respectively. 

The medial line (the K–axis in Figs. 2.50 and 2.51) plays an important 
role in the two-dimensional version of the Nelder–Mead algorithm. As 
Sect. 1.2.3 explained, the Nelder–Mead strategy tests a point located on the 
axis defined by the vector being modified (the worst vector in Nelder–
Mead, but xr0 in this case) and the centroid of a simplex consisting of D
additional vectors. When D = 2, this axis is a medial line that passes 
through not only the centroid, but also the average position of xr1 and xr2.
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corresponds to xr2

corresponds to xr0 corresponds to xr1

corresponds to u

Fig. 2.50. Decomposing the position of a trial vector into separate mutation and 
recombination components in the K–F plane (refer to Eqs. 2.51 and 2.56). The ro-
tation angle between the k1–k2 and K–F coordinate systems is 45°.

Figure 2.51 illustrates some of the important features of the K–F plane. 
Coordinates are given as (K,F) where K and F are a vector’s coordinates 
along the recombination and mutation axes, respectively. The base vector, 
xr0, corresponds to the origin, (K,F) = (0,0). The remaining two vectors 
correspond to (0.5,0.5) and (0.5, −0.5). Together, the three vectors form an 
inverted triangle whose sides and their extensions constitute the three axes 
along which three-vector combinations reduce to two-vector line recombi-
nation. This triangle of vectors is inscribed inside a larger triangle whose 
vertices are the three mutation points (0,1), (0, −1) and (1,0) corresponding 
to the vectors xr0 + xr1 − xr2, xr0 + xr2 − xr1 and xr1 + xr2 − xr0, respectively.

Only the order in which vectors are combined distinguishes these three 
strategies and as long as vectors are randomly selected, the three mutation 
points are dynamically indistinguishable, i.e., the three strategies cannot be 
distinguished based on their performance. Similarly, the sides of this larger 
triangle represent the three possible mutation axes and its three medial 
lines represent the three possible recombination axes. The figure is bilater-
ally symmetric (left and right sides are mirror images, with the mirror 
aligned on the K axis) about the vertical recombination axis because xr1 −
xr2 = − (xr2 − xr1). The centroid of both the large and small triangles lies at 
(1/3,0).



2.6 Recombination      111 

K

k2 k1

F

(K,F)=(1,0)

(0.5,0.5)(0.5,-0.5)

(0,-1) (0,1)

(0,0)

corresponds to a mutation point: xr0+xr1-xr2: (0,1)
 xr0+xr2-xr1: (0,-1)
xr1+xr2-xr0: (1,0)

corresponds to a vector: xr0: (0,0), xr1: (0.5,0.5), xr2: (0.5,-0.5)

2-vector recombination

3-vector recombination (medial line)

mutation axis

Fig. 2.51. The K–F plane exhibits three axes along which two-vector recombina-
tion produces trial vectors. Squares plot the three dynamically equivalent mutation 
points. The vertical axis measures the component along the medial axis while the 
horizontal mutation axis measures the component in the direction of the difference 
vector xr1 − xr2. Note that the coordinate values are expressed in the K–F coordi-
nate system. Note also that the vectors that correspond to these points are also 
mentioned. As an example, the point (1,0) corresponds to the vector xr1 + xr2 − xr0.

Because they represent varying fractions of recombination and muta-
tion, points in the K–F plane also represent different search strategies. For 
example, classic DE with Cr = 1 includes all the points on the mutation 
axis where trial vectors are pure mutants, whereas those that lie along the 
medial axes are pure three-vector recombinants similar to those produced 
by the two-dimensional Nelder–Mead algorithm. Off-axis points possess 
attributes of vectors that have been subjected to both differential mutation 
and three-vector line recombination. For optimization, the most important 
questions regarding K and F are whether they are correlated and whether 
successful strategies consistently cluster around landmarks in the K–F
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plane. The phase portrait is designed to provide insights into these ques-
tions.

2.6.4 Phase Portraits 

Phase portraits are a visual aid for exploring relationships between control 
parameters, in this case K and F. Each point, (K,F), in the K–F plane lo-
cates a point representing a trial vector generating strategy that is iterated 
over many generations. If the point at (K,F) is plotted when the strategy it 
represents is successful within the allotted number of generations, then a 
“portrait” forms revealing the location of effective control variable combi-
nations for the given test function. Rosenbrock’s function, for example, 
displays the portrait in Fig. 2.52. 

5-D Rosenbrock,      Np = 50   h

gmax = 10000
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Fig. 2.52. The phase portrait for the five-dimensional generalized Rosenbrock 
function. Points were sampled with random uniformity, i.e., F = 8⋅(rand(0,1) −
0.5) and K = 8⋅(rand(0,1) − 0.5). The function rand(0,1) lacks a subscript to indi-
cate that a single value is generated anew for each optimization run. One optimi-
zation was run for each point. If the optimization was successful within the allot-
ted number of generations and with the chosen population size, the point was 
plotted. Results were obtained with DE/rand/1/bin, Cr = 1 and i ≠ r0 ≠ r1 ≠ r2.

Regions that are most densely populated correspond to strategies that have 
the highest probability of convergence. Points in the central triangular void 
are strategies that converged prematurely for the given Np, while those in 
the vacant space surrounding the portrait did not converge within the al-
lowed number of generations. 
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Fig. 2.53. Reducing the maximum allowed number of generations reveals that the 
fastest solutions are the most interior ones. The three clusters represent symmetric 
solutions.
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The distribution of successful strategies highlights several important 
features of the K–F plane shown in Fig. 2.51. For example, the distribution 
of successful strategies is bilaterally symmetric about the vertical recombi-
nation axis. In addition, the six spikes correspond to the three cases of two-
vector line recombination. Their presence in Rosenbrock’s portrait shows 
that even two-vector line recombination is sufficient to solve this uni-
modal function if the coefficient of combination (e.g., k1 in Eq. 2.50) is 
large enough. 

By successively halving the maximum allowed number of generations, 
gmax, in successive portraits, Fig. 2.53 shows that the solutions obtained by 
two-vector recombination are relatively time consuming and that the fast-
est solutions are the most interior ones. 

Figure 2.54 shows the final Rosenbrock portrait in Fig. 2.53 at expanded 
scale with medial lines and lines of two-vector recombination drawn for 
reference.
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Fig. 2.54. Clusters for Rosenbrock’s functions are bisected by a medial line and 
constrained by the lines of two-vector recombination. 
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Even though they possess very different topography, many other func-
tions display portraits similar to Rosenbrock’s. As Fig. 2.55 shows, the 
phase portraits for the hyper-ellipsoid, Ackley, Whitley and Lennard-Jones 
functions all look remarkably similar to Rosenbrock’s portrait when gmax=
5000.
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Fig. 2.55. Despite having radically different topographies, these functions produce 
portraits similar to Rosenbrock’s. 

Other portraits, such as those of the Chebyshev and Hilbert functions in 
Fig. 2.56, produce images similar to plots of Rosenbrock’s fastest strate-
gies. In each case there are three clusters centered on a medial line that are 
constrained by the lines representing two-point recombination. 

Not all functions conform to this pattern and some have portraits with 
clusters that lie predominantly along either the mutation axis or the three-
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vector recombination axis. Figure 2.57 shows that most of the successful 
strategies for the Shekel and odd square functions lie on the mutation axis. 
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Fig. 2.56. Portraits for both the Chebyshev and Hilbert functions are almost indis-
tinguishable from Rosenbrock’s innermost strategies. 
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5-D  Odd Square, Np =400
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Fig. 2.57. Solutions for both the Shekel and odd square functions lie almost en-
tirely on the mutation axes. Recombination is effective on the Shekel function as 
long as K is close to 1, but it is an ineffective strategy when applied to the odd 
square.
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At the other extreme, Griewangk’s function shows a distribution of 
points centered on the medial lines that has only a few outlying points ap-
proaching the mutation axis, most notably near F = 1 and F = 0.5. 

5-D  Griewangk,Np=200

gmax=5000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

F

K

Fig. 2.58. Although a few cluster points intersect the mutation axes, the most ro-
bust strategies lie on the medial axes. 

These phase portraits show that mutation and recombination differen-
tials do indeed have different effects on the optimization dynamic. For 
functions like the odd square, mutation is the only viable option, while for 
those like Griewangk, recombination is a better strategy. Reliance on the 
wrong operation is likely to result in poor performance for a significant 
number of functions, but many functions are generic, meaning that either 
mutation or recombination makes an effective strategy. Given the range of 
behaviors displayed in the phase portraits, what is the best strategy in gen-
eral?

2.6.5 The Either/Or Algorithm 

All portraits in the previous section displayed clusters of successful strate-
gies that were bisected by either a recombination or a mutation axis. In the 
generic case, both axes intersected clusters. Furthermore, there was no case 
in which a cluster only occupied the spaces between axes. Because these 
isolated, off-axis clusters are not observed, the best strategy for locating a 
central cluster point is to look along the mutation axis, the recombination 
axis, or both, but not between them. Compared to searching the entire two-
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dimensional K–F plane, a dual-axis search reduces the effort to find a suc-
cessful strategy because it restricts the search to a pair of one-dimensional 
axes.

The simplest way to implement a dual-axis search is to define a muta-
tion probability such that trial vectors that are pure mutants occur with 
probability pF and those that are pure recombinants occur with probability 
1 − pF :
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This scheme accommodates functions that are best solved by either muta-
tion only (pF = 1) or recombination only (pF = 0), as well as generic func-
tions that can be solved by randomly interleaving both operations (0 < pF <
1). Figure 2.59 gives pseudo-code for this “either/or” algorithm. 

...

if (randi(0,1)<PF)          // mutate or recombine ?

{

ui=xr0+F*(xr1-xr2);       // mutate

}

else

{

ui=xr0+K*(xr1+xr2-2*xr0); // recombine

}

...

Fig. 2.59. Pseudo-code for creating a trial vector with the “either/or” algorithm. 
From experience K = 0.5⋅(F + 1) can be recommended as a good first choice for K
given F.

2.7 Selection 

There are primarily two stages in the evolutionary process where selection 
can be applied to a population. Some GAs (Goldberg 1989) employ parent 
selection to decide which vectors will undergo recombination. Typically, 
vectors with the best function values are assigned the highest selection

probability, making them the most likely to be chosen for mating. This 
strategy mimics the one employed by breeders and botanists who try to 
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improve traits by selectively breeding individuals with superior character-
istics. In practice, methods for assigning selection probabilities involve ad-
ditional assumptions about how to map objective function values to a set 
of probabilities. Instead of selecting mates based on objective function 
value, both ES and classic DE select mates with equal probability. In the 
ES, each vector has the same chance to be chosen for mutation and/or re-
combination. Similarly, classic DE randomly selects base vectors without 
regard for their objective function values (see Sect. 2.4). 

In contrast to parent selection, survivor selection, also called replace-

ment, chooses the next generation of vectors from the current generation of 
vectors and trial vectors. Most EAs apply selection pressure either when 
choosing vectors to recombine or when choosing survivors. GAs typically 
bias selection in favor of better vectors, whereas DE, ES and other EAs, 
however, combine randomly chosen vectors and apply selection pressure 
only when picking survivors. Using both parent (base vector) and survivor 
selection can cause premature convergence to a local optimum.  

The remainder of this section is primarily concerned with survivor se-
lection and it will be convenient for the following discussion to assume 
that the current and trial populations can have different sizes. In keeping 
with the naming traditions established by the ES community, µ will denote 
the size of the current population and λ will represent the size of the trial 
population. 

2.7.1 Survival Criteria 

In some algorithms, age alone determines which individuals survive. Here, 
age distinguishes vectors in the current population from those in the 
(younger) trial population. More often, however, both a vector’s objective 
function value and the luck of the draw are also factors. The simple GA, 
however, determines survivors by their age alone. 

Age Only 

The simple GA replaces µ vectors with λ = µ trial vectors without regard 
to whether the trial vectors actually have lower function values than those 
in the current generation (Goldberg 1989). This age-based replacement

scheme only works if parent selection is driven by an objective function-
based criterion. Without the feedback that an objective function-based par-
ent selection rule provides, there is no bias to drive the population toward 
better solutions. For example, the (1,1)-ES with its age-based selection is 
nothing more than a random walk in which each trial vector replaces the 
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current vector regardless of its objective function value (Bäck et al. 1993). 
Similarly, age-based replacement is unsuitable for classic DE because its 
parent selection scheme, i.e., random base vector selection, does not 
choose vectors based on objective function value.

Objective Function Value Only 

When only trial vectors are allowed to advance, there is no guarantee that 
the best-so-far solution will not be lost. Retaining the best-so-far solution 
is known as elitism and part of the task of proving that an algorithm will 
converge to the global optimum in the long-time limit is proving that it is 
elitist (Rudolph 1996). For this reason, and because of the speed improve-
ment that it offers, most EAs, including DE, evolutionary programming 
(EP) and some versions of ES and genetic programming (GP) (Koza 
1992), include the current population when determining the membership of 
the next generation. For example, the (µ + λ)-selection scheme (see Sect. 
1.2.3) ranks all vectors in both the current and trial populations from best 
to worst and then populates the next generation with the best µ individuals. 
Similarly, EP tournament selection (see subsection 2.7.2) compares the ob-
jective function value of vectors randomly chosen from the current and 
trial populations. In both cases, a vector’s age is irrelevant and the best-so-
far result is always retained. 

Age and Objective Function Value 

In ES (µ, λ)-selection (see Sect. 1.2.3), age dictates that only trial vectors 
can survive, while objective function values determine which trial vectors 
are among the µ best. Using objective function values to pick the µ best 
survivors from a pool of λ trial vectors biases evolution toward better solu-
tions, unlike the simple GA in which µ = λ trial vectors survive regardless 
of their objective function values. Since surviving trial vectors can over-
write better current vectors, (µ, λ)-selection is not elitist. Forgetting prior 
results, however, allows the population both to escape local optima and to 
track dynamic ones. In addition, (µ, λ)-selection lessens the chance that ES 
“strategy” parameters will prematurely adapt to a good but sub-optimal so-
lution (Bäck and Schwefel 1995). 

As the next section shows, both age and objective function value also 
play a role in DE selection. Age is a factor because trial vectors can only 
compete against members of the current population, while their objective 
function values determine which vector survives. The DE scheme is elitist 
since the best vector in the current and trial populations always survives. 
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2.7.2 Tournament Selection 

In general, any parent selection scheme can also be adapted for survivor 
selection, but in practice nearly all EAs, including DE, determine survivors 
by some form of tournament selection or ranking, which is a special case 
of tournament selection. The next subsection explores DE selection in the 
context of the tournament survivor selection method employed by the EP 
algorithm (Fogel et al. 1966; Fogel 1991). 

In EP-style tournament selection, each vector competes against T oppo-
nents drawn at random from a selection pool of Ns vectors (Saravanan and 
Fogel 1997). In deterministic tournaments, vectors are assigned a “win” 
for each pair wise competition in which they have the lower objective 
function value (in non-deterministic tournaments, the best vector wins with 
a user-defined probability). The µ vectors that accumulate the most wins 
populate the next generation. 

The main control variable in tournament selection is the tournament 
size, T, where 2 ≤ T ≤ Ns. A typical tournament size for the EP algorithm 
is T = 10. DE, however, conducts Np, binary tournaments (T = 2) in which 
only two individuals compete. In general, the selection pressure increases 
as T increases, i.e., increasing T speeds convergence, so compared to EP 
tournament selection (T = 10), DE selection is gentler. DE’s lower selec-
tion pressure helps avoid premature convergence without the introduction 
of variation operators to enhance the diversity of the pool of potential trial 
vectors.

Ranking (e.g., (µ + λ)-selection in which both the current and trial popu-
lations are sorted based on objective function value) is a special case of EP 
tournament selection for which T = Ns. For example, if one vector is better 
than another, the better vector will win all the same tournaments that the 
inferior vector wins plus the tournament with the inferior vector itself. 
Since better vectors always have more wins than inferior vectors, conduct-
ing T = Ns tournaments for each vector ensures that ranking vectors by the 
number of wins also ranks them by objective function value. In practice, 
ranking is accomplished more efficiently by sorting the population from 
best to worst based on objective function value and then taking the top µ
individuals. Efficient sorting reduces the computational complexity of the 
each-against-all tournament process from O(Ns2) to O(Ns⋅log(Ns)) (Blahut 
1984).

Tournament selection is very versatile because it only depends on know-
ing which of two solutions that have been paired for competition is better. 
Because it only depends on the difference between objective function val-
ues, tournament selection is unaffected when a constant is added to every 
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vector’s objective function value (transposition) (Eiben and Smith 2003). 
By contrast, fitness proportional selection selects an individual with a 
probability based on its function value (Holland 1992) 
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and adding a constant to each vector’s objective function value will change 
its fitness proportional selection probability. 

Tournament selection is also well suited for co-evolutionary optimiza-
tion tasks in which the quality of a given solution is defined only in the 
context of its performance with respect to the rest of the population. For 
example, it is difficult to rate an arbitrary checkers strategy, but it is a sim-
ple matter to determine which of two strategies is better by actually using 
them to play one or more games against each other. Similarly, tournament 
selection is the most effective way to evolve solutions to “subjective” ob-
jective functions, like those used in evolutionary art. In such environments, 
it is easier to decide, for example, which of two pictures is more pleasing 
than it is to decide how pleasing a picture is in an absolute sense. In addi-
tion, tournament selection permits the concept of Pareto-dominance to be 
implemented for both constraint functions and for multi-objective optimi-
zations (see Sects. 4.3 and 4.6). 

A single competition in an EP tournament might select two current 
population vectors, a current and a trial vector, or two trial vectors to com-
pete against one another. DE, however, restricts tournament selection to 
this last possibility in which each competition pits a trial vector against a 
vector in the current population (the target) with the additional proviso that 
the target and trial vectors are also related by crossover. The next subsec-
tion explores this special class of deterministic, binary tournaments, known 
as one-to-one selection for the way in which population and trial vectors 
are paired for competition. 

2.7.3 One-to-One Survivor Selection 

Besides pairing competitors based on age, DE’s one-to-one replacement 
scheme differs from EP tournament selection in other ways. For example, 
an EP-style binary tournament conducts 2Np competitions by pairing each 
vector in the current population and each trial vector with a randomly se-
lected competitor. Each vector competes once in its own tournament and 
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possibly one or more times as a competitor in another vector’s tournament. 
Consequently, not every vector that wins advances and not every vector 
that loses fails to advance. For example, a very good vector will lose if it is 
chosen as a competitor in the best vector’s tournament. If, however, an av-
erage competitor is chosen to compete in the very good vector’s tourna-
ment, then the very good vector will win. Even though it loses in competi-
tion with the best vector, the very good vector still wins its own 
tournament, giving it the same chance to enter the next generation as the 
best vector because both vectors won their tournaments and scored one 
win apiece. Furthermore, it is possible for more than Np vectors to win 
their tournaments depending on how competitors are chosen, in which case 
all winning vectors cannot advance. For example, although improbable, 
every member of the current population and every member of the trial 
population might randomly pick the very worst vector in the combined 
populations as a competitor. In that case, there would be 2Np − 1 vectors 
with one win and one vector with no wins. In such cases, the best vector 
can be lost unless steps are taken to preserve it. 

By contrast, DE’s one-to-one selection holds only Np “knock-out” com-
petitions. Any vector that loses the single competition in which it competes 
is eliminated and vectors that win are assured of a spot in the next genera-
tion. This form of binary, deterministic, one-to-one tournament selection in 
which competitors are chosen from different populations is not unique to 
DE. Like DE, the Particle Swarm Optimization (PSO) algorithm also con-
ducts Np competitions that compare the trial vector with population index i
to the best performing vector at population index i (Kennedy and Eberhart 
1995). In DE, the best performing vector at the ith position is just the ith

vector in the current population, i.e., the target vector xi,g. In both DE and 
PSO, the trial vector replaces the best-so-far vector with the same index 
only if it has an equal or lower objective function value. 

Comparing each trial vector to the best performing vector at the same 
index ensures that both DE and PSO retain not only the best vector at each 
index, but also the very best-so-far solution at any index. Even so, a trial 
vector that is better than most of the current population will be rejected if 
its target is even better. Trial vectors that are worse than the worst vector 
in the current population, however, are never accepted. 
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2.7.4 Local Versus Global Selection 

Local Selection 

When an objective function is known to exhibit multiple global optima, 
some algorithms subdivide the selection pool into subpopulations. Each 
subpopulation evolves in isolation to prevent the entire population from 
coalescing about a single optimum. Selection is local because survivors 
can only replace members of the same subpopulation. For example, in the 
simple GA with a (µ, λ) survivor selection scheme, age determines the in-
teracting subpopulation, or selection neighborhood, because only trial vec-
tors are allowed to compete. In general, the smaller the selection neighbor-
hood is, the lower the selection pressure will be. Just as increasing λ or T
increases selection pressure, increasing the size of the population from 
which the base vector is drawn speeds convergence.

If DE’s base and target vectors are the same, vectors evolve in isolation 
as though there were Np subpopulations. Selection will be local because 
each population vector will be compared to a mutated version of itself. Al-
though the mutation differential is still drawn from the population at large, 
there is no interaction with other population members – no comparisons to 
solutions evolving in other parts of the solution space. 

Global Selection 

When seeking a single, global optimum, care must be taken to ensure that 
information about the best solutions can reach all members of the popula-
tion. If base vectors are randomly chosen, then each vector in the current 
population is compared to and possibly crossed with the mutated version 
of another vector. Compared to local selection, global selection speeds 
convergence and minimizes the risk of stagnation. 

2.7.5 Permutation Selection Invariance 

When base vectors are the elements of a random permutation of the se-
quence (0, 1,…, Np − 1), the roles played by the base vector and survivor 
selection become interchangeable. If a permutation of the sequence (0, 
1,…, Np − 1) indexes base vectors, then each vector in the current popula-
tion serves as a base vector once per generation (Sect. 2.4.2). Each vector 
in the current population also serves as a target vector once per generation. 
As such, it makes no difference whether the random permutation indexes 
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either base vectors or target vectors. Either way, each vector in the current 
population vector is mutated, then matched by permutation to a vector with 
which it is both crossed and compared and which it potentially replaces. 
For example, the first expression in Eq. 2.61 shows the traditional DE ap-
proach in which permuted indices, permute[i], select the base vector, while 
the running index, i, points to the target vector. The second expression 
shows the situation reversed, in which the running index specifies the base 
vector and the ith permutation entry locates the target vector. For clarity, 
Eq. 2.61 expresses this symmetry as a vector relationship (Cr = 1): 

( ) ( ).vs.vs. 21permute[i]21permute[i] rrirri FF xxxxxxxx −+⇔−+ (2.61)

These two approaches based on the permutation selection method give 
identical results, i.e., optimizer performance is the same regardless of 
which method is employed. In both cases, each vector in the current popu-
lation is mutated and then crossed with and compared to another vector in 
the current population not assigned to any other mutant. As such, random 
assignments derived from permutations can be performed either during 
parent (base vector) selection (left side of Eq. 2.61), or when selecting a 
target vector with which to cross and compete (right side of Eq. 2.61). 

The “urn” permutation algorithm (see Sect. 5.2) helps illustrate the 
symmetry between these two selection options. For example, let urn 1 hold 
Np marbles, each of which is numbered with a unique vector index, i ∈ [0, 
Np − 1]. Urn 2 also contains Np marbles numbered 0 through Np − 1, but 
this time, numbers indicate a vector in the current population that has been 
mutated. Permutation selection matches vectors in the current population 
with mutants for crossing and competing by drawing a marble (at random 
and without replacement) from each urn. Once all marbles have been ran-
domly paired this way, the final mapping between population and mutant 
indices will define a permutation. It does not matter to which urn the role 
of the permutation is assigned, just as it does not matter whether targets or 
mutants have their indices permuted.  

2.7.6 Crossover-Dependent Selection Pressure 

Because DE selection compares each trial vector to the vector in the cur-
rent population with which it is crossed, replacing a vector in the current 
population can change the population’s composition by as little as one pa-
rameter (Cr = 0), or by as many as D (Cr = 1). If, unlike DE, each vector 
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in the current population is compared to and replaced by a trial vector with 
whom it shares no common parameters, then the composition of (one 
member of) the vector in the current population changes by D parameters. 
Similarly, when (µ + λ)-selection replaces a vector in the current popula-
tion with a trial vector, the two vectors usually share no parameter values 
in common. By contrast, the number of parameters changed when classic 
DE accepts a trial vector is a function of Cr.

Figure 2.60 compares the selection pressure exerted by classic DE and 
two other selection schemes, both of which change D parameters each time 
they replace a vector in the current population. Classic DE (DE/rand/1/bin) 
generated the trial vectors in each case and algorithms differed only in how 
they selected survivors. Data points were only plotted if all 20 trials were 
successful. The top line shows that classic DE selection is the slowest of 
the three schemes when Np = 60, although it is the only method whose se-
lection pressure is gentle enough to prevent premature convergence at 
small values of Cr. The middle line corresponds to a selection scheme that 
pairs vectors in the current population and trial vectors with a random 
permutation. This use of random permutation to pair vectors and trial vec-
tors is distinctly different from the permutation selection method described 
in Sect. 2.7.5. Instead of drawing vectors from the first urn and mutants 
from the second, this selection method draws completed trial vectors that 
have already been crossed with another vector from the second urn. As 
such, vectors in the current population and the trial vectors that compete 
against them share no parameters through crossover. Its greater rate of 
convergence in Fig. 2.60 shows that in the case of the hyper-ellipsoid, ac-
cepting D new parameters per trial vector creates more selection pressure 
than does classic DE selection, except at Cr = 1 where both algorithms 
change the current population by D parameter values for each trial vector 
accepted. The (µ + λ)-selection scheme (bottom line) generates the highest 
selection pressure because it not only changes D parameters per accepted 
trial vector, it also uses T = Np tournaments instead of just T = 2. 
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Fig. 2.60. Classic DE selection (top line) is weaker than (µ + λ)-selection (bottom 
line) but both share a similar profile. Pairing target and trial vector (not mutant) 
adversaries with a random permutation provides an intermediate level of selection 
pressure (middle line). DE/rand/1/bin (Np = 60, F = 0.9) generated trial vectors, 
but survivors were selected by the indicated selection method. Data points are 20-
trial averages. 

2.7.7 Parallel Performance 

Not all survivor selection methods are equally well suited to parallel im-
plementations. For example, (µ + λ)-selection is time consuming when 
implemented as tournament selection without replacement. If instead, (µ +
λ)-selection is done by sorting, it becomes difficult to implement effi-
ciently in parallel because some comparisons must be performed before 
others. DE, however, is ideally suited for parallel computing, primarily be-
cause each vector in the current population competes in a single tourna-
ment against a trial vector that belongs to an intermediate population. Sec-
tion 5.1 describes several schemes for distributing DE across a network of 
processors. In addition, Sect. 7.6 describes how DE was implemented in 
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parallel to perform image registration. In that application, performance 
scaled quasi-linearly. 

2.7.8 Extensions 

The presence of constraint functions and multiple objectives in an optimi-
zation task make it difficult to compare solutions based on a single objec-
tive function value. For this reason, J. Lampinen (2002) has extended DE’s 
selection criteria so that solutions can be compared based on the notion of 
Pareto-dominance (Sect. 4.6). Instead of replacing a vector in the current 
population with a trial vector whose objective function value is equal or 
lower, Lampinen’s method replaces a vector in the current population 
when the trial vector dominates it. Lampinen’s method is easy to apply to 
problems with multiple constraints (Sect. 4.3), those with multiple objec-
tives (Sect 4.6) and multi-objective problems with multiple constraints 
(Sect 4.6). Among its principal advantages are that objectives and con-
straints do not need to be weighted. Details on Lampinen’s method can be 
found in the sections indicated above. 

In summary, DE’s one-to-one selection offers numerous advantages be-
yond its simplicity. It does not require mapping objective function values 
to selection probabilities. It is elitist, easy to implement in parallel, com-
pensates for increased acceptance rates at low Cr and has all the traditional 
advantages of tournament selection’s versatility which include invariance 
to objective function transposition. DE selection is also flexible, allowing 
either target or base indices to be randomly specified by permutations, or 
the criterion of “less than or equal” to be replaced by “Pareto-dominant” 
when problems have multiple objective and/or multiple constraints. 

2.8 Termination Criteria 

Sometimes it is obvious when an optimization should be halted. For exam-
ple, in constraint satisfaction problems (Sects. 4.3 and 4.5) the optimiza-
tion is over when all constraints are satisfied, i.e., when a feasible vector is 
found. In multi-objective optimization (Sect. 4.6), however, objectives of-
ten conflict. Satisfying one objective leaves another unfulfilled, so it is not 
always clear when to stop searching for a better compromise. This section 
briefly describes some halting criteria and the scenarios in which they are 
appropriate.
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2.8.1 Objective Met 

In some optimization tasks, the objective function’s minimum value is al-
ready known. For example, the goal when designing telescope optics is to 
reduce the geometric spot size of a star’s image to a point. The wave na-
ture of light, however, renders meaningless any improvement beyond cer-
tain well-known limits. Consequently, an optical system optimization can 
be halted when spot sizes fall below the limits set by the wave nature of 
light. The same is true of other error functions for which the tolerable error 
is given. This is also the method used when working with test functions 
whose minima are known. If the best-so-far vector’s objective function 
value is within a specified tolerance of the global minimum, the optimiza-
tion halts. 

2.8.2 Limit the Number of Generations 

Usually, the objective function minimum is not known in advance. Even 
for many test functions, only the best-known results are reported. In these 
cases, optimizations can be terminated after gmax generations. When testing 
optimizers with functions whose optima are known, setting gmax may halt 
optimizations that do not reach the objective function minimum within the 
specified tolerance. Finding a value of gmax that is large enough to give an 
optimizer enough time to find the optimum, but not so long that a second 
trial would be a better way to invest computer time, involves some guess 
work.

Alternatively, an optimization can be halted when ∆gmax generations 
have passed without a trial vector being accepted. Again, some experimen-
tation may be needed to find a good value for ∆gmax. Long periods without 
improvement are perhaps more common in DE than other EAs, so it is im-
portant that ∆gmax not be set too low. 

2.8.3 Population Statistics 

An optimization can also be terminated when a population statistic reaches 
a pre-specified value. For example, an optimization can be halted when the 
difference between the population’s worst and best objective function val-
ues falls below some predetermined limit. This method needs to be applied 
with caution because it can cause an optimization to halt prematurely. For 
example, if the optimization is halted when the difference between the 
population’s worst and best objective function values is less than, e.g., 
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1.0×10−6, the population’s best objective function value might not yet be 
within 1.0×10−6 of the minimum value. Thus, the interruption is premature 
because DE may still be making progress even though the range of objec-
tive function values is small. When using this criterion, it is usually a good 
idea to make the difference between the population’s worst and best objec-
tive function values several orders of magnitude lower than the tolerance 
set for locating the optimum. The same advice applies when monitoring 
the standard deviation of population vectors or the longest vector differ-
ence as termination criteria. 

2.8.4 Limited Time 

Sometimes only a limited amount of time is available for an optimization. 
In such cases, the optimization must terminate regardless of the state of the 
population or the number of generations. For example, in on-line optimiza-
tion, only a small amount of time may available to adjust manufacturing 
process parameters (e.g., Sect. 7.12). Similarly, it may be that computer 
time is limited or simply that a deadline must be met. Monitoring and 
manual intervention can help determine whether the available time is best 
spent completing an ongoing optimization or running a new trial.  

2.8.5 Human Monitoring 

Because of the inherent uncertainties in knowing when an optimization is 
over, it usually helps to personally monitor time-consuming optimization 
tasks. The feedback from the best objective function value, number of trial 
vectors accepted per generation, the distribution of the population, etc., 
usually makes it clear when no more improvement is possible or when 
time might be better spent running a new trial. In addition, human monitor-
ing allows the optimization to be altered in response to perceived opportu-
nities.

2.8.6 Application Specific 

Finally some applications will have their own termination criterion. In evo-
lutionary art, for example, an optimization to find the most pleasing picture 
might end when interest in the exhibit wanes, or when a certain group of 
people have participated. 
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3 Benchmarking Differential Evolution 

3.1 About Testing 

Testing can be a valuable tool for understanding how and why an algo-
rithm performs as it does. For example, testing can measure how an algo-
rithm’s performance depends on objective function characteristics like di-
mension, number of local minima, degree of parameter dependence, 
dynamic range of parameters, constraints, quantization, noise, etc. Testing 
can also show which control parameter combinations are the most effec-
tive. This knowledge can be particularly useful, since finding an effective 
set of control parameter combinations is itself a multi-objective optimiza-
tion problem in which fast and reliable convergence are conflicting objec-
tives. In addition, test functions are a convenient way to compare one algo-
rithm’s performance to that of another. Furthermore, testing can lead to 
new insights that can be exploited to enhance an optimizer’s performance. 

Despite its value, testing can be misleading if results are not correctly 
interpreted. For example, the dimension of some test functions can be arbi-
trarily increased to probe an algorithm’s scaling behavior. In all but the 
simplest cases, however, changing an objective function’s dimension also 
changes its other characteristics as well (e.g., number of local minima, dy-
namic range of optimal function parameter values, etc.). Thus, an algo-
rithm’s response to a change in test function dimension must be under-
stood in the context of the accompanying alterations to the objective 
function landscape. 

Test beds that consist entirely of separable functions are another exam-
ple in which test functions provide misleading clues about an algorithm’s 
versatility. For many years, most of the functions used for testing GAs 
were separable (see Sect. 1.2.3). Consequently, GAs with low mutation 
rates performed well on these early test beds, leading to high expectations 
for their success as numerical optimizers. It is now clear that these early 
successes do not extend to parameter-dependent functions because GAs 
are limited by their lack of a scheme for correlating mutations (see Sects. 
1.2.3 and 2.6.2) (Salomon 1996).  



136      3 Benchmarking Differential Evolution 

Ensuring that test bed functions are sufficiently diverse is just one chal-
lenge to creating a valid benchmark against which algorithms can be com-
pared. Benchmarking is further complicated by the fact that a fair compari-
son must take into account not only an algorithm’s speed and probability 
of convergence, but also the effort required to tune its control parameters. 
For example, in the First International Contest on Evolutionary Optimiza-
tion (1st ICEO), probability and speed of convergence were combined into 
a single performance measure, but control parameter tuning was not con-
sidered (see Sect 3.2 for a description of this method) (Bersini et al. 1996). 
In the 2nd ICEO, “crafting effort” was taken into account so that given two 
algorithms with comparable speed and probability of convergence, the al-
gorithm that required less tuning scored better (e.g., Price (1997), Yen and 
Lee (1997)). 

Even if tuning issues can be overcome, it is sometimes hard to define a 
problem without favoring one approach over another. For example, float-
ing-point optimizers require less computational effort to compute the op-
tima of real-valued functions than do GAs using bit-strings (see Sect. 2.2). 
In addition, there can be other important factors that determine an opti-
mizer’s true value, like the computer resources that it requires. Further-
more, the lack of a sufficiently detailed account of the testing procedure 
can also lead to test results being misinterpreted. 

Perhaps most importantly, the test bed has been shown to have funda-
mental limits as a benchmarking tool. In their landmark paper on the “No 
Free Lunch” (NFL) theorem, Wolpert and Macready (Wolpert and 
Macready 1997) proved that all optimizers meeting certain criteria perform 
the same on average if the sample of test functions over which their per-
formance is averaged is large enough. In other words, if algorithm A out-
performs algorithm B on one test bed, then there will be another test bed 
on which algorithm B outperforms algorithm A by a similar margin. For 
example, in the 1st ICEO, an optimizer specifically designed for separable 
functions won because the contest functions were separable. If the contest 
functions had been non-separable, this same method would have per-
formed dismally and the second place method based on Latin squares 
might have won. If the test functions had been both high-dimensional and 
non-separable, the third place DE algorithm might have won because high-
dimensional Latin squares are computationally expensive. Even when test-
ing versions of DE, no single algorithm always wins. 

The NFL theorem assumes that optimizers have no special knowledge 
about the objective function, i.e., that they are “black-box” algorithms. 
Special knowledge might be that the function is separable, symmetric, uni-
modal, etc. Restated, the NFL theorem says that if one optimizer consis-
tently outperforms another, then it must be using special knowledge about 
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the objective functions. This observation has encouraged the development 
of memetic algorithms, i.e., EA-based optimizers that include one or more 
phases of problem-specific heuristics and local optimization (Moscato 
1989).

Although DE begins with no knowledge about an objective function, the 
population soon “learns” about the function by distributing itself along the 
function’s contours. As the simple experiments with the hyper-ellipsoid in 
Sect. 2.6 suggest, a function’s contours contain some of the most useful in-
formation for an optimizer because they usually reveal the best step size 
and orientation. DE exploits this knowledge and adapts step sizes accord-
ingly. The question regarding DE’s performance then becomes, “How 
prevalent are functions for which contour matching is an effective strat-
egy?” Based on the many objective functions to which DE has been ap-
plied, most practical problems seem to have a structure that contour match-
ing can exploit, even though DE is ultimately no better than a random walk 
when averaged over the universe of functions. Of course, knowing how 
DE works makes it easy to invent infinitely many functions for which con-
tour matching is counterproductive, but, in practice, contour matching 
seems to be far more of a benefit than a drawback. The next section de-
scribes the criteria used in this chapter to measure optimizer performance. 

3.2 Performance Measures 

There are several ways to measure an algorithm’s performance. The 
convergence or progress plot graphs the current best vector’s objective 
function value as a function of time, i.e., as a function of the number of ei-
ther generations or function evaluations. Rather than plotting a single 
trial’s progress, it is better to conduct a series of trials and then plot the 
mean best objective function value. Alternatively, a progress plot can track 
the distance of the best-so-far vector from the optimum as a function of 
time. For this type of plot, the location of the global optimum must already 
be known. Again, the multi-trial average better represents the optimizer’s 
performance than does the result of a single trial. 

By themselves, progress plots do not give a complete picture of an 
optimizer’s abilities. For example, if only one of ten trials becomes stuck 
in a local optimum, then the plot of the best vector’s average performance 
can make it look as though none of the trials were successful. In practice, 
an algorithm’s best performance is often more important than is its average 
or worst performance. For example, many design optimizations conduct 
multiple trials just to find the best solution possible.  
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To better estimate an algorithm’s ability to locate the true global opti-
mum, a trial can be classified as a “success” when the best vector’s objec-
tive function value falls below a predetermined limit known as the value-

to-reach, or “VTR”. Trials that do not reach the VTR within a predeter-
mined maximum number of evaluations, Emax, are treated as “failures”. 
The VTR must be set low enough so that any vector with an objective 
function value that is less than or equal to the VTR falls within the basin of 
attraction to which the global minimum belongs. Consequently, this 
method is feasible only when a test function’s global optimum is already 
known. In addition, this method presumes that once the population begins 
to inhabit the basin of attraction occupied by the global optimum, any fur-
ther progress will be easy enough that a local optimizer can be used if need 
be. With the VTR and Emax as criteria for success, one can estimate the 
speed and the probability with which an optimizer locates the basin of at-
traction to which the global optimum belongs. 

Ideally, an optimizer should be both fast and reliable, but high speed and 
high probability of convergence are usually conflicting objectives. Forcing 
an algorithm to converge more quickly usually increases the odds that it 
will prematurely converge. Just as conflicting objectives make it hard to 
decide which compromise solution to a multi-objective optimization prob-
lem is best, determining which one of two algorithms performs best, even 
on a single function, is difficult because high speed and high reliability are 
conflicting performance measures. One algorithm can be fast but unreli-
able, while the other might be very slow, but far more likely to succeed. To 
resolve this dilemma, the creators of the 1st ICEO proposed a combined 
measure, the “expected number of (function) evaluations per success”, or 
ENES. The ENES is the total number of function evaluations taken over t
trials, divided by the number of successful trials, s (Eq. 3.1). In Eq. 3.1, Ek

is the number of objective function evaluations taken by the kth trial. 

=

=

>⋅=
tk

k

k s
s 1

0,E
1

ENES .
(3.1)

If no trials are successful, the ENES is not defined. 
The total number of function evaluations over t trials has two compo-

nents: the total number of evaluations (up to and including Emax) taken by 
successful trials and Emax evaluations for all those trials that end in failure. 
Since Emax is manually set, the ENES does not always reflect the true per-
formance of an algorithm. This study resolves the conflict between speed 
and reliability by measuring algorithm speed at a constant success prob-
ability. In particular, control parameter combinations are sought that can 
produce the lowest average (number of function) evaluations per success
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(AES) in ten consecutive successful trials. The AES is not explicitly de-
pendent on Emax, but setting Emax too low will prematurely terminate poten-
tially successful trials. On the other hand, comparatively large values for 
Emax do not affect the AES like they do the ENES.  

In the 2nd ICEO, contestants were allowed to tune their algorithms to 
solve each function, but a penalty was imposed based on how diverse the 
final set of control parameters was. For example, there was no penalty if a 
single set of control parameters was used for each function, whereas using 
different control parameter settings for each function incurred the highest 
penalty. This study takes a different approach that is based on phase por-
traits, primarily because F, Cr and PF can be limited to the range [0, 1] and 
sampled uniformly. If successful random control parameter combinations 
are plotted as points, a phase portrait emerges that shows not only which 
combinations are effective, but also how difficult it is to find them. By 
contrast, the entropy-based diversity measure used in the 2nd ICEO relies 
on the skill of a researcher to find an effective set of control parameters 
and provides no clues about how hard this decision was for a particular 
function.

The next section compares four versions of DE, first using phase por-
traits both to find reliable control parameter combinations and to provide a 
measure of an algorithm’s speed, then using progress plots of the mean 
best vector’s performance. The progress plots show DE’s time-dependent 
behavior and demonstrate that it has no trouble driving objective function 
values below the VTR. Together with the control parameter plots, a fairly 
clear picture of each algorithm’s strengths and weaknesses emerges. 

3.3 DE Versus DE 

3.3.1 The Algorithms 

This section compares four versions of DE that differ only in how new so-
lutions are generated: 

• DE/rand/1/bin (classic DE) 
• DE/best/1/bin, with uniform jitter, d = 0.001 
• DE/target-to-best/1/bin, K = F

• DE/rand/1/either-or, K = 0.5⋅(F+1)

In this shorthand notation, the first term after “DE” specifies how the base 
vector is chosen. For example, “best” means that the base vector is the cur-
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rent-best-so-far vector. Similarly, “rand” means that base vectors are ran-
domly chosen, while “target-to-best” means that base vectors are chosen to 
lie on the line defined by the target vector and the best-so-far vector. The 
number that follows indicates how many vector differences contribute to 
the differential. In each case above, only one vector difference is used. The 
three DE versions that use uniform crossover are appended with the addi-
tional term “bin” for “binomial” (distribution). The term “either-or” indi-
cates that trial vectors are either three-vector recombinants or randomly 
chosen population vectors to which a randomly chosen vector difference 
has been added. Pseudo-code for the three versions that use uniform cross-
over appears in Fig. 3.1, while pseudo-code for the DE/rand/1/either-or al-
gorithm is given in Fig. 3.2. In all four versions, base, target and difference 
vector indices are all distinct. 

  ...
  for (j=0; j<D; j++)
  {
    if (randj(0,1)<=Cr or j==jrand)

    {
      if (DE/rand/1/bin; classic DE)
      {
        uj,i=xj,r0+F*(xj,r1-xj,r2);

      }
      if (DE/best/1/bin, uniform jitter, d=0.001)
      {
        Fj=F+0.001*(randj(0,1)-0.5);

        uj,i=xj,best+Fj*(xj,r1-xj,r2);

      }
      if (DE/target-to-best/1/bin, K=F)
      {
        uj,i=xj,i+F*(xj,best-xj,i)+F*(xj,r1-xj,r2);

      }
    }
    else uj,i=xj,i;

  }
  ...

Fig. 3.1. The generating loop for DE/rand/1/bin, DE/best/1/bin (with uniform jit-
ter) and DE/target-to-best/1/bin. In each case, base, difference and target indices 
are distinct (not shown). 
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  ...
  if (randi(0,1)<PF)

  {
    for (j=0; j<D; j++)
    {

ui=xr0+F*(xr1-xr2);

    }
  }
  else
  {
     for (j=0; j<D; j++)
     {

ui=xr0+0.5*(F+1)*(xr1+xr2-2*xr0);

     }
  }
  ...

Fig. 3.2. Pseudo-code for the generating loop for the DE/rand/1/either-or algo-
rithm used in these experiments 

Each algorithm is initialized with a uniformly distributed random popu-
lation that is restricted to a region of the search space by a set of initial pa-
rameter bounds that is provided along with each function. Once the opti-
mization begins, however, bounds are not enforced. In addition, all four 
algorithms employ classic DE selection. 

To be fair, each algorithm is permitted two control parameters, either F
and Cr, or F and PF, in addition to Np. To comply with this restriction, K =
F in DE/target-to-best/1/bin and K = 0.5⋅(F + 1) in DE/rand/1/either-or. 
Both values have some limited empirical support. In DE/target-to-
best/1/bin, increasing F as the base point approaches the best-so-far vector 
helps counteract the increased convergence pressure that relying on the 
best-so-far vector creates. Evidence for the validity of the relation K =
0.5⋅(F + 1) is visible in the phase portraits for DE/rand/1/either-or in 
Sect. 3.3.3 where it can be seen that the left side of the distribution of 
points representing effective control parameter combinations is usually 
vertical. Deviations from this relation between F and K cause the left side 
of the distribution to slope in phase portraits for DE/rand/1/either-or. 
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3.3.2 The Test Bed 

Table 3.1 shows that the test bed chosen for this chapter consists of two 
uni-modal and eight multi-modal, unconstrained functions. Using uncon-
strained test functions helps simplify the comparison because there are no 
bound resetting methods or constraint handling techniques to complicate 
the analysis. Functions are formally defined in the Appendix, as are several 
additional functions that are available for experimentation with the soft-
ware that accompanies this book. In addition, the Appendix also lists each 
function’s optimal value, f(x*), and a value for ε such that VTR = f(x*) + ε.
The Appendix also lists initial parameter bounds for each function. 

Table 3.1. Test bed functions 

Function D Modality Separable? Comments 
Hyper-ellipsoid 10 uni-modal yes hard when rotated 

Rosenbrock 10 uni-modal no a 2nd ICEO function 
Ackley 10 multi-modal yes common in literature 

Chebyshev 9 multi-modal no a 2nd ICEO function 
Griewangk 10 multi-modal no gets easier at high D 
Rastrigin 10 multi-modal yes highly multi-modal 

Mod. Langerman 10 multi-modal no a 2nd ICEO function 
Shekel 10 multi-modal yes a 2nd ICEO function 
Whitley 10 multi-modal no Whitley’s F8F2 

Lennard-Jones 15 multi-modal no many-body problem 

To ensure that all test functions exhibit parameter dependence, all trial 
vectors are evaluated in a coordinate system that is rotated 45° with respect 
to the coordinate system in which the functions are defined. In two dimen-
sions, the rotation routine aligns the +x0 axis to the diagonal between the 
+x0 and +x1 axes. In three dimensions, the +x0 axis is rotated to align with 
the diagonal that lies between the +x0, +x1 and +x2 axes, and so on for 
higher dimensions. This technique for transforming separable functions 
into parameter-dependent ones was pioneered by Ralf Salomon and is de-
scribed in Salomon (1996). The next subsection presents a series of phase 
portraits to show which algorithms and control parameter settings are ef-
fective on these test bed functions. 

3.3.3 Phase Portraits 

To create a phase portrait, the two-dimensional control space (excluding 
Np) for each algorithm was subdivided into a ten-by-ten grid and ten 
points were randomly chosen from within each grid square. A point was 
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plotted if the trial using the corresponding pair of control parameters was 
successful. This is the same technique that was explored in Sect. 2.6.4. The 
resulting distribution of points shows which control parameter combina-
tions are effective on a particular function for a given DE version with the 
given Np. Figure 3.3 presents an example plot of the control parameter 
combinations that were effective for solving the ten-dimensional hyper-
ellipsoid with DE/rand/1/bin. 
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Fig. 3.3. A phase portrait for DE/rand/1/bin with points showing the control pa-
rameter combinations of F and Cr that were effective on the ten-dimensional ro-
tated hyper-ellipsoid with Np = 50 

The best control parameter settings are taken to be the coordinates of the 
center of the grid square with the lowest average number of function 
evaluations per success, or AES, for which all ten trials were successful (P 
= 1). A successful trial is one in which the objective function value of the 
current best vector becomes less than or equal to the VTR in less than or 
equal to Emax function evaluations. The title of Fig. 3.3 reports the DE ver-
sion, Np ( = 50) and Z ( =  0.206), the fraction of all 1000 trials that were 
successful. This fraction measures how hard it is to find an effective set of 
control parameters for a given function–algorithm combination.  

Ideally, finding the population size best suited for a given algorithm–
function combination would allow an algorithm’s very best performance to 
be determined. Because of the high computational effort of an exhaustive 
search for the optimal Np, this study explored algorithmic performance at a 
preset series of population sizes: Np = 50, 100, 200, 400, 800 and 1600. 
The population size ultimately chosen for a phase portrait is the one that 
gives the lowest AES when all ten randomly chosen control parameter 
combinations from a single grid square are successful. If no grid square 
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produces ten consecutive trials for any Np ≤ 1600, the AES and Np of the 
grid square giving the highest convergence probability, P, is used. If two or 
more grid squares have the same maximum probability, P < 1, then the Np

of the square with the lowest AES is chosen for the plot. Table 3.2 summa-
rizes the AES for each algorithm–function combination. 
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Fig. 3.4. Phase portraits for the ten-dimensional rotated hyper-ellipsoid 

Ten-Dimensional Rotated Hyper-Ellipsoid 

Each trial for this problem was limited to 200,000 objective function 
evaluations. Each algorithm produced its lowest AES at Np = 50. At this 
population size, DE/target-to-best/1/bin gave the fastest performance, 
while DE/rand/1/either-or had the most robust control space (Z = 0.465). 
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In each case, the best F was in the range 0.55 ≤ F ≤ 0.65. For algorithms 
using crossover, Cr > 0.4 gave the best results, whereas the choice of PF

for the DE/rand/1/either-or algorithm was almost arbitrary when F > 0.5. 

Ten-Dimensional Rotated Rosenbrock 

Each trial was limited to 200,000 objective function evaluations. Once 
again, each algorithm performed best at Np = 50. On this function, both 
DE/best/1/bin and DE/target-to-best were faster than DE/rand/1/bin and 
DE/rand/1/either-or, which took about twice as long. Classic DE had the 
most robust control parameter space (Z = 0.345). In each case, the best F
was in the range 0.65 ≤ F ≤ 0.75. For algorithms using crossover, Cr > 0.5 
was critical, while the choice for PF was not important when F > 0.6. 
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Fig. 3.5. Phase portraits for the ten-dimensional rotated Rosenbrock function 
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Ten-Dimensional Rotated Ackley 

Even when rotated, the Ackley function proved to be very easy to solve. 
Once again, all four algorithms performed best when Np = 50. 
DE/best/1/bin was a little faster than DE/target-to-best/1/bin and about 
twice as fast as DE/rand/1/bin and four times faster than DE/rand/1/either-
or. DE/rand/1/bin had the most robust control parameter space (Z = 0.795), 
although none of the algorithms was hard to tune for this function. The 
best F fell in the range 0.25 ≤ F ≤ 0.55. Neither Cr nor PF had to be well 
chosen when F was in the range 0.5 ≤ F ≤ 1.0. Emax was 200,000 objective 
function evaluations. 
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Fig. 3.6. Phase portraits for the ten-dimensional rotated Ackley function 



3.3 DE Versus DE      147 

Nine-Dimensional Rotated Storn’s Chebyshev 

Because this problem is already parameter dependent, rotation does not 
substantially affect DE’s ability to solve it. Again, Np = 50 was more than 
large enough to solve this problem. DE/target-to-best/1/bin proved to be 
significantly faster than DE/best/1/bin on this function, but both methods 
incurred about the same value of Z. The highest Z was posted by 
DE/rand/1/either-or (Z = 0.396). The best F at this Np was in the range 
0.65 ≤ F ≤ 0.75. For algorithms using crossover, Cr had to be above about 
0.5 while PF was arbitrary when F > 0.6. Emax was 200,000 objective func-
tion evaluations. 
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Fig. 3.7. Phase portraits for the nine-dimensional rotated Storn’s Chebyshev func-
tion
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Ten-Dimensional Rotated Griewangk 

The ten-dimensional rotated version of Griewangk’s function is the first 
problem in this test bed for which Np had to be larger than 50 to produce 
regular convergence. Both DE/rand/1/bin (Np = 100) and 
DE/rand/1/either-or (Np = 200) solved this problem, although 
DE/rand/1/either-or was more than ten times as fast and displayed a higher 
Z ( = 0.133). Even when Np = 1600, neither DE/target-to-best/1/bin nor 
DE/best/1/bin could solve this function consistently within 2,000,000 func-
tion evaluations. The best F was relatively small, lying between 0.25 and 
0.45. For this function, PF is not arbitrary and a setting that favors three-
point recombination over mutation, e.g., PF < 0.5, is beneficial. 
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Fig. 3.8. Phase portraits for the ten-dimensional rotated Griewangk function 
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Ten-Dimensional Rotated Rastrigin 

Both DE/best/1/bin and DE/target-to-best/1/bin struggled on this highly 
multi-modal function, posting Z = 0.001 and Z = 0.003, respectively. The 
AES for these two methods was also very high. DE/rand/1/bin was also 
unable to achieve regular convergence (Z = 0.006). By contrast, access to 
the three-point recombination axis lets DE/rand/1/either-or find solutions 
with regularity as long as PF < 0.5 and 0.2 <F <0.4. At Np = 400, F = 0.35 
was the best scale factor for DE/rand/1/either-or. Emax was 2,000,000 ob-
jective function evaluations. 
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Fig. 3.9. Phase portraits for the ten-dimensional rotated Rastrigin function 
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Ten-Dimensional Rotated Modified Langerman 

None of the four methods had any difficulty with this 2nd ICEO function. 
DE/rand/1/best was faster by virtue of its ability to use a smaller popula-
tion (Np = 50) than could the other three methods (Np = 100), yet it also 
had the highest Z ( = 0.415). Compared to the other three algorithms, 
DE/rand/1/either-or needed a higher F ( = 0.75) and required about five 
times more objective function evaluations than did DE/rand/1/bin. Neither 
Cr nor PF had to be chosen with care as long as F was in the right range. 
Emax was 2,000,000 objective function evaluations. 
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Fig. 3.10. Phase portraits for the ten-dimensional rotated Modified Langerman 
function
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Fig. 3.11. Phase portraits for the ten-dimensional rotated Shekel’s foxholes func-
tion

Ten-Dimensional Rotated Shekel’s Foxholes 

Like the rotated Rastrigin and Griewangk functions, the rotated Shekel’s 
foxholes function also proved to be very hard for both methods that rely on 
the best-so-far vector. Neither DE/best/1/bin nor DE/target-to-best/1/bin 
was able to produce regular convergence in 2,000,000 function evaluations 
or with Np ≤ 1600. Classic DE was more successful, achieving nine con-
secutive successes when Np = 800, F = 0.95, Cr = 0.95. By contrast, Np =
400 provided the either-or algorithm with enough diversity to solve this 
problem with regularity. Unlike the rotated Griewangk and Rastrigin func-
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tions that favored recombination (PF < 0.5), the plot for DE/rand/1/either-
or shows that preferentially searching the mutation axis (PF > 0.5) is a bet-
ter strategy. 
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Fig. 3.12. Phase portraits for the ten-dimensional rotated Whitley function 

Ten-Dimensional Rotated Whitley 

This function is a composite of the one-dimensional Griewangk function 
and the ten-dimensional generalized Rosenbrock function. Its large-scale 
structure resembles Rosenbrock’s function, while at a small scale, it dis-
plays a myriad of local optima due to the contribution from Griewangk’s 
function. All methods achieved some level of success, but only 
DE/rand/1/bin and DE/rand/1/either-or could produce ten consecutive tri-
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als. DE/rand/1/either-or was not only the fastest algorithm, but also the 
most robust (Z = 0.544). Emax was 2,000,000 objective function evalua-
tions.
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Fig. 3.13. Phase portraits of the fifteen-dimensional rotated Lennard-Jones func-
tion

Fifteen-Dimensional Lennard-Jones 

This problem asks for the optimal arrangement of five atoms of the hypo-
thetical “Lennard-Jonesium” in three-dimensional space. The optimal ar-
rangement for three atoms is an equilateral triangle, while the minimum 
“energy” configuration for four atoms is a tetrahedron. Although this is a 
highly parameter-dependent “many-body” problem, none of the algorithms 
had difficulty finding solutions with Np = 50. Emax was limited to 
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2,000,000 objective function evaluations, although this proved to be un-
necessarily high. Like the scale factor values reported in other cluster op-
timization studies with DE, F could be very small (except in conjunction 
with DE/rand/1/either-or) and still be effective. DE/best/1/bin proved to be 
the fastest of the four methods, while DE/target-to-best/1/bin had the most 
robust control space (Z = 0.498). 

3.3.4 Summary 

Table 3.2 summarizes the AES for each algorithm–function combination. 
The best results are highlighted in bold. If values are in italic, then not all 
trials were successful and the number of successful trials ( < 10) appears in 
parentheses. The performance of the three methods that rely on crossover 
exemplifies the tradeoff between speed and reliability. Both DE/best/1/bin 
and DE/target-to-best/1/bin were usually faster than DE/rand/1/bin, but 
DE/rand/1/bin was more reliable, failing only on Rastrigin’s function and 
to a lesser degree on Shekel’s function. 

DE/rand/1/either-or’s performance stands out as being both fast and re-
liable. It was the only method that could solve each function ten times in 
succession. When comparing results of equal reliability (P = 1), it was also 
the fastest method in four cases. 

Table 3.2. The AES for each of the four DE versions 

Function Rand Best Target-to-best Either-or 
Hyper-ellipsoid 19,531.2 12,225.4 10,755.8 13,612.3 

Rosenbrock 44,292.1 20,896.6 21,262.2 46,614.3 
Ackley 11,581.3 5,394.6 6,074.9 20,050.6 

Chebyshev 44,142.4 18,332.9 12,952 27,775.6 
Griewangk 22,2795 31,678 (1) 1,139,120 (4) 19,198.7 

Rastrigin 421,317 (2) 1,295,790 (1) 1,658,980 (2) 490,648 

Mod. Langerman 56,156.6 128,728 122,968 293,159 
Shekel 1,205,800 (9) 176,545 (2) 87,404 (2) 710,499 

Whitley 177,305 369,544 (4) 453,481 (5) 70,380.8 

Lennard-Jones 34,592 10,165.5 21,549.7 59,116.9 

Table 3.3 summarizes the Z values for each algorithm–function combi-
nation. The highest Z for each function, highlighted in bold, indicates the 
most robust control space. In all but three cases, DE/rand/1/either-or had 
the most robust control space. If functions had not been rotated to make 
parameters dependent, the methods that rely on crossover would have 
posted significantly higher Z values on the (otherwise) separable problems 
like Rastrigin’s function. 
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Table 3.4 lists the control parameter settings derived from the phase por-
trait experiments. Settings in italic did not produce ten consecutive trials. 
In those cases where settings did produce ten consecutive trials, population 
sizes were fairly consistent, never differing by more than a factor of two 
(e.g., Modified Langerman and Griewangk functions). The largest popula-
tion required by reliable methods (P = 1) was never more than 400. 

Table 3.3. The fraction of 1000 random control parameter combinations that were 
successful (Z) 

f(x) Rand Best Target-to-best Either-or 
Hyper-ellipsoid 0.206 0.308 0.271 0.465 

Rosenbrock 0.164 0.207 0.176 0.345 

Ackley 0.795 0.598 0.647 0.453 
Chebyshev 0.091 0.165 0.157 0.396 

Griewangk 0.114 0.002 0.023 0.133 

Rastrigin 0.006 0.001 0.003 0.082 

Langerman 0.514 0.254 0.296 0.320 
Shekel 0.039 0.020 0.008 0.178 

Whitley 0.112 0.023 0.040 0.554 

Lennard-Jones 0.272 0.392 0.498 0.373 
Average 0.2313 0.1970 0.2119 0.3299 

Table 3.4. Quasi-optimal control parameter values for each algorithm–function 
combination 

Rand Best Target-to-best Either-or 
f(x)

Np F Cr Np F Cr Np F Cr Np F PF 

Helli. 50 0.55 0.95 50 0.65 0.85 50 0.65 0.85 50 0.55 0.35 
Ros. 50 0.65 0.95 50 0.75 0.85 50 0.75 0.95 50 0.75 0.05 
Ack. 50 0.25 0.55 50 0.45 0.55 50 0.55 0.75 50 0.45 0.45 
Cheb. 50 0.65 0.95 50 0.75 0.95 50 0.75 0.95 50 0.65 0.45 
Gri. 100 0.25 0.45 200 0.25 0.25 100 0.45 0.45 200 0.25 0.05 
Ras. 400 0.15 0.55 100 0.45 0.45 200 0.65 0.95 400 0.35 0.05 

Lang. 50 0.45 0.55 100 0.35 0.15 100 0.55 0.15 100 0.75 0.25 
Shek. 800 0.95 0.95 1600 0.75 0.65 400 0.85 0.95 400 0.95 0.85 
Whit. 200 0.45 0.95 800 0.95 0.95 400 0.85 0.95 200 0.45 0.95 
L-J 50 0.45 0.95 50 0.45 0.65 50 0.95 0.95 50 0.95 0.45 

When P = 1, the best scale factor ranged from F = 0.25 to F = 0.95. Al-
lowing for the fact that points were randomly chosen within a grid square – 
not just sampled at its center as the values in Table 3.4 might suggest – ex-
pands this range to 0.2 < F < 1.0. No one particular range of F seemed to 
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be favored, which suggests that choosing the right value for the scale fac-
tor may require some effort. 

Except for the Modified Langerman and Lennard-Jones functions, Cr

was always greater than 0.4, and Cr = 0.95 was the most common value. 
This is to be expected, since Cr must be near 1.0 for the search to remain 
efficient when parameters become dependent (Sect. 2.6.2). Table 3.4 
shows that PF varies over the full spectrum of values, but it does not show 
that in all but two cases (the rotated Rastrigin and Griewangk functions), 
the choice of PF was effectively arbitrary if F was chosen from within the 
right range. 

In summary, the two methods that relied on the best-so-far vector were 
clearly faster on the easiest functions, but both became unreliable once the 
test functions became highly multi-modal. Not shown in the phase portraits 
is the fact that on the most difficult functions, large increases in Np had 
relatively little impact on both run times and convergence probabilities for 
DE/best/1/bin and DE/target-to-best/1/bin. Similarly, increasing Np did not 
always increase Z for these two methods. For example, in the case of the 
rotated Griewangk function, DE/best/1/bin never found more than two so-
lutions (Z = 0.002) regardless of whether Np was 100 or 1600. 

Classic DE (DE/rand/1/bin) was slower, but more robust than the two 
methods that relied on the best-so-far vector. This tradeoff reflects the 
usual condition in which speed and probability of convergence are con-
flicting objectives. The only function that posed a significant challenge to 
DE/rand/1/bin was the rotated Rastrigin’s function. 

DE/rand/1/either-or was both reliable and fast. In addition, its control 
space was very robust and PF seldom had to be chosen with care. 
DE/rand/1/either-or performed well when other versions did not because of 
its ability to access the three-vector recombination axis. Furthermore, its 
rotationally invariant generating scheme keeps the search efficient when 
parameters become dependent. The next section examines DE’s perform-
ance on five commonly cited thirty-dimensional test functions to give 
some idea of how DE performs compared to other optimizers. 

3.4 DE Versus Other Optimizers 

This section compares the four algorithms tested in the previous section to 
a variety of EAs and classical optimization techniques. In Sect. 3.4.1, DE 
is compared to as many as 16 other methods on a set of five, thirty-
dimensional problems. Guidelines for version and control parameter selec-
tion are then given.  Section 3.4.2 summarizes the results of four studies 
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that compared DE to other optimizers with test beds dominated by uncon-
strained problems. Section 3.4.3 then summarizes the results of four stud-
ies that compared DE to other optimizers in constrained, multi-objective, 
mixed-variable and noisy problem domains. Finally, Sect. 3.4.4 presents a 
series of results comparing DE with other optimizers on real-world appli-
cations.

3.4.1 Comparative Performance: Thirty-Dimensional Functions 

This subsection compares DE’s performance to that of 16 other optimizers 
using a test bed composed of five commonly cited thirty-dimensional test 
functions. Included in the test bed are the Rosenbrock, Ackley, Griewangk, 
Rastrigin and Schwefel functions. None of these functions are rotated and 
all but Rosenbrock (uni-modal) and Griewangk (multi-modal) are separa-
ble. The Schwefel function is unique in this group because it is bound con-
strained. Function descriptions are given in the Appendix. 

Table 3.5 lists the EAs cited in these comparisons. Among the compet-
ing optimizers are four genetic algorithms, (GAs), three evolution strate-
gies (ESs), three versions of evolutionary programming (EP), three particle 
swarm optimization (PSO) algorithms, a simple evolutionary algorithm 
(SEA) and the evolutionary optimization (EO) algorithm. 

Instead of reporting the number of objective function evaluations that an 
optimizer needs to reach the VTR, most published results simply state the 
mean best value after Emax function evaluations. Even though not all stud-
ies use the same termination criteria or the same Emax, their results can be 
plotted as points on a progress plot of the mean objective function value. 
To this end, Figs. 3.14–3.18 plot the published results for the algorithms 
listed in Table 3.5. Not all studies provided results for all five, thirty-
dimensional test functions, although most did. In addition, results for the 
HTGA, StGA and OGA are not plotted for technical reasons. Instead, re-
sults for those three GAs are reported in Table 3.7. 

The five progress plots also chart DE’s performance as the ten-trial av-
erage of the best-so-far vector’s objective function value sampled at regu-
lar intervals. Plots are provided for each of the four versions of DE exam-
ined in the previous section. These DE performance curves are plotted as 
either dotted, dashed, or dash-dot lines, while the VTR is plotted as a solid 
horizontal line. Table 3.6 lists the control parameter settings used to gener-
ate the DE progress plots in Figs. 3.14–3.18. 
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Table 3.5. Methods used for comparison 

Symbol Method Reference 

ALEP
Evolutionary programming with 

adaptive Levy mutations 
(Lee and Yao 2004) 

arPSO
Attractive and repulsive 

particle swarm optimization 
(Vesterstrøm and 
Thomsen 2004) 

CCGA
Cooperative co-evolutionary 

genetic algorithm 
(van den Bergh and 
Englebrecht 2004) 

CEP Classical evolutionary programming (Yao et al. 1999) 

CEP/AM
Conventional evolutionary 
programming with adaptive 

mutations (b = 1.0×10-4)
(Chellapilla 1998) 

CES Classical evolution strategies (Yao and Liu 1997) 

CPSO-S6 
Cooperative particle swarm 

optimization (S6) 
(van den Bergh and 
Englebrecht 2004) 

EO Evolutionary optimization (Angeline 1998) 

FEP Fast evolution programming (Yao et al. 1999) 

FES Fast evolutionary strategies (Yao and Liu 1997) 

HTGA Hybrid Taguchi-genetic algorithm (Tsai et al. 2004) 
OGA Orthogonal genetic algorithm (Leung and Wang 2001) 

PSO Particle swarm optimization (Angeline 1998) 

QEA/R
Quantum evolutionary algorithm 

with rotation 
(Han and Kim 2004) 

SEA Simple evolutionary algorithm 
(Vesterstrøm and 
Thomsen 2004) 

StGA Stochastic genetic algorithm (Tu and Lu 2004) 

Table 3.6. DE settings for data plotted in Figs. 3.14–3.18 

Rand Best Target-to-best Either-or 
f(x)

Np F Cr Np F Cr Np F Cr Np F PF

Ros. 50 0.75 0.95 400 0.75 0.95 100 0.75 0.95 150 0.75 0.5 
Ack. 50 0.5 0.2 50 0.5 0.2 50 0.5 0.2 250 0.5 0.5 
Gri. 50 0.5 0.2 500 0.5 0.2 100 0.5 0.2 300 0.5 0.0 
Ras. 50 0.5 0.2 800 0.5 0.2 100 0.5 0.2 800 0.35 0.0 
Sch. 50 0.5 0.2 300 0.8 0.2 200 0.9 0.2 400 0.7 0.5 
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Fig. 3.14. Progress plot of the mean best value for the (unrotated) thirty-
dimensional Rosenbrock function 

Thirty-Dimensional Rosenbrock 

As Fig. 3.14 shows, none of the four DE algorithms had any difficulty 
solving this parameter-dependent, uni-modal problem. To overcome this 
function’s parameter dependence, Cr had to be set near 1.0. To produce 
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regular convergence, F had to be set to at least 0.75 when Np = 50. Even 
though this function is uni-modal, none of the other algorithms drove the 
mean best vector’s value below 1.0, let alone below the VTR ( = 1.0×10−6).
While CSPO–S6, CCGA and ALEP were all fast, none reached f(x) < 1.4. 
The time scale defined by the number of function evaluations taken by 
DE/rand/1/either-or to reach the VTR suggests that Emax may have been 
too low for algorithms like CES, FES, CEP, FEP QEA/R and CCGA to 
reach the VTR. 
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Fig. 3.15. Progress plot for the (unrotated) thirty-dimensional Ackley function 
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Thirty-Dimensional Ackley 

Like its ten-dimensional rotated counterpart studied in the previous sec-
tion, Ackley’s function was easily solved by all four versions of DE. 
Again, DE/rand/1/either-or was significantly slower than the three versions 
of DE that use crossover, but it was still able to reach the VTR 
( = 1.0×10−6). Only one other result (arPSO) exceeded the VTR, although 
CPSO–S6 came close, posting a mean best value of 1.12×10−6.

30-D  Griewangk
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Fig. 3.16. Progress plot for the (unrotated) thirty-dimensional Griewangk function 
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30-D  Rastrigin
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Fig. 3.17. Progress plot for the (unrotated) thirty-dimensional Rastrigin function 

Thirty-Dimensional Griewangk 

At D = 30, this function is relatively easy to solve because both the number 
and complexity of local minima generated by the cosine term decrease as 
the dimension increases (Whitley et al. 1996). Despite this, only DE 
reached the VTR ( = 1.0×10−6). To be fair, it must be pointed out that the 
goal in the other studies cited here was not to reach the VTR, but to find 
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the mean best value after Emax generations. Thus it may be that given more 
time, some of these other methods may also have reached the VTR. 
DE/best/1/bin’s performance was slowed by the fact that it needed a large 
population (Np = 500) to produce ten consecutive trials when F = 0.5. 

Thirty-Dimensional Rastrigin 

This function is characterized by having an enormous number of local 
minima. Because Rastrigin’s function is separable, all three DE algorithms 
that rely on crossover were successful, although DE/best/1/bin was again 
slowed by the need for a high population to avert premature convergence. 
None of the other algorithms displayed here reached the VTR (= 1.0×10−6).
Fast evolutionary programming (FEP) gave the best non-DE result (f(x) = 
0.046). The DE/rand/1/either-or algorithm struggled on this function, al-
though it did eventually reach the VTR at around 4.6×107 AES (not 
shown).

Thirty-Dimensional Schwefel 

Not as many studies have reported results for this function, perhaps be-
cause it is bound-constrained. All three versions of DE that rely on cross-
over had no trouble solving this separable function with Cr = 0.2 and F =
0.5. Although the population sizes that produced ten consecutive trials dif-
fered, the progress plots for all three DE versions that use crossover are 
virtually indistinguishable. All four DE algorithms used the bounce-back 
method to reset out-of-bound trial parameters (see Sect. 4.3.1). As with 
Rastrigin’s function, DE/rand/1/either-or could not exploit this function’s 
decomposability, although it did eventually converge to the VTR ( = 
−418.983 + 0.01) with regularity after about 2.0×107 function evaluations. 
Several other methods also solved this function, e.g., FES, FEP and 
QEA/R.

Several GAs developed for numerical optimization have proven very ef-
fective on this five-function test bed. Except for Schwefel’s function, re-
sults for these GAs could not be graphed along with the other results be-
cause the reported mean best value, f(x) = 0, cannot be plotted on a 
logarithmic scale. In the case of Schwefel’s function, all three GAs were 
so close to the true optimum that they would have been indistinguishable if 
they had been plotted. Instead, both the average number of objective func-
tion evaluations taken and the mean best result for these three GAs are 
listed in Table 3.7. Results for Rosenbrock’s function for both the OGA 
and HTGA are for D = 100, while all other results are for D = 30. The re-
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sults for Schwefel’s function in Table 3.7 have been divided by the func-
tion’s dimension  (D = 30) to provide a normalized optimal function value. 

30-D  Schwefel
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Fig. 3.18. Progress plot for the (unrotated) thirty-dimensional Schwefel function 

Table 3.7. GAs compared 

HTGA StGA OGA 
f(x)

Evals. Mean Evals. Mean Evals. Mean 
Ros. 60,737 0.7 45,000 0.04435 167,863 0.7520 

Ack. 16,632 0 10,000 3.52×10−8 112,421 4.4×10−16

Gri. 20,999 0 52,500 2.4×10−17 134,000 0 

Ras. 16,267 0 28,500 4.4×10−13 224,710 0 

Sch. 16,3468 −418.982 1500 −418.983 302,166 −418.981 
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Each of the algorithms in Table 3.7 used a different termination criterion, 
making it difficult to provide a comparable DE result. For example, the 
OGA terminated trials once the objective function value of the best-so-far 
vector was unchanged for fifty generations after the first 1000 generations. 
Authors reporting results for the HTGA found the 1000-generation limit 
too long and terminated trials once the best result equaled the mean best 
result found by the OGA. Trials for the StGA were halted after a preset 
number of generations. Table 3.8 lists the number of objective function 
evaluations that DE/rand/1/bin took to optimize these functions. Np was 
adjusted in increments of five until fifty consecutive trials were successful. 
Trials were terminated once the objective function value of the best-so-far 
vector reached the VTR. As the steep slopes in Figs. 3.14–3.18 show, DE 
very quickly closes in on the optimum once it reaches the VTR. Whatever 
extra time it takes DE to drive the value of the mean best vector from the 
VTR to the values listed in Table 3.7  (e.g., “0”) increases the number of 
function evaluations by only a small percentage. 

Although they differed in speed, each GA performed very well on all 
but Rosenbrock’s function. Like the versions of DE that use crossover, 
these GAs are successful on this test bed in part because they use a low 
mutation rate. In each of these three GAs, the probability that a bit was 
mutated (inverted) was pm= 0.02. Although parameters in Griewangk’s 
functions are mildly dependent, results obtained with DE in Table 3.8 
show that a low mutation rate strategy is effective on this function never-
theless.

Table 3.8. The number of evaluations it took DE/rand/1/bin to reach the VTR 

f(x) Evaluations VTR NP CR F 

Rosenbrock 115,137 1.0×10−6 60 0.9 0.8 
Ackley 18,741 1.0×10−6 20 0.2 0.5 

Griewangk 14,446.3 1.0×10−6 20 0.2 0.5 
Rastrigin 118,936 1.0×10−6 35 0.2 0.5 
Schwefel 20,690.7 −418.982 45 0.2 0.5 

The three GAs’ inability to solve the simple uni-modal Rosenbrock 
function suggests that their incremental strategy, although effective on 
separable functions, would – for the reasons given by Salomon – be less 
effective on functions with dependent parameters unless mutations are cor-
related (see Sects. 1.2.3 and 2.6.2). 
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Selecting Effective Control Parameters: Rules of Thumb 

If time and computational effort are not an issue, then either classic DE 
(DE/rand/1/bin) or DE/rand/1/either-or will be a good first choice. 
DE/rand/1/bin has a proven record of success, whereas DE/rand/1/either-or 
– although potentially more effective on parameter-dependent functions  – 
is new and relatively untested on real-world problems. If the objective 
function is known to be separable or if it exhibits a low degree of parame-
ter dependence, then classic DE will be more effective than 
DE/rand/1/either-or. While Cr = 0.2 should be the default crossover setting 
for separable functions or those that exhibit limited parameter dependence, 
Cr = 0.9 or 0.95 will ensure that optimization remains efficient in the pres-
ence of dependent parameters. When Cr = 0.2, F may be as small as 0.3, 
but F = 0.5 will be a better first choice. As Cr increases, however, F usu-
ally needs to increase as well. For example, if Cr = 0.9, then F ≥ 0.8 will 
be more likely to give regular convergence than will F = 0.5. 

Like F, Np may also have to be increased as Cr increases. For example, 
when the base vector was randomly chosen, Np = 50 was sufficient to 
solve the four, thirty-dimensional functions that used Cr = 0.2. For 
DE/rand/1/either-or, however, Cr is implicitly equal to 1 and Np had to be 
between 5 and 16 times as large as the populations that were effective 
when Cr = 0.2. Setting Np = 5⋅D⋅Cr is usually a good low-end default set-
ting, but for highly multi-modal, parameter-dependent functions, Np may 
need to be 10⋅D or higher.  

If it is not known whether or not the objective function is decomposable, 
or if a low-Cr strategy with DE/rand/1/bin fails to give satisfactory results, 
then DE/rand/1/either-or is probably the most viable option. Effective val-
ues for F will likely be found in the range (0.3, 1.0). The mutation prob-
ability, PF, will probably not be difficult to choose, although selecting a 
good value for PF becomes more important as F grows smaller. In general, 
PF = 0.5 seems to be a good, if non-optimal, first choice. For 
DE/rand/1/either-or, Np will be about the same size as that required by 
DE/rand/1/bin when Cr = 1. While Np = 5⋅D may be adequate for simple 
functions, populations of 10⋅D or larger may be required to achieve regular 
convergence on highly multi-modal, parameter-dependent functions. 

If the objective function is not highly multi-modal and if function 
evaluations are very time-consuming, then DE/best/1/bin with a small 
amount of jitter may be the best choice. In particular, this method has 
proven very effective for designing digital filters. If DE/best/1/bin is cho-
sen, then F and/or Np may have to be relatively large to maintain diversity 
and forestall premature convergence. The guidance given for selecting Cr

for classic DE applies here as well: Cr = 0.2 for separable functions or 
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those that exhibit limited parameter dependence, and Cr = 0.9 or 0.95 oth-
erwise.

As might be expected, DE/target-to-best/1/bin exhibits performance that 
is intermediate between that of classic DE and DE/best/1/bin. Performance 
would improve if F and K were both independent and well chosen, but this 
extra “tuning” further complicates the process of finding an effective set of 
control parameters. Similarly, DE/rand/1/either-or would have performed 
at least as well as did classic DE on the thirty-dimensional Rastrigin and 
Schwefel functions if the target vector were crossed with either a mutant 
with probability PF, or a three-vector recombinant with probability 1–PF.

Very small values of F seem particularly effective when searching for 
the minimum energy configuration of atoms. This unusual case empha-
sizes that these “rules of thumb” are only intended to serve as guidelines 
and that experimenting with control parameter combinations is strongly 
encouraged if these general rules do not appear to be effective. 

3.4.2 Comparative Studies: Unconstrained Optimization 

This section explores four studies that compared DE to a variety of well-
known optimizers. The first paper (Storn and Price 1997) compared DE to 
two annealing methods, two EAs and to the method of stochastic differen-
tial equations (Aluffi-Pentini et al. 1985), although the test beds were not 
very challenging.  The next paper (Ali and Törn 1999) compared DE to 
several versions of the controlled random search and to two floating-point 
GAs. While the first test bed consisted of unchallenging low-dimensional 
problems, the second test bed was substantially more difficult. The third 
paper (Vesterstrøm and Thomsen 2004) employed an extensive test bed 
consisting of functions having up to 100 dimensions for a comparison of 
DE to two versions of the particle swarm optimization algorithm and to a 
simple EA. The authors of Paterlini and Krink (2004) also compared DE to 
particle swarm optimization and to a floating-point GA. Their test bed was 
a set of partitional clustering problems that ranged from easy to difficult. 

Storn and Price 

In this early study (Storn and Price 1997), the authors compared 
DE/rand/1/bin to two annealing methods, two EAs and to the method of 
stochastic differential equations (SDE) (Aluffi-Pentini et al. 1987). The 
first comparison pitted DE against both the annealed Nelder–Mead algo-
rithm (ANM) (Press et al. 1992) and adaptive simulated annealing (ASA) 
(Ingber 1993). Each method, including DE/rand/1/bin, was tuned to give 
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its best performance. The test bed was a modified De Jong test suite (Storn 
and Price 1997) that included Corana’s parabola (D = 4) (Corana et al. 
1987), Griewangk’s function (D = 10) (Griewangk 1981), Zimmerman’s 
function (a constrained problem) (Zimmermann 1990) and the Chebyshev 
polynomial fitting problem (D = 5 and D = 9) (Storn and Price 1997). The 
ANM method regularly solved only four of the test bed’s ten functions 
(sphere (D = 3), Rosenbrock (D = 2) and step (D = 5) from the modified 
De Jong test bed and Zimmerman (D = 2)). Adaptive simulated annealing 
did better than ANM, but it could not reach the VTR for either the 
Griewangk function or the Chebyshev problems. DE was the only method 
to optimize all functions with regularity, i.e., for all twenty trials. 

Population sizes for DE/rand/1/bin varied from Np = 5 (sphere (D = 3)) 
to Np = 100 (Chebyshev (D = 9)). In most cases, 0 ≤ Cr ≤ 0.2, but the best 
value for Cr for the Chebyshev, Zimmerman and Rosenbrock functions 
was between 0.9 and 1, inclusive. Both the Chebyshev and Rosenbrock 
functions have nonlinear terms that give rise to parameter dependence and 
Zimmerman’s function has a single nonlinear constraint. Most functions 
were solved with F = 0.9, except for the Chebyshev problem (F = 0.6) and 
Zimmerman’s problem (F = 0.5). 

The second comparison in (Storn and Price 1997) compared DE to the 
breeder genetic algorithm (BGA) (Mühlenbein 1993) and an EA with 
“soft” genetic operators (EASY) (Voigt 1995). The five-function test bed 
included the hyper-ellipsoid (D = 30 and D = 100) (Storn and Price 1997), 
Rastrigin (D = 20 and D = 100) (Mühlenbein et al. 1991), Griewangk (D =
20 and D = 100) (Griewangk 1981), Ackley (D = 30 and D = 100) (Ackley 
1987) and Katsuura (D = 10 and D = 30) (Katsuura 1991) functions. Per-
formance data for the BGA on the hyper-ellipsoid and Katsuura’s func-
tions was not available, but in all other cases, all 3 methods solved each 
version of every function. DE was the fastest method on all but Rastrigin’s 
function, which was more quickly optimized by the BGA. Despite the high 
dimension of these functions, DE solved them all with population sizes no 
larger than Np = 25. In addition, F = 0.5, Cr = 0.1 were used in each case 
except for Rastrigin’s function (Cr = 0). DE’s success with small popula-
tion sizes and low values for Cr reflects the fact that all test bed functions 
were separable. Consequently, both competing EAs also performed well 
because they used low mutation rates, e.g., pm= 1/D in the case of EASY. 

In a final study, (Storn and Price 1997) compared DE to the method of 
stochastic differential equations (SDE) (Aluffi-Pentini et al. 1985) on a 
very simple, fifteen-member test bed composed of functions having from 
one to ten dimensions. Both algorithms successfully optimized all test bed 
functions, but DE was faster than SDE in every case, often by a factor of 
ten or more. The DE control parameter setting Np = 20, F = 0.5, Cr = 0 
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was effective in all but two cases. On one non-separable function, Cr was 
set to 1 and the population size had to be increased to Np = 30. On another 
function, F was set to 1 and Np was raised to Np = 40. Setting F or Cr to 
just less than 1 in these two cases would probably have allowed Np to be 
smaller, since both F = 1 and Cr = 1 dramatically reduce the number of po-
tential trial vectors.

Ali and Törn 

The authors of this study (Ali and Törn 1998) compared four versions of 
DE, four versions of the Controlled Random Search (CRS) (Price 1977) 
algorithm and two GAs based on the real-coded GA proposed in Hu et al. 
(1997). Benchmark functions were organized into two test beds. The first 
test bed consisted of nine, relatively simple, low-dimensional test func-
tions, while the second, more difficult test bed included functions devel-
oped for the 2nd International Contest on Evolutionary Optimization. 
Optimizers were rated based on both the number of function evaluations, 
the total CPU time that they took to reach the VTR and on the fraction of 
trials that were successful. Ali and Törn then ranked the algorithms from 
best to worst in each of these three categories. On the easy test bed, the 
best algorithm depended on which of the three criteria was applied. DE 
solved all problems, but versions of the CRS algorithm required fewer 
function evaluations and less CPU time than did DE. One of the GAs was 
faster than DE in terms of the number of function evaluations, but not 
when CPU times were compared. 

The roles were reversed, however, when algorithms were compared 
based on their rate of success. DE algorithms captured the top five spots 
followed by four CRS algorithms in places 6, 8, 9 and 10 with a GA taking 
the seventh ranked position. To be fair, the comparisons should have been 
conducted at the same probability of success, but this is often difficult to 
achieve in practice. 

On the second, more difficult test bed, versions of DE were not only 
more successful than any CRS or GA algorithm, but also faster. DE algo-
rithms took the first three spots in each category, requiring fewer evalua-
tions, less CPU time and achieving a greater rate of success than the com-
peting algorithms. The very best performing versions on this test bed were 
two of the modified DE algorithms proposed in Ali and Törn (1998).  

Vesterstrøm and Thomsen 

The primary focus of this comparison (Vesterstrøm and Thomsen 2004) 
was to compare DE (DE/rand/1/exp), a simple evolutionary algorithm 
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(SEA) (Thomsen 2003) and two particle swarm optimization algorithms 
(PSO) (Vesterstrøm and Riget 2002) and (arPSO) (Vesterstrøm and Riget 
2002). Results for both the SEA and arPSO are plotted in Figs. 3.14–3.18 
in Sect. 3.4.1. The test bed consisted of 23 functions, most of which were 
taken from Yao and Liu (1997). In addition, the test bed included two 
noisy functions and one whose landscape contained flat plateaus. In all ex-
periments, DE’s control parameter settings were Np = 100, Cr = 0.9 and 
F= 0.5. Despite Np and F being smaller than would normally be recom-
mended with D = 30 and Cr = 0.9, DE gave a lower mean value than com-
peting algorithms in 17 of the 23 problems having dimension thirty or less. 

DE’s mean best result after 500,000 function evaluations for two of the 
six problems for which it was not the best performer differed from the best 
performing algorithm (SEA) only beyond the 5th decimal place, e.g., 
–1.03163 for the SEA and –1.03162 for DE. On the thirty-dimensional 
versions of both Schwefels’ uni-modal ridge function (Schwefel 1995) and 
the one-max problem (Stanhope and Daida 1997), PSO gave a lower mean 
best value than did DE, although DE’s final results for these two functions, 
2.02×10−8 and 3.85×10−8, respectively, were excellent. Only on two func-
tions did DE show a significant difference from the best result. One of 
these was a simple four-dimensional function that caused DE and both 
PSO algorithms to stagnate. For a function of such low dimension, it 
seems certain that DE would give a better final solution if some control pa-
rameter tuning had been attempted. DE’s other inferior result was a uni-
modal, thirty-dimensional function to which uniformly distributed evalua-
tion noise was added. 

Vesterstrøm and Thomsen also explored optimizer performance on a 
one hundred-dimensional subset of Yao and Liu’s test bed. For these ex-
periments, Emax was set to 5,000,000 function evaluations. Even without 
changing its control parameter settings, DE performed even better than on 
the first test bed, posting the lowest or equal mean best value for twelve of 
the thirteen functions. The only one hundred-dimensional function on 
which DE did not do as well or better than the other algorithms was the 
noisy uni-modal function. In general, the authors called DE’s performance 
with respect to the optimizers analyzed “outstanding” and judged DE to be 
simple, robust, reliable and easy to tune. 

Paterlini and Krink 

A recent study (Paterlini and Krink 2004) compared the ability of four 
optimizers to solve a set of six simulated and four real-world partitional 
clustering problems. In addition to DE, the methods evaluated included the 
k-means method, random search, a floating-point encoded GA and the 



3.4 DE Versus Other Optimizers      171 

PSO algorithm. The goal of partitional clustering is to determine the opti-
mal partitioning for a data set, i.e., to maximize the similarities within a 
group while minimizing the dissimilarities between different groups. The 
GA tested in this comparison used tournament selection, Gaussian muta-
tions and arithmetic crossover. The PSO algorithm was based on the origi-
nal method described in Kennedy and Eberhart (1995), while 
DE/rand/1/exp was chosen to represent DE. The random search was not 
incremental, but consisted of Emax evaluations of vectors chosen with ran-
dom uniformity from within the search space. DE, PSO and the GA were 
all tuned, but the authors noted that both the GA and PSO methods took 
“much more time” to tune than did DE. 

Data clusters can be defined in many ways and several clustering crite-
ria were explored. For the simplest data sets, all three algorithms reached 
the same mean value and the clustering criterion was not an important fac-
tor. The more difficult clustering problems showed the superiority of EAs 
over the simple random search and the method of k-means. On these prob-
lems, DE was both the most accurate in terms of mean objective function 
value and the most robust in terms of being able to reproduce a result. 

DE’s status as an effective algorithm for identifying clusters was rein-
forced by its performance on the four real-world data sets. While all meth-
ods performed well on the simplest problem, DE was better in two cases 
and not significantly worse (based on a 95% confidence level) than PSO in 
the other. (Both methods found the optimum.) In general, the more diffi-
cult the clustering problem was (e.g., the more overlapping clusters there 
were), the better DE performed compared to the competing algorithms. 
The authors concluded that DE was “clearly and consistently superior 
compared to GAs and PSO for hard clustering problems”. 

3.4.3 Performance Comparisons from Other Problem Domains 

Multi-Constrained, Nonlinear Optimization 

In Lampinen (2002), DE/rand/1/bin was used in conjunction with 
Lampinen’s Pareto-dominance inspired selection criterion (Sect. 4.3) to 
optimize a set of nonlinear benchmark functions that were subject to mul-
tiple, nonlinear constraints. All functions were taken from the test beds in 
Michalewicz and Schoenauer (1996) and Koziel and Michalewicz (1999). 
The ten functions studied by Lampinen include one linear objective func-
tion with both linear and nonlinear constraints and one nonlinear objective 
function with linear constraints. The remaining eight functions were 
nonlinear and subject to one or more nonlinear constraints. In addition, 
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three functions were subject to equality constraints, e.g., γ (x) = 0, which 
Lampinen converted into a pair of inequality constraints: 0.001 ≤ γ (x) and 
γ (x) ≤ 0.001. 

When compared to a uniform random search, DE found the first feasible 
solution between 3% and 99% faster, indicating that Lampinen’s criterion 
was effectively guiding the population toward feasible regions. DE’s im-
provement over the random search was the highest for the most difficult 
functions. Lampinen then compared DE’s performance to the very best re-
sult reported in Joines and Houck (1994), Koziel and Michalewicz (1999) 
and Michalewicz (1995). Lampinen chose to set Cr = 0.9 and F = 0.9 for 
all ten problems, but spent some effort tuning the population size because 
problems varied in dimension from D = 2 to D = 50. Except for one prob-
lem that required Np = 120, the remaining nine functions were solved us-
ing 15 ≤ Np ≤ 40. In each case, 1000 trials were run to test DE’s reliability. 
For all test problems, DE with Lampinen’s criterion found the best-known 
solution except in two cases for which DE’s solution was better than the 
best previously known solution. In addition, all 1000 trials for each func-
tion found the reported optimum. Precision for the solutions to the three 
functions with equality constraints was limited by the tolerance chosen for 
converting an equality constraint into two inequality constraints. 

Mixed-Variable Optimization 

Another study (Lampinen and Zelinka 1999) used a popular test bed of 
mechanical design problems to compare DE to ten different optimizers. 
The problems are to design a gear train (four integer variables), a pressure 
vessel (two discrete and two continuous variables) and a coil spring (one 
integer, one discrete and one continuous variable). In addition, each vari-
able in the gear train problem is subject to both upper and lower bound 
constraints. The pressure vessel design problem includes six inequality 
constraint functions, while the coil spring design is subject to eight ine-
quality constraints. In this early study, constraints were implemented with 
traditional penalty functions, not Lampinen’s Pareto-dominance-based se-
lection criterion (Sect. 4.3). A more recent study (Lampinen and Storn 
2004) solved the functions in this test bed using Lampinen’s criterion and 
compared the results to those reported for twenty other methods. 

The popularity of this test bed made it possible to compare DE to a wide 
range of optimization methods that included classical approaches, several 
genetic algorithms, evolutionary programming (EP), evolution strategies 
(ES), simulated annealing (SA) and several unique methods. Of the seven 
methods reporting results for the gear train design problem, only DE and 
two other methods – the meta-GA (Wu and Chow 1995) and the modified 
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GA in Lin et al. (1995) – found the optimal solution. In addition, multiple 
runs with DE found the four alternative solutions to this problem. 

Variations in the test problem implementations in other studies forced 
Lampinen and Zelinka to test DE on three different versions of the pres-
sure vessel design problem. Both Sandgren (1990) and Fu et al. (1991) re-
ported results for Case A, which treats all parameters as continuous. DE’s 
solution to Case A was both different and significantly better than those 
found by the other two methods, e.g., f(x) = 7,790.588 for Fu et al. and f(x)
= 7,019.031 for DE. Case B of the pressure vessel design problem was 
formulated according the original problem statement. Four algorithms re-
ported results for this version and DE once again produced the best result. 
The sequential linearization algorithm in (Loh and Papalambros 1991) 
gave a result that was almost as good, but one of their published parameter 
values violates a constraint. Case C was investigated so that DE could be 
compared to several algorithms that used a different numerical value in 
one of the constraint functions. Once this adjustment was taken into ac-
count, DE once again gave the best result (f(x) = 7,006.358). The two-level 
parallel ES (Thierauf and Cai 1997) gave a result that was almost as good 
(f(x) = 7,006.9), but neither of the other two methods (Li and Chow 1994; 
Cao and Wu 1997) were competitive. 

The coil spring problem also had both continuous and mixed-variable 
versions. In the continuous case, DE improved on Sandgren’s value of 
2.6353 by posting an objective function value of 2.61388. DE also re-
turned the best result on the mixed-variable version of the coil spring prob-
lem, beating the best result reported by Sandgren and two other methods 
(Chen and Tsao 1993; Wu and Chow 1995). 

Multi-Objective Optimization 

Kukkonen and Lampinen (Kukkonen and Lampinen 2004) compared DE 
with other optimizers on multi-objective benchmark functions. In addition 
to DE, the comparison included the non-denominated sorting genetic algo-
rithm (NSGA–II) (Deb et al. 2002) and the strength Pareto evolutionary 
algorithm (SPEA) (Zitzler and Thiele 1999). In particular, NSGA–II was 
chosen for its good performance in previously published tests (Deb et al. 
2002). Two versions of DE were tested. Generalized differential evolution 
(GDE) uses a Pareto-based selection criterion for handing constraints and 
multiple objectives (see Sect. 4.6). GDE2 adds a mechanism to improve 
the extent and diversity of GDE’s approximation to the Pareto-front. 

The test bed was composed of five, bi-objective benchmark functions 
described in Zitzler et al. (2000). For all test problems, the DE control pa-
rameter settings were Np = 100, Cr = 0.05 and F = 0.1. Control parameter 
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values for both F and Cr were determined by preliminary testing with val-
ues from the set {0.05, 0.1, 0.2, 0.3, 0.4}. The authors report that values 
for F outside this range tended to result in rapid convergence to a single 
point on the Pareto-front. In addition, each of the 100 trials was limited to 
250 generations, but NSGA–II and GDE2 used twice as many function 
evaluations per generation. Closeness to the Pareto-front was measured by 
both an error ratio and by a generational distance. In addition, Kukkonen 
and Lampinen also measured diversity in the solutions with spacing, 
spread and maximum spread metrics. These metrics were applied to both 
versions of GDE and NSGA–II, but results for the SPEA were plotted for 
visual reference only. 

Results showed that GDE gave a good approximation to the Pareto-
front, but that GDE2 improved both the extent and diversity of the solu-
tions. Overall, NSGA–II performed best in most statistical categories on 
four of the five benchmark functions, although GDE2 outperformed 
NSGA–II on the test function ZDT6 that tests an optimizer’s response to 
non-uniformity in the Pareto-front. Despite handling multiple objectives 
directly using Pareto-dominant based selection, both versions of DE per-
formed comparably to both NSGA–II and SPEA, although this conclusion 
is based on limited experimentation. 

Optimizing Noisy Functions 

In a comparison with PSO and a simple EA, the authors of Krink et al. 
(2004) explored DE/rand/1/exp’s performance on objective functions with 
noisy evaluations. The EA used binary tournament selection, two-vector 
arithmetic recombination and a Gaussian mutation operator. Control pa-
rameter settings for each algorithm were chosen based on preliminary ex-
periments, but they were not tuned for each problem. In DE’s case, the set-
ting chosen was Np = 50, Cr = 0.8, F = 0.5. The test bed included the 
Schaffer (D = 2), sphere (D = 5), Griewangk (D = 50), Rastrigin (D = 50) 
and Rosenbrock (D = 50) functions. Trials for the sphere and Schaffer 
functions were limited to 100,000 function evaluations, whereas the re-
maining three, fifty-dimensional functions were allowed 500,000 function 
evaluations.

For their experiment, the authors first optimized the non-noisy version 
of each function, and found that DE outperformed the other two algorithms 
when measured by the mean objective function value at Emax function 
evaluations. Next, zero-mean Gaussian noise having a variance of 1 was 
added to each vector’s objective function value. To minimize the effects of 
the noise, trials were conducted in which vectors were reevaluated 1, 5, 20, 
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50 and 100 times, with each evaluation contributing to the total allowed 
number of function evaluations. 

Performance was compared based on the mean value of the final popu-
lation. DE gave the best result for both the noisy Rastrigin and Rosenbrock 
functions, but only because both other methods stagnated before reaching 
the optimum. Once, however, the variance of the population’s objective 
function values were on a par with the variance of the evaluation noise, 
DE’s performance was comparable to that of PSO, but not as good as that 
of the EA. 

Summary

DE was particularly effective when handling constraints directly. In sev-
eral cases, DE found a result that was better than the previously best 
known solution, even though functions were defined with mixed variables. 
DE was also competitive optimizing functions with multiple objectives us-
ing a simple Pareto-based selection scheme. Functions with added evalua-
tion noise, however, proved to be more difficult for DE than for an EA 
with Gaussian mutation. DE dominated the comparison, however, when 
noise was absent. 

3.4.4 Application-Based Performance Comparisons 

Some of the greatest challenges for an optimizer are found in the realm of 
real-world applications. Unlike test functions, real-world applications sel-
dom display regularities. Furthermore, noise, constraints, and both mixed 
and dependent variables are common in many real-world problems. Practi-
cal applications also offer an opportunity to discover how hard it is for re-
searchers who are not necessarily optimization experts to adapt, implement 
and tune an optimizer. As such, real-world applications are a demanding 
proving ground for optimizers. Below is a brief survey of studies that have 
compared DE to other optimizers on real-world problems. In several cases, 
DE is compared to traditional methods that are industry standards. 

Multi-Sensor Fusion 

In Joshi and Sanderson (1999) and Sect. 7.4 of this book, the authors use 
DE to integrate information from both visual and tactile sensors to catego-
rize an object’s shape and determine its orientation (pose). Tactile sensor 
data is taken from a robotic hand that grasps the objects, while a camera 
records the object’s shape and extracts vertex/edge features. The goal is to 
integrate the tactile and visual cues to improve the robot’s ability to ma-
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nipulate the object. The authors used a minimum representation size crite-
rion to help select a model for the sensor data. Finding the minimum repre-
sentation involves a tradeoff between model size (number of parameters) 
and residual error. In addition, the problem contains both discrete and con-
tinuous variables. 

In their study, Joshi and Sanderson compared DE/best/2/bin’s perform-
ance to that of a binary encoded GA that used one-point crossover, a muta-
tion probability of pm= 0.05 and a population size of 100. For DE, the con-
trol parameter settings were Np = 100, Cr = 0.8 and F = 0.8. Settings for 
both algorithms were chosen by trial and error to minimize the size of the 
representation at the end of the search. When compared to the GA, DE 
found a much smaller representation size in less time with fewer evalua-
tions and also showed smaller interpretation errors. Details can be found in 
Sect. 7.4 of this book. 

Earthquake Relocation 

Also appearing in Chap. 7 (Sect. 7.5) is a study by R žek and Kvasni ka
based on R žek and Kvasni ka (2001) in which the authors explored DE’s 
ability to find an earthquake’s epicenter from seismographic data recorded 
at multiple stations. This four-dimensional inverse problem is hard because 
it is nonlinear and, in some cases, multi-modal as well. For their study, the 
authors chose DE/rand/1/bin and applied it to problems with both synthetic 
and real data. Considerable effort was spent exploring how different con-
trol parameter settings affected DE’s performance. The author’s found that 
DE was very robust in this regard and settled on Np = 30, Cr = 0.8, F = 0.5 
for all experiments. Tests with synthetic data showed that DE’s results 
were reliable, fast and accurate. In addition, adding uniform parameter 
noise to synthetic data did not jeopardize DE’s ability to locate the global 
optimum. Real-world seismic data from events located in the Gulf of Cor-
inth showed that DE always gave a significantly better result than did the 
industry standard HYPO71 location program. Section 7.5 contains details. 

Active Compensation in RF-Driven Plasmas 

Langmuir probes are a diagnostic tool for measuring the properties of low-
pressure plasma. The act of measurement, however, disturbs the plasma 
from its normal state, but if a radio-frequency signal with the right phase, 
amplitude and waveform is applied to the probe, these distortions can be 
actively cancelled. As a result, plasma used for circuit etching can produce 
cleaner shapes. In this study (Sect. 7.12), Zelinka and Nolle used DE to ad-
just fourteen waveform variables to actively compensate for nonlinear in-
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teractions between plasma and a Langmuir probe. After some experimen-
tation, they found the best DE control parameter settings to be Np = 50, Cr

= 0.8, F = 0.5. When compared to simulated annealing, DE’s results were 
more precise and more consistent. Consult Sect. 7.12 for more details. 

DC Operating Point Analysis for Nonlinear Circuits 

Finding a circuit’s quiescent, or DC, operating point is the starting point 
for performing other types of circuit analysis.  In Crutchley and Zwolinski 
(2003), the classical Newton–Raphson (NR) method is compared to two 
versions of DE (DE/rand/1/bin and DE/target-to-best/1/bin) and to three 
ES algorithms. The versions of the ES algorithm are a (µ + λ)-ES with 
standard adaptive mutations (ESA), a (µ + λ)-ES with correlated mutations 
(ES) and a tournament selection based ES (TSEA). Neither the ES nor the 
TSEA used adaptive mutations. After some experimentation, the authors 
chose Np = 10⋅n, Cr = 0.5, F = 0.4 for DE/rand/1/bin and Np = 10⋅n, Cr =
0.3 F = 0.8, K = 0.9 for DE/target-to-best/1/bin, where n is the number of 
circuit nodes. 

The test bed consisted of nine benchmark circuits, two of which have 
multiple solutions. Results included the mean error per node compared to 
the Newton–Raphson method (assumed to be the most accurate), the num-
ber of solutions found, the number of generations taken and the CPU time 
consumed. DE/rand/1/bin and TSEA showed comparable relative errors in 
all but one case, for which TSEA was better. For circuits having a single 
solution, TSEA required fewer generations and less CPU time in all but 
one case, for which DE/rand/1/bin was faster. Only the two DE algorithms 
and ES, however, were able to find multiple solutions in a single run. Al-
though the NR method was by far the fastest method in all cases, it must 
be manually reinitialized to find all possible solutions. In brief, the authors 
argued that the best algorithms in terms of accuracy, speed and ability to 
find multiple solutions were the two versions of DE. 

Identifying Induction Motor Parameters 

DE’s ability to find optimal parameters for two induction motor models 
was examined in Ursem and Vadstrup (2004). One of the models incorpo-
rated nonlinear magnetic saturation effects while the other motor model 
did not. In a previous study, eight stochastic search algorithms were tested 
on these same problems. The methods previously tested were the steepest 
descent local search, simulated annealing, a simple EA, a diversity-guided 
EA, ES with simple mutations (ES1), ES with correlated mutations (ES2), 
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standard PSO and diversity-guided PSO. In this study, DE was compared 
to the best of these optimizers – the two ESs and the diversity-guided EA. 

DE’s control parameters were tuned by trial and error, with Np = 100, 
Cr = 0.5, F = 0.5 being chosen for both problems. The authors noted that 
compared to other algorithms, DE’s control parameters required signifi-
cantly fewer trials to “tune”.  For the five-dimensional induction motor 
problem without magnetic saturation, both DE and DGEA found the “ex-
act” solution for all twenty trials, but DE was three to four times faster 
than both DGEA and ES2. 

All four algorithms in this study found the exact solution to the five-
dimensional problem more than once, but only DE was able to find the ex-
act result for the eight-dimensional model with magnetic saturation. DE 
found the exact result not only for all twenty trials in the original experi-
ment, but also when eighty additional trials were conducted. On this prob-
lem, the ES with correlated mutations (ES2) performed worse than did the 
ES with simple mutations (ES1). The authors concluded that DE was ro-
bust, easy to tune, fast, accurate and simple to implement. 

Estimation of Heat Transfer Parameters in a Trickle-Bed 
Reactor

Trickle-bed (chemical) reactors are widely used in the petroleum industry 
and to a lesser extent in the chemical and pharmaceutical industries. Two-
dimensional models have been developed that consist of coupled partial 
differential equations of the parabolic type. In Babu and Sastry (1999), the 
authors use the method of orthogonal collocation to transform the set of 
partial differential equations into a function minimization problem. In a 
typical trickle-bed reactor, the heat transfer parameters, effective radial 
thermal conductivity and wall-to-bed heat transfer coefficients are un-
known and must be estimated. Once these values have been determined, 
the all-important temperature profile of the reactor bed can be numerically 
determined. In their experiment, the authors measured the radial tempera-
ture profile in a working trickle-bed reactor and then sought the model’s 
parameter values that could reproduce the measured profile. In all, 232 
data points were obtained that covered a wide range of flow rates and 
packings.

The authors chose DE/target-to-best/1/bin to compete with the classical 
radial temperature profile (RTP) method, which uses Powell’s method. DE 
control parameters were Np = 20, Cr = 0.9, F = 0.7, K = 0.7. Compared to 
the RTP method, DE was two and a half to three times faster and its esti-
mates were much more accurate. In addition, DE was very robust, con-
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verging to the global optimum regardless of the initial population, whereas 
the RTP method needed an initial guess close to the solution. 

Aerodynamic Optimization 

Aerodynamic shape optimization involves finding the most efficient shape 
for bodies moving through air. In Rogalski et al. (1999), the authors used 
DE/target-to-best/1/bin, the Nelder–Mead downhill simplex algorithm and 
simulated annealing to design three fan blades. All three problems were at-
tacked with the inverse method, where the goal is to produce a shape that 
exhibits the prescribed surface pressure distribution. The authors used 
Bezier curves to model both a blade’s thickness (width) profile and the 
camber curve that gives the blade its characteristic arch. Several con-
straints were applied using penalty functions. A program that simulates air-
flow computed the pressure distribution around each proposed shape. The 
difference between the computed pressure distribution and the target dis-
tribution was then used to compute an error function based on the L2 norm 
that served as an objective function. In all, each problem involved finding 
fifteen real-valued coefficients. The control parameters for DE were Np =
150, Cr = 1, F = K = 0.85. 

For the first problem, all three optimizers were able to accurately repre-
sent the target shape. In terms of residual error, DE was twice as good as 
its nearest competitor, although it took almost fifty times as long to con-
verge. A high-pressure region near the nose of the second fan blade made 
finding the target shape more difficult than in the first case. For this second 
design problem, DE was again the slowest method, but it was the only one 
to accurately model the target shape. Similarly, DE was the only algorithm 
of the three to accurately model the third target shape. 

Image Registration 

Thomas and Vernon. Image registration is a fundamental image-
processing task that matches two or more images. In Thomas and Vernon 
(1997), the authors begin their experiment by generating a 255-by-255 
pixel target image. The second image is a copy of the first that has been ro-
tated and to which noise has been added to both the x and y coordinates of 
each pixel. Control points are identified in each image and the error in 
mapping the control points serves as an objective function that must be 
minimized. 

Control points can also be used to solve a set of simultaneous linear 
equations so that a least squared error (LSE) solution can be found. On 
data sets generated by the identity transformation with noise, DE matched 
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the performance of the LSE method exactly. On data sets generated by 
nonlinear transformations, LSE was slightly better than DE in four of nine 
cases, whereas DE was better in the remaining five. In two of these cases, 
DE’s result was significantly better that LSE’s and in each of these two 
cases, one parameter value was much larger than that found by LSE (e.g., 
224.72 for DE vs. 2.14 for LSE). DE/rand/1/bin appears to be the method 
employed in this study, with Np = 160, F = 0.4. A value for Cr was not 
provided.

Salomon et al. In Sect. 7.6, Salomon et al. evaluate DE as a tool for three-
dimensional medical image registration. This study did not consider com-
parative performance, but focused instead on how well DE/target-to-
best/1/bin (called “DE/rand-to-best/1/bin” by the authors) performs when 
implemented in parallel. The authors found that DE was not only fast and 
accurate, but also scaled almost linearly with the number of processors. 
See Sect. 7.6 for details. 

Optimization of Carbon and Silicon Cluster Geometry 

Ali and Törn. Cluster optimization is a many-body problem that exhibits a 
very high degree of parameter interaction. In Ali and Törn (2000), the au-
thors sought the minimum binding energies of both carbon and silicon 
clusters consisting of up to fifteen atoms and 39 variables. The binding en-
ergy between atoms was simulated with the Tersoff potential.  

DE was modified to include both a derivative-based local optimization 
technique and an auxiliary population, Sa, of Np vectors. In this algorithm, 
known as topographical DE  (TDE), a trial vector that does not improve on 
the target vector subsequently competes with the corresponding vector in 
Sa. If the trial vector wins this second competition, it replaces the inferior 
vector in Sa.

For this series of experiments, the authors chose Np = 10⋅D, but other 
DE settings were not provided. For silicon clusters up to six atoms, TDE’s 
result could be compared to the best result found by the eight optimizers 
studied in Ali et al. (1997). In two of these cases, TDE found even better 
minima than the best known values. 

Chakraborti. In Sect. 7.1 of this book, N. Chakraborti uses DE to dis-
cover the minimum energy configurations of silicon–hydrogen clusters 
whose interactions are based on the “tight-binding” model. When com-
pared to the simple GA and simulated annealing, DE gave an equal or bet-
ter result in all but one case. The author also concluded that DE’s elitist se-
lection criterion was an asset for this type of problem and that DE could 
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resolve closely spaced minima without resorting to “niching” strategies. 
Consult Sect. 7.1 for additional details.  

Optimizing Neural Networks 

Fischer et al. In Fischer et al. (1999), the authors use DE to optimize a 
neural network (NN) having three inputs, a single hidden layer with a fixed 
number of hidden units and a single output unit. Keeping the topology of 
the network fixed restricts the problem to one of determining network 
weights. To train the network, the authors chose the Austrian inter-regional 
telecommunications data set because its multiple local minima are known 
to pose a difficult challenge to gradient-based learning algorithms. The ob-
jective function measured the squared error between the network’s output 
and the actual training data. The goal was to make good predictions about 
the intensity of telecommunications traffic between two locations.  

The authors chose DE/best/1/bin, Cr = 1 and experimented with a range 
of value for both F and Np. They decided on F = 0.9 for further experi-
ments even though neighboring values were also effective. Values for Np

ranging from 50 to 100 were explored with F = 0.9. The authors found that 
increasing Np beyond 200 did not improve the out-of-sample average. Np 

= 400 was used for subsequent experiments in which the number of hidden 
nodes was varied. A topology with eight hidden nodes proved best. For 
comparison, the authors also trained weights with a multi-start, conjugate-
gradient (CG) back-propagation method. Both methods were given the 
same time to train the networks, with each DE trial taking as long as six 
CG trials. While the CG method showed a better in-sample performance, 
DE exhibited statistically better performance in the more important out-of-
sample category. 

Plagianakos et al. In Plagianakos et al. (2001), the authors investigated 
DE’s ability to train neural networks that use discrete activation functions. 
Most NNs use continuous activation functions, like the well-known sig-
moid function, but discrete, e.g., binary activation functions are well suited 
for inherently binary tasks. In addition, discrete networks are computation-
ally simple to understand and provide a starting point for investigations 
into networks with continuous activation functions. Furthermore, networks 
with discrete activation functions are cheaper to implement in hardware. 
When the activation function becomes discrete, however, back-
propagation methods that rely on gradients are not effective, so a direct 
search algorithm like DE is ideally suited for this problem.  

In their investigation, Plagianakos et al. used DE/target-to-best/1/bin, 
with F = K, to solve a set of three benchmark problems. No control pa-



182      3 Benchmarking Differential Evolution 

rameter settings were reported. Problems included the “exclusive or” 
(XOR) classification problem (known to be sensitive to the initial choice 
of weights), the three-bit parity problem (hard because members of differ-
ent classes differ by a single bit) and controlling a lathe cutting process. 
DE’s results were compared to those found by four other algorithms: GLO 
(Gorwin et al. 1994), T (Tom 1990), GZ (Goodman and Zeng 1994) and 
MVGA (Magoulas et al. 1997). On the XOR problem, DE was successful 
100% of the time, while the nearest competitor (GLO) was successful 84% 
of the time. Both DE and GLO did well on the three-bit parity problem, 
scoring 100% and 96%, respectively, but the GZ algorithm did not have 
any successes. On the lathe control problem, DE (93%) and MVGA (34%) 
scored successes. The authors concluded that DE was a promising method 
even when compared with other methods that require the gradient ap-
proximations of the error function and train networks by progressively al-
tering the shape of the sigmoid function. 

3.5 Summary 

The results summarized in this chapter echo several themes. One is that 
while DE may not always be the fastest method, it is usually the one that 
produces the best result, although the number of cases in which it is also 
faster is significant. DE also proves itself to be robust, both in how control 
parameters are chosen and in the regularity with which it finds the true op-
timum. In addition, when compared to one-point optimizers like Powell’s 
method, DE is relatively immune to differences in initial populations. Be-
cause it is a direct search method, DE is versatile enough to solve prob-
lems whose objective functions lack the analytical description needed to 
compute gradients. As a bonus, DE is also very simple to implement and 
modify. As these researchers have found, DE is a good first choice when 
approaching a new and difficult global optimization problem is defined 
with continuous and/or discrete parameters. 
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4 Problem Domains 

4.1 Overview 

Up until now, this book has focused primarily on unconstrained, and to a 
lesser degree, bound constrained continuous optimization. This chapter 
explores how to apply DE in several different, less idealized problem do-
mains. Among the topics discussed are how to optimize functions with 
discrete or mixed-type parameters as well as those that are subject to 
bound, inequality and/or equality constraints. In addition, the challenges 
associated with optimizing both noisy functions and those with multiple 
objectives are discussed. This chapter also explores the possibility of ap-
plying DE to combinatorial problems like the Traveling Salesman Prob-
lem, or TSP. The next section, however, looks at how DE handles quan-
tized functions and parameters.  

Objective function description Qf(f(xq))

Q0(x0) Q1(x1) QD-1(xD-1) Parameter quantizers

Objective function quantizer

fq(xq)f(xq)

x0 x1 xD-1

xq,0 xq,1 xq,D-1

Fig. 4.1. An objective function whose parameters and output are both quantized 

4.2 Function and Parameter Quantization 

Real-world optimization often involves functions and/or parameters that 
vary discretely. A continuous range of values becomes discretely distrib-
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uted when operated on by a quantizing function, Q. The diagram in Fig. 
4.1 shows the most general case in which the function is rendered discrete 
by the quantizing function Qf and parameters are quantized by the func-
tions Qj, j = 0, 1, …, D − 1.  

4.2.1 Uniform Quantization 

Uniform quantization transforms a continuous range of values into a set of 
evenly spaced values, like the integers. Uniform quantization (Rabiner and 
Gold 1975) is based on the quantizing function 

.
)(

)(
k

ykfloor
yQ

⋅=
(4.1)

The “floor” function returns the integer part of its argument, e.g., 
floor(4.13) = 4. As Fig. 4.2 illustrates, when k = 1, Q(y) returns the integer 
part of y.

y

floor(y)

1 2 3 4 5

1

2

3

4

5

-1-2-3-4-5

-1

-2

-3

-4

Fig. 4.2. Uniform quantization: floor(y) returns the function value indicated by the 
dots that mark discontinuities. 

Selecting components for a gear train is an example of an optimization 
task where objective function parameters are uniformly quantized 
(Lampinen and Storn 2004). The goal is to select a combination of gears 
that minimizes the (absolute) difference between the actual and target rota-
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tion rates. Since both the number of gears and the number of teeth on a 
gear are integers, parameters are uniformly discrete. Additionally, the ob-
jective function value itself is also discrete because for a fixed input rate of 
rotation, a finite number of gear combinations produce only a limited 
number of isolated output rates. Unlike parameter values, however, objec-
tive function values are not uniformly distributed in this example. 

4.2.2 Non-Uniform Quantization 

Discrete values need not be regularly spaced and many applications opti-
mize non-uniformly quantized variables (Kondoz 1994). Non-uniform 

quantization maps the continuum to a set of isolated and irregularly spaced 
real values. Figure 4.3 illustrates non-uniform quantization with an exam-
ple that also displays a saturation characteristic, i.e., Q(y)’s output has a 
limiting magnitude. 

y

Q(y)

1 2 3 4 5

1

2

0.5

4

5

Saturation

Saturation

-1-2-3-4-5

-0.5
-1

-2

-3

-4

3

Fig. 4.3. Non-uniform quantization 

Parameters with non-uniformly quantized values are common in many 
mechanical and electronic design problems, often because only a limited 
set of components is commercially available. For example, electronic re-
sistors in the E12 series have the following discrete normalized values: 1.0, 
1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2. Not all resistance values 
are available and those that are, are not uniformly spaced. 
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Transformation tables can be an effective way to non-uniformly quan-
tize continuous values when a quantizing function is impractical. For ex-
ample, if objective function parameters must be prime numbers, then a 
quantizing function will first have to “floor” a floating-point number into 
an integer and then search for the closest prime value. 

Locating the nearest prime value involves a search process that can be 
computationally intensive if primes are not stored in advance. A table-
based approach is both faster and simpler (Fig. 4.4). Instead of varying the 
parameters xj and quantizing them to the closest prime value, it is much 
easier to vary surrogate parameters zj ∈ [1.5, 12.5] and use floor(zj) as the 
table index to primes already stored in memory. In Fig. 4.4, for example, 
index 5 leads to table entry 11. When the objective function is evaluated, 
table entries take the place of the corresponding parameters, xj.

2 3 5 7 11 13 17 19 23 29 31 37

1 2 3 4 5 6 7 8 9 10 11 12Table indices

Table entries

Fig. 4.4. Table-based, non-uniform quantization 

4.2.3 Objective Function Quantization 

The graph in Fig. 4.5 is an example of a function whose value has been 
uniformly quantized. Figure 4.5 shows that quantization turns a smooth 
function into one with a staircase-like appearance. In general, staircase dis-
continuities are not a fundamental problem for a direct search method like 
DE, but flat plateaus do have an effect. In particular, vectors on a plateau 
will spread only if new vectors of lesser than or equal objective function 
value are accepted. 

Figure 4.6 illustrates how replacing population vectors with trial vectors 
of equal objective function values keeps DE from stagnating on quantized 
objective function landscapes. The intervals [x0,L, x0,U] and [x1,L, x1,U] in 
Fig. 4.6 define a plateau where the objective function value is constant. 
DE’s vector generating scheme inevitably places multiple trial vectors out-
side the hull that encloses the original population. If trial vectors are not al-
lowed to replace competitors of equal objective function value, the popula-
tion stagnates and remains confined to the original hull. If, however, trial 
vectors replace population vectors of equal objective function value, the 
population expands very quickly unless F is below Zaharie’s limit (Zaharie 
2002). If F is too small, the population will likely converge even if trial 



4.2 Function and Parameter Quantization      193 

vectors replace target vectors of equal objective function value. For DE 
with Nj(0,1) Gaussian jitter, Zaharie found that in the absence of selective 
pressure, the population’s variance increases as long as 

.0
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2
2

2 <+⋅−⋅⋅
Np

Cr

Np

Cr
CrF

(4.2)

Other DE models behave similarly and experiments suggest that as long as 
F is above the Zaharie limit, the population should diverge (see Sect. 2.5). 

Figure 4.7 shows how the presence of plateaus affects DE’s ability to 
optimize both the ten-dimensional sphere  
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and its quantized counterpart 
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y=f(x)

yq=floor(f(x))

1

2
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5

Fig. 4.5. A function, f(x), and its uniformly quantized version, yq = floor(f(x))
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x0

x1

hull around the
cloud of points

x0,L x0,U

x1,L

x1,U

Fig. 4.6. A cloud of points will quickly spread over the plateau defined by the in-
tervals [x0,L, x0,U] and [x1,L, x1,U] if DE’s selection rule replaces target vectors with 
trial vectors of equal value. 
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Fig. 4.7. Typical convergence graphs for a continuous (Eq. 4.3a) and a quantized 
(Eq. 4.3b) ten-dimensional sphere. The initialization interval was [−10,10]. The 
algorithm was DE/rand/1/bin with Np = 30, F = 0.85 and Cr = 1. 
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The convergence graphs in Fig. 4.7 plot the current best vector’s objec-
tive function value versus the number of function evaluations. Both plots 
were generated with classic DE (DE/rand/1/bin), Np = 30, F = 0.85 and Cr 

= 1. The quantized sphere’s convergence graph exhibits larger vertical 
jumps and less incremental improvement than its continuous counterpart. 
Similarly, the number of function evaluations spent without making im-
provement is higher in the quantized version than in the continuous case. 
Intuitively, this behavior makes sense because the population’s best func-
tion value does not improve while DE explores a plateau. Even though 
quantizing the objective function affected DE’s convergence profile, it did 
not impact DE’s effectiveness. 

In reality, examples where parameters are continuous but the objective 
function output is discrete are rare. More often, parameters are quantized 
but the objective function is not – a possibility that also can be treated as if 
the reverse was true – with continuous parameters serving as input for a 
quantized objective function. The next section shows how this transforma-
tion adds diversity to the spectrum of vector differences, thereby reducing 
the chance that DE will stagnate.

x

y
y=f(x)

yn=f(nxs)

xs 2xs-xs-2xs

Fig. 4.8. Uniform parameter quantization. Not all parameter values are allowed. n
is an integer. 

4.2.4 Parameter Quantization 

Quantizing the parameters of a real-valued objective function transforms a 
continuous optimization task into a discrete one. Although the objective 
function itself is not quantized, function values are nevertheless discrete 
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simply because they can only be sampled at allowed parameter values 
(Fig. 4.8). Limiting parameters to discrete values restricts the distribution 
of vector differences, which in turn limits DE’s ability to explore the prob-
lem space.  

When parameters are discrete, differential mutation rarely creates a trial 
point that coincides with an allowed discrete value. Only in special cases, 
like that of uniform quantization and F = 1, do trial values coincide with 
allowed values. As Fig. 4.9 shows, even for uniformly distributed discrete 
variables, F ≠ 1 creates child vectors that are not allowed. Consequently, a 
criterion must be established when dealing with discrete variables that can 
locate the allowed parameter value that is nearest to the proposed value. 
Finding the nearest allowable vector in D-dimensional space is probably 
the best approach, but that task is significantly harder than finding the 
nearest discrete value for each parameter independently, which is the 
method used for the experiments in this book. 

xr1

xr2

F⋅(xr1-xr2)

xr3

ui = xr3+F⋅(xr1-xr2) is not
a valid point

nearest valid neighbor to ui

Fig. 4.9. Difference vector generation using discrete points may not directly lead 
to a valid point. In this diagram, Cr = 1, so ui = vi.

A second difficulty posed by discrete parameters is that even if trial vec-
tors are mapped to the closest allowed value, some points may not be ac-
cessible unless F is carefully chosen. For example, suppose that a variable 
is restricted to the even integers and a single odd value. Assuming that the 
odd point does not already belong to the population, the difference be-
tween any two instances of this quantized, discrete parameter will be a 
multiple of 2F. As a result, F must be a special value (e.g., 0.5 < F < 0.75) 
to place a trial point closer to the odd point than to an even one. 
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Instead of requiring F to assume a special value, it is more effective to 
use real values in place of discrete parameters when randomly initializing 
and generating vectors. In the example above, randomly initializing a dis-
crete parameter with a floating-point value creates many differences 
smaller than 2 that can place a trial point near the lone odd point almost ir-
respective of F. Forming differentials with distributed real values gener-
ates a richer spectrum of differences that both reduces the risk that discrete 
values are inaccessible and relaxes the constraints on an effective F. For 
this reason, discrete parameters should be represented as floating-point 
values even when the problem is inherently discrete (Lampinen and Ze-
linka 1999). 

When working with discrete parameters, the objective function is evalu-
ated once DE’s floating-point parameter values are quantized to, but not 
overwritten by, their nearest allowed discrete values. Figure 4.10 illustrates 
how copies of vectors generated in the continuous domain are quantized 
before being input into the objective function. 

Objective
function

evaluation

Vector
quantizationx

xq

f(xq)

continuous parameter
domain

All vectors are computed
and altered in this domain

discrete parameter
domain

objective function
domain

Fig. 4.10. An objective function’s discrete arguments are copies of floating-point 
parameters quantized to their nearest allowed value. 

When real-valued trial vectors are evaluated at their nearest allowable 
discrete value, DE is in effect optimizing a staircase function like the ex-
ample of objective function quantization in Fig. 4.5. As Fig. 4.11 illus-
trates, the distribution of minima differs substantially between y and yn.
For yn, only two minima exist instead of the previous four, i.e., two minima 
are masked. This is in contrast to the quantized objective function in Fig. 
4.5 where the location of the minima is broadened, but all minima still ex-
ist. Simply put, objective function quantization does not mask minima, but 
parameter quantization can. 
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x

y
y=f(x)

yn=f(nxs)

xs 2xs-xs-2xs

Fig. 4.11. If parameter quantization is applied after differential mutation but be-
fore evaluation, then the objective function is, in effect, stepped (dashed line). 
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Fig. 4.12. Convergence graph for the objective function in Eq. 4.4. The DE variant 
was DE/rand/1/bin, Np = 30, F = 0.85, Cr = 1. The initialization interval was 
[−10,10]. 

Applying the “floor” operation to the sphere of Eq. 4.4 is a simple ex-
ample of a function with quantized parameters. The corresponding conver-
gence graph in Fig. 4.12 suggests that as long as parameters are generated 
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and maintained using real values, quantization is not an impediment. Equa-
tion 4.4, however, is a very simple case: 
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Equation 4.4 exhibits a single minimum at x = 0 that is not masked. In 
real-world applications, minima can be masked if discrete parameter val-
ues are too far apart. Equations 4.5–4.7 outline a constraint satisfaction 
problem like those that can be solved with the demo version of the FIWIZ 
digital filter design program (Storn 2000) that accompanies this book on 
CD.

The problem is solved when an and bn are such that H(z) is 
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with

( ) ( ) ( ) 1,2sin2cos2exp −=Ω⋅+Ω=Ω⋅= ιπιππιz
(4.6)

and

sf

f=Ω
(4.7)

is constrained to lie within the tolerances shown in Fig. 4.13 as Ω ranges 
from 0.0 to 0.5. The variables f and fs in Eq. 4.7 denote the natural and 
sampling frequencies, respectively (Storn 1999b; Mitra and Kaiser 1993). 
The parameters an and bn are quantized to simulate digital filter processor 
word-length limitations. In this constraint satisfaction problem, “success” 
means that H(z) satisfies the tolerance scheme. 

Table 4.1 shows how the level of quantization for the parameters an and 
bn affects DE’s ability to solve this problem. Listed along with the quanti-
zation step size are P, the fraction of trials that were successful, and the 
corresponding average number of function evaluations that DE required. 
Although the test set is small, the trend is clear. Results show that increas-
ing the quantization step size slowed DE and made it less reliable. The 
coarser the quantization, the more difficult it becomes for DE to find a so-
lution until eventually (7-bit step), all minima are masked and a solution is 
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no longer possible. Results are ten-trial averages. DE settings were the 
same for all designs: DE/best/1/bin with uniform jitter, Np = 30, F = 0.85, 
Cr = 1. The number of parameters was D = N + M + 1 with N = 4, M = 4. 
The increment by 1 accounts for the parameter A0 in Eq. 4.5.  

Additional applications where objective functions with discrete parame-
ters have been successfully optimized can be found in Storn (1997) and 
Lampinen and Zelinka (1999). Table 4.2 summarizes the similarities and 
differences between objective function and parameter quantization. 

Fig. 4.13. A tolerance scheme constraining the function in Eq. 4.5. The x–axis in 
this plot denotes Ω while the y–axis plots 20⋅log10⋅|H(exp(ι2πΩ)|.

Table 4.1. The effect that different quantization levels have on DE’s ability to 
solve the design problem set forth in Eqs. 4.5–4.7. 

Quantization level Average evaluations P
None 4230 1 

16-bit (step size 2−15) 5970 1 

10-bit (step size 2−9) 6016 0.9 

8-bit (step size 2−7) 8317 0.7 

7-bit (step size 2−6) – 0 
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Table 4.2. Objective function and parameter quantization compared 

 Objective function Parameters 

Number of function values Restricted Restricted

Function plateaus? Yes, for fq(x)
Yes, for f(x)
no for f(xq)

Minima 
Broadened May be hidden 

Stagnation risk unless… f(ui,g) ≤ f(xi,g) for ui,g

to survive 
x is used instead of 

xq for the differential 

4.2.5 Mixed Variables 

Mixed-variable problems, also known as mixed-discrete programming 
problems, contain both continuous and discrete parameters. As outlined in 
the previous sections, DE handles such tasks by representing all parame-
ters internally as floating-point values and quantizing the discrete parame-
ter values to the nearest allowed point. Lampinen and Zelinka (1999) de-
scribed the first practical applications of DE to mixed-variable 
optimization. 

4.3 Optimization with Constraints 

Perhaps the majority of real-world optimization tasks involve finding a so-
lution that not only is optimal, but also satisfies one or more constraints. 
There are several ways in which an optimization problem can be con-
strained. A general formulation for constrained optimization is 

( )

.1,...,1,0,:sconstraint  boundaryand

,,...,2,1,0)(:sconstraintequality

,1,2,...,,0)(:sconstraintinequality

:tosubject

),(:minimizeto

,,...,,Find

U,L,

T
110

−=≤≤
==

=≤

ℜ∈= −

Djxxx

Nn

Mm

f

xxx

jjj

n

m

D
D

x

x

x

xx

ϕ
γ

(4.8)



202      4 Problem Domains 

Strictly speaking, boundary constraints are inequality constraints, but they 
are listed separately because they occur frequently and are easier to handle 
than general inequality constraints. 

Constraints typically make optimization harder for DE because they can 
create forbidden regions on the objective function landscape that restrict 
the free movement of vectors. It often happens, depending on how they are 
handled, that constraints divide the search space into several disjoint 
islands. On the other hand, constraints can eliminate local minima that 
might otherwise trap vectors, thereby reducing the chance that DE will 
prematurely converge. For an up-to-date survey on constraint handling 
techniques used with EAs, see Coello (2002). 

4.3.1 Boundary Constraints 

Boundary constraints are very common in real-world applications, often 
because parameters are related to physical components or measures that 
have natural bounds. For example, neither passive electronic resistance nor 
the length of a mechanical object can be negative. Even when the problem 
itself is unconstrained, bounds may be imposed by the limits set by the 
particular data type. For example, the limited number of bits dedicated to a 
fixed-point number in a digital signal processor sets a bound on the range 
of values that can be represented. Fortunately, handling boundary con-
straints in DE is particularly straightforward and several schemes have 
been applied with success. 

In DE, each population vector is crossed with a randomly generated mu-
tant vector. Since the current population of vectors already satisfies all 
bound constraints, only contributions from mutant vectors potentially vio-
late parameter limits. Consequently, bounds need to be checked only when 
a mutant parameter is selected for the trial vector. For simplicity, however, 
the following examples test all trial parameters, not just those donated by 
the mutant. 

There are two distinctly different general techniques for handling out-
of-bounds parameters. Resetting schemes modify out-of-bounds parame-
ters so that the trial vector satisfies all constraints. By contrast, penalty

methods drive solutions from restricted areas through the action of an ob-
jective function-based criterion. The simplest of these penalty methods is 
the “brick wall”. 
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Brick Wall Penalty 

If any trial parameter exceeds a bound, the brick wall strategy sets the of-
fending vector’s objective function value high enough to guarantee that it 
will not be selected. If the optimum lies near bounds, the brick wall pen-
alty can slow progress because generating a solution that has no out-of-
bounds parameters may be improbable. The pseudo-code in Fig. 4.14 out-
lines this strategy as it applies to DE. 

...
violate_flag = FALSE;
for (j=0; j<D; j++)
{
   if ((uj<xj,L)||(uj>xj,U)) //if parameter exceeds bounds

   {
      violate_flag = TRUE;
   }
}
if (violate_flag = TRUE) return_value = HIGH_VALUE;
else return_value = objective_function(u);
...

Fig. 4.14. Pseudo-code for the brick wall penalty 

Adaptive Penalty 

Unlike the brick wall penalty, the adaptive penalty increases the objective 
function value by an amount that depends on the number of bounds that a 
trial vector violates. For example, an objective function can be incre-
mented by a penalty whenever a parameter exceeds a bound. An alterna-
tive scheme (Fig. 4.15) imposes an additional penalty that depends not 
only on the number of violations, but also on their magnitude (Storn 
1996a, 1996b, 2000). 
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...
return_value = objective_function(u);
penalty      = 0;
for (j=0; j<D; j++)
{
   if (uj<xj,L) //if parameter exceeds lower bound

   {
      penalty = penalty + CONST_PENALTY + FACTOR*(xj,L-uj);

   }
   if (uj>xj,U) //if parameter exceeds upper bound

   {
      penalty = penalty + CONST_PENALTY + FACTOR*(uj-xj,U);

   }
}
return_value = return_value + penalty;
...

Fig. 4.15. Pseudo-code for an adaptive penalty 

Random Reinitialization 

Penalty methods do not reset out-of-bounds parameters. If bounds are eas-
ily exceeded, then vectors that satisfy all bound constraints will be rare and 
progress will be slow. Resetting methods convert out-of-bounds parameter 
values into allowed values. The most unbiased approach, random reini-
tialization, replaces a parameter that exceeds its bounds by a randomly 
chosen value from within the allowed range (Lampinen and Zelinka 1999). 
Because it radically changes a parameter’s value, reinitialization can dis-
rupt progress toward solutions that lie near bounds. Equation 4.9 shows 
how to reinitialize an out-of-bounds trial parameter: 

( ) ( ) ( )U,,,L,,,L,U,L,,, if)1,0(rand jgijjgijjjjjgij xuxuxxxu >∨<−⋅+= (4.9)

Bounce-Back 

Like random reinitialization, the bounce-back method replaces a vector 
that has exceeded one or more of its bounds by a valid vector that satisfies 
all boundary constraints. In contrast to random reinitialization, the bounce-
back strategy takes the progress toward the optimum into account by se-
lecting a parameter value that lies between the base parameter value and 
the bound being violated. The base vector xr0 is the vector in DE’s muta-
tion scheme to which the random vector differential is added. As the popu-
lation moves toward its bounds, the bounce-back method generates vectors 
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that will be located even closer to the bounds. Figure 4.16 presents pseudo-
code for the bounce-back strategy, while Fig. 4.17 illustrates the process in 
a two-dimensional search space. 

...
xr0 = base_vector;
ui  = child_vector;
...
for (j=0; j<D; j++)
{
   if (uj,i<xj,L) //if child parameter exceeds lower bound

   {
uj,i = xj,r0 + rand(0,1)*(xj,L-xj,r0);

   }
   if (uj,i>xj,U) //if child parameter exceeds upper bound

   {
uj,i = xj,r0 + rand(0,1)*(xj,U-xj,r0);

   }
}
...

Fig. 4.16. Pseudo-code for bounce-back parameter constraint handling 

x0
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x0,L x0,U

x1,L

x1,U
chosen trial point

previous trial point violating
the bound for x0

weighted
difference vector

base point

Fig. 4.17. Bounce-back bound resetting replaces an out-of-bounds trial parameter 
with one located between the base vector and the bound exceeded. 
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A simple, yet effective deterministic variant of bounce-back resetting 
forces an out-of-bounds trial parameter to the point midway between the 
bound violated and the base vector, e.g., uj,i,g= (xj,r0,g+ xj,U)/2 when the up-
per bound is violated. Setting parameter values equal to the bounds they 
violate should be avoided because it lowers the diversity of the difference 
vector population.

4.3.2 Inequality Constraints 

Inequality constraints require a solution to contain parameter values that 
satisfy one or more constraint functions. Most often, inequality constraints 
are implemented as penalty functions. Like the adaptive penalty for bound 
constraints, penalty functions increase the objective function value when 
constraints are violated. One common way to integrate constraint viola-
tions into an optimization task is to multiply each penalty by a weight, wm,
and add the result to the objective function, f(x):

( ) ( ) ( ).'
1=

⋅+=
M

m

mm pwff xxx
(4.10)

Weights help normalize all penalties to the same range. Without normali-
zation, penalty function contributions may differ by many orders of magni-
tude, leaving violations with small penalties underrepresented until those 
that generate large penalties become just as small. When there are many 
constraints, the main drawback of the penalty approach is that pre-
specified weights must be well chosen to keep the population from con-
verging upon either infeasible or non-optimal vectors. 

Especially for EAs, under-penalizing infeasible solutions (i.e., applying 
weights that are too small) typically slows convergence toward, or fails to 
find, feasible solutions. On the other hand, over-penalizing typically 
speeds convergence to a feasible solution, but risks prematurely converg-
ing on a suboptimal one, especially during optimization’s early stages. If 
constraints partition the search space such that feasible solutions form mul-
tiple disjoint regions, EAs operating with over-penalized constraints tend 
to prematurely converge upon the best point in the first feasible island dis-
covered.

Penalty Functions for the Feasible Region 

Classical penalty functions are barrier functions (Carrol 1961) 
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or log barrier functions (Frisch 1955) 

( ) ( )( )xx mmp γ−−= ln  (4.12)

where γm(x) is from Eq. 4.8. For example, Fig. 4.18 (left) illustrates a sim-
ple one-dimensional constraint, γ1(x) = x − 1 < 0, and the corresponding 
barrier function (right). A point from outside the feasible area has little 
chance to tunnel through the singularity at x = 1. 
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Fig. 4.18. Graphical illustration of the constraint x − 1 < 0 (left) and the corre-
sponding barrier function, pm(x) (right). 

The biggest drawback associated with barrier penalty functions is that they 
do not work when a vector violates a constraint. Instead, they require vec-
tors to be resituated so that they fall within a feasible region. 

Penalty Functions for Infeasible Regions 

One penalty that often works well when trial solutions lie outside the con-
straint region is 

( ) ( ) ( ) >
=

otherwise.0

,0for2 xx
x mm

mp
γγ (4.13)

When γ1(x) = x − 1 < 0, the classical barrier penalty is infinite at the bound 
x = 1, but when computed according to Eq. 4.13, the penalty is zero. The 
effect of Eq. 4.13 is to steer the population within an infeasible region to-
ward a feasible one, rather than obstruct it with an insurmountable barrier 
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(Fig. 4.19). Penalizing with the absolute value of γm(x) instead of its square 
more gently steers vectors toward feasible areas. 
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Fig. 4.19. Penalty for the constraint γ1(x) = x − 1 < 0, according to Eq. 4.13 

Other common penalty functions for the infeasible region are 
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otherwise.0

,0for1cosh xx
x

mm

mp
γγ (4.14)

and
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Constraint Satisfaction: An Example 

In constraint satisfaction problems, optimization terminates once con-
straints are satisfied. The following constraint satisfaction problem resem-
bles those that arise in signal processing (filter design) and kinematics (tra-
jectory design). The function 
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xx
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(4.16)
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has two parameters x0 and x1 as well as the running variable τ. In addition, 
let h(x0, x1, τ) be subject to the constraint functions: 

)10,0[for),,(04.1),,( 10101 ∈−= τττγ xxhxx (4.17)

[ ]20,10for4.0),,(),,( 10102 ∈−= τττγ xxhxx (4.18)

[ ]5,0for),,(8.0),,( 10103 ∈−= τττγ xxhxx (4.19)

Figure 4.20 more clearly shows the nature of the optimization task speci-
fied by Eqs. 4.16–4.19. 
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Fig. 4.20. The curved line must fall within the upper and lower bounds over the 
specified range. Points along the τ−axis illustrate each constraint function. 

Combining Eq. 4.10 and Eq. 4.13 together with Eqs. 4.15–4.17 and tak-
ing S finely quantized samples on the τ-axis yields the objective function 
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(4.20)

Figure 4.21 plots f′(x) with all weights set equal to 1 (wm = 1). 
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f'(x1,x2,τ)
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Fig. 4.21. The final objective function from Eq. 4.20. Values > 5000 have been 
clipped to 5000 to enhance detail. 

The constrained function, f′(x,τ), is symmetric around x1 = 0, so there is 
more than one global minimum. Even this relatively simple problem pro-
duces an objective function that is riddled with local minima. 

Direct Constraint Handling 

Schemes that sum penalty functions run the risk that one penalty will 
dominate unless weights are correctly adjusted. In addition, the population 
can converge upon an infeasible region if its objective function values are 
much lower than those in feasible regions. It can even happen that no set of 
weights will work. Because weight selection tends to be a trial and error 
optimization problem in its own right, simpler direct constraint handling
methods have been designed that do not require the user to “tune” penalty 
weights.

Among the early direct handling techniques are those due to Kjellström 
and Taxen (1981) and Kreutzer (1985). These constraint relaxation 

techniques loosen constraints just enough so that all vectors in a population 
satisfy all constraints. Constraints are  subsequently tightened over time. 
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This idea was extended by Storn (1999a) as CADE (Constraint Adaptation 
with Differential Evolution) to enhance DE’s range of application. 

Lampinen has devised a similar method (Lampinen 2001) that shows 
improved convergence speed when compared to CADE. In contrast to 
standard DE, each population vector is assigned not just one, but an array 
of objective values. The array contains not only each vector’s objective 
function’s value, but also its constraint function values, γm(xi), m = 1, …, 
M; i = 1, …, Np. Figure 4.22 provides an overview. 
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Fig. 4.22. Direct constraint handling with DE after Lampinen (2001). This exam-
ple exhibits two constraints. 

In simple terms, Lampinen’s criterion selects the trial vector ui,g if: 

• ui,g satisfies all constraints and has a lower or equal objective function 
value than xi,g, or 

• ui,g is feasible and xi,g is not, or 
• ui,g and xi,g are both infeasible, but ui,g does not violate any constraint 

more than xi,g.
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 More formally, Lampinen’s selection criterion states: 
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To avoid stagnation on flat regions of the objective function surface, 
trial vectors replace competing target vectors when both are infeasible so-
lutions of equal quality, i.e., when both vectors violate all constraints to the 
same extent. The aforementioned CADE method has basically the same 
structure as Lampinen’s method except that, in CADE, a trial vector com-
petes against the worst vector of the previous generation instead of its as-
signed target vector. Consequently, CADE tends to converge more slowly 
than Lampinen’s method because CADE is more likely to accept small 
improvements in a trial vector. 

If the objective function is unconstrained (M = 0, N = 0) or both vectors 
are infeasible, then Lampinen’s criterion simply compares objective func-
tion values, just like DE’s usual selection rule. When either one or both 
vectors are infeasible, however, objective function values are not com-
pared. Consequently, it is not necessary to evaluate the objective function 
as long as one or more constraints are violated. This not only saves time, 
but also prevents over-satisfying constraints since there is no selective 
pressure to drive vectors into infeasible regions with low objective func-
tion values. Instead, selection drives vectors in the direction where con-
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straint violations decrease (Lampinen 2002). For example, trying to make 
γm(ui,g) smaller than γm(xi,g) once γm(xi,g) ≤ 0 over-satisfies the constraints. 
As the second term in the if-condition for ui,g in Eq. 4.21 shows, the trial 
vector’s constraint function γm(ui,g) needs to be less than or equal to the 
target’s constraint function γm(xi,g) only if γm(xi,g) is positive, i.e., only if 
the target violates the constraint. If γm(xi,g) is zero or negative, i.e., if the 
target constraint is fulfilled, then the trial vector only needs to be less than 
or equal to 0. The fact that Lampinen’s method does not over-satisfy con-
straints is a significant benefit. 

Like DE selection, Lampinen’s criterion only needs to determine which 
of two solutions is better, so solutions can be compared even if objectives 
are not numerical. When both solutions are feasible, or one is feasible and 
the other is not, this determination is straightforward. The situation is less 
clear when competing vectors are both infeasible. The part of Lampinen’s 
criterion that decides which of two infeasible solutions is better is based on 
the idea of Pareto-dominance in the constraint function space, γ'(x) = 
max(0, γ(x)) (see Sect. 4.6). If a feasible solution for the problem exists, 
the Pareto-optimal front in the effective constraint function space is a sin-
gle point (γ'(x) = 0). 

In addition to being simple, Lampinen’s constraint handling approach 
can reduce the computational effort spent evaluating vectors. Not only 
does the objective function not have to be evaluated when one or both vec-
tors are infeasible, but a vector can also be rejected before all its constraint 
violations have been computed, thus saving time. Figure 4.23 depicts an 
efficient implementation of Lampinen’s constraint handling method that 
exploits these two time-saving features. 

Figure 4.24 provides an example of how the order in which functions 
are evaluated affects the total number of evaluations. 
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Fig. 4.23. The recommended way to implement Lampinen’s selection scheme 
(Lampinen 2001, 2002) 
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Comparison of Computational Implementations
Number of Function Evaluations for Solving a Multi-Constrained Problem
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Fig. 4.24. The number of function evaluations to solve a multi-constrained prob-
lem, Problem no. 106 in Hock and Schittkowski (1981), with and without the op-
timized implementation described in Fig. 4.23. This problem has a single objective 
and is subject to six constraint functions. See Lampinen (2002) for details of the 
solution.

Direct Constraint Handling: An Example 

Visualizing the shape of the region containing feasible vectors provides an 
insight into how DE operates when constraints are handled directly. In 
general, the shape of a region of acceptability, or ROA, in which all vec-
tors satisfy a given set of constraints, is not known and may require con-
siderable computational effort to determine. For the problem described by 
Eqs. 4.16–4.19, however, ROAs can be computed analytically. Figure 4.25 
shows two ROAs corresponding to domains whose bounds are defined by 
infeasible trial and target vectors that satisfy a relaxed set of constraints. 
Based on Lampinen’s criterion, the trial vector ui,g will be selected because 
it falls inside the ROA of the target vector, xi,g.

The trial vector’s chance of success depends on the shape of the target 
vector’s ROA. As constraints are tightened, the ROA shrinks until it even-
tually splits into two disjoint islands (Fig. 4.26). Multiple feasible regions, 
like multiple local optima, make optimization more difficult. Nevertheless, 
DE’s differential mutation scheme can handle the situation of split islands 
because its vector differentials adapt to the changing ROA. As islands 
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shrink and drift apart, there will still be many vectors whose length and 
orientation can transport a vector between islands. 
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Fig. 4.25. Example for ROAs defined by the target and trial vectors. Since it falls 
inside the ROA defined by the target vector, xi,g, the trial vector ui,g wins in this 
example. 

Another example in which constraints partition the problem space into 
disjoint islands looks for the parts of an ellipse that are not shared by an 
overlapping circle. More precisely, the problem is to: 
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Fig. 4.26. The sequence ROA1, ROA2, ROA3a and ROA3b illustrates how the ROA 
changes as constraints are tightened. 
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Solutions lie inside the ellipse defined by γ2(x) and outside the circle de-
fined by γ1(x) (see Fig. 4.27). In practice, multiple disjoint sets of feasible 
vectors can arise when constraints are nonlinear, as they are in Eq. 4.22. 
Figure 4.27 shows how the population evolves under Lampinen’s criterion 
not only in the search space, but also in the constraint function space. 

Since both the population and the feasible region(s) in Fig 4.27 are 
comparatively large, random initialization will usually generate at least 
one feasible solution. Despite this, Lampinen’s method does not depend on 
the initial population containing any feasible solutions. Instead, the selec-
tive pressure it exerts drives vectors toward both feasible regions so that 
after only 40 generations, all vectors satisfy both constraints. Results were 
obtained with DE/rand/1/bin, Np = 100, F = 0.9 and Cr = 0.9. The rela-
tively large population was chosen for illustrative purposes and a smaller 
population would have more quickly solved this problem. 

Lampinen’s criterion unambiguously defines a “best” vector only when 
there is one or more feasible vectors, in which case the vector with the 
lowest objective function value is best. When feasible vectors cannot be 
found, a best vector is not so easily defined. One possibility is to define the 
best vector as the nearest feasible vector or perhaps the vector with the 
lowest total constraint violations. Finding the “best” infeasible vector can 
indicate which constraints are causing problems or suggest a new solution 
not previously envisioned.  

In conclusion, Lampinen’s criterion does not change DE’s selection rule 
as much as it extends its constraint handling abilities. Lampinen’s method 
has the advantage shared by all direct constraint handling methods that 
constraints can be implemented without having to empirically determine 
penalty weights for a multi-term objective function. Similarly, Lampinen’s 
method does not require the user to set any additional control parameters. 

For constrained optimization problems having an objective function, 
Lampinen’s criterion avoids over-satisfying constraints, yet it also pro-
vides the selective pressure needed to solve pure constraint satisfaction 
tasks that lack an objective function. While its simplicity and effectiveness 
make Lampinen’s criterion a good first choice, penalty methods should not 
be abandoned, as they may prove more effective in some cases, especially 
if time is taken to adjust them properly. 
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The Evolution of the Population 
Modified DE/rand/1/bin, F=0.9, Cr=0.9, Np=100
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Fig. 4.27. DE’s population evolves until the constraints in Eq. 4.21 are satisfied. 
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4.3.3 Equality Constraints 

As Eq. 4.8 previously indicated, equality constraints can be written in the 
form 

Nnn ,...,2,1,0)( ==xϕ (4.23)

If circumstances permit, the best way to handle equality constraints is to 
use them to eliminate variables from the objective function. 

Elimination of Variables 

When an equality constraint equation can be solved for a single variable, 
its satisfaction is guaranteed if the resulting expression is substituted into 
the objective function. For example, let the objective function 

( ) ( )2
1

2
010 21),( −+−= xxxxf (4.24)

be subject to the constraint 
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01 −⋅−= xx (4.25)

Figure 4.28 plots the concentric contours of the objective function (Eq. 
4.24) along with the curve that satisfies the equality constraint (Eq. 4.25). 

Replacing x1 in Eq. 4.24 with the right side of Eq. 4.25 yields the con-
strained objective function 

( ) ( )( )22
0

2
00 .5.0311)(' −⋅−+−= xxxf (4.26)

the graph of which can be seen in Fig. 4.29. Eliminating an objective 
function variable with an equality constraint not only ensures that all 
vectors satisfy the constraint, but also reduces the problem’s dimension by 
1.

In pactice, not all equality constraint equations can be solved for a term 
that also appears in the objective function. When it cannot be used to 
eliminate a variable, an equality constraint can be recast as a pair of 
inequality constraints. 
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Fig. 4.28. The objective function’s concentric contour lines (Eq. 4.24) and the line 
representing the parabolic constraint function (Eq. 4.25) 
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Transformation into Inequality Constraints 

Eliminating a variable is the only way to ensure that a solution exactly sat-
isfies an equality constraint. Otherwise, the finite precision of floating-
point number formats limits the degree to which an equality constraint can 
be satisfied. It is more reasonable, therefore, to demand that an equality 
constraint violation be less than ε, where ε can be made as small as de-
sired:

.,...,2,1,)( Nnn =< εϕ x (4.27)

This relaxed “equality” constraint actually corresponds to a pair of ine-
quality constraints: 

.)(and)( εϕεϕ −>< xx nn
(4.28)

As ε approaches 0, the area of the ROA delineated by the inequality con-
straints degenerates into a one-dimensional curve like that in Fig. 4.28 
(Storn 1999a). Consequently, if ε = 0, it is very unlikely that DE will 
generate any points that satisfy the equality constraint exactly (i.e., within 
the floating-point format’s limit of precision). As a result, population 
vectors are inevitably infeasible. Even if all parent vectors fall exactly on 
the equality constraint line, the children they create would almost never be 
feasible (unless the constraint was linear), rendering futile the search for 
the objective function minimum. If, however, ε is allowed to shrink as the 
population evolves, both the optimum vector’s location and the degree to 
which equality constraints are approached can be made arbitrarily small. 
One way to achieve this treats ε as a penalty. Note also that the possibility 
of expressing an equality constraint with a pair of inequalities (Eq. 4.28) 
offers the possibility to apply the inequality constraint handling approaches 
described in Sect. 4.3.2. 

Penalty Approach 

Like inequality constraints, equality constraints can be transformed into 
cost terms that penalize the objective function. Equation 4.29 shows that 
either the absolute value or the square of ϕn(x) makes a suitable penalty. 
When all constraints are fulfilled, the penalty term, like ε, becomes zero: 
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Using the constraint violation’s absolute value, the penalized objective 
function for the problem set forth in Eqs. 4.24 and 4.25 becomes 
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Figure 4.30 plots the contour lines for this function for w1= 1. DE has no 
particular difficulties solving this problem. 
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Fig. 4.30. Contour plot of Eq. (4.30)

Equality Constraint Satisfaction 

Constraint satisfaction problems are characterized by their lack of an ob-
jective function. If all constraints are equality constraints, the problem re-
duces to solving a system of equations, ϕn(x) = 0. When all constraint 
equations are linear, the simplex method (Hillier and Lieberman 1997) or 
interior point methods (Arbel 1993) like Karmarkar’s algorithm (Kar-
markar 1984) are both fast and reliable. (The simplex method referred to 
here is distinctly different from the simplex algorithm proposed by Nelder 
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and Mead.) Once equality constraints become nonlinear, linear program-
ming methods are not applicable. The fact that there is no general approach 
to solving systems of nonlinear equations makes DE a plausible alternative 
because it does not require nonlinear equations to be treated any differently 
than linear ones. 

A pure constraint satisfaction problem (Eq. 4.27) can be recast into an 
“objective” function that sums the squares (or absolute values) of all equal-
ity constraint violations: 
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To satisfy the equality constraints, f′(x) must be driven to zero. 
Digital filter design provides a practical example of a nonlinear con-

straint satisfaction problem in which two representations of the same data 
flowgraph that have the time sequence s(ν) as input produce the same time 
sequence y(ν) as output (Fig. 4.31) (Antoniou 1993). Elements of the 
flowgraphs are adders (circles), unit delay elements (rectangles) and mul-

tipliers (triangles). There are many filter design programs that can find the 
multiplier values for the second canonical structure (left data flowgraph). 
The state variable structure, however, has better numerical properties, so it 
is important to derive the multiplier values for the state variable structure 
from those computed for the second canonical structure. 
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Fig. 4.31. Two data circuits (flowgraph structures) that yield the same output y(ν)
for the same input, s(ν)

The following system of nonlinear equations describes the design prob-
lem: 
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For simplicity, no variables were eliminated from Eq. 4.32. Equation 4.31 
was used instead. 

To apply DE, each of the nine state variable multipliers a11, a22, a12, a21,
d1, d2, e1, e2, e3 is assigned to a vector component xj, j = 0, 1, …, 8. The ob-
jective function based on Eq. 4.31 will be zero if ϕn = 0 for n = 1, 2, 3, 4, 
5. Since there are five known values and nine unknowns, the problem is 
under-specified and four of the nine unknowns can be preset, e.g., by set-
ting both a11 and a22 to 0 and by setting e3 to 0 and d1 to 1. Presetting vari-
ables, however, is not entirely arbitrary. A poor presetting may render the 
resulting system of equations unsolvable (Hoefer 1987). 

For example, let the numerical values input for the second canonical 
structure be 

a0 = 0.015608325640383633 
a1 = 0.009443684818916196 
a2 = 0.01980858856448345 
b1 = −1.20703125
b2 = 0.75250244140625. 

When there are no restrictions on coefficients in the state variable struc-
ture, DE found the following solution for state variable coefficients: 

d1  = −0.050119
d2  =  0.302834 
e1  = −0.128561
e2  =  0.072084 
e3  =  0.015893 
a11 =  0.387510 
a12 = −0.622358
a21 =  0.698416 
a22 =  0.819760. 
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The convergence graph in Fig. 4.32 shows that DE/rand/1/bin with Np =
30, F = 0.75, Cr = 1 had no trouble finding a solution to this nonlinear sys-
tem of equations. 

Direct Equality Constraint Handling 

Lampinen’s method for direct constraint handling can also be extended to 
equality constraints by taking the absolute value of ϕn(x) and selecting a 
trial vector that is not worse in any respect than the target vector: 

{ }

{ }

{ }

{ }

{ }

ε

ϕϕ

εϕ

εϕ

εϕ

εϕεϕ

≤

≤∈∀
∧

>∈∃

∨

>∈∃
∧

≤∈∀

∨
≤

∧
≤∧≤∈∀

=+

0where

otherwise

)()(:,...,1

)(:,...,1

)(:,...,1

)(:,...,1

)()(

)()(:,...,1

if

,

,,

,

,

,

,,

,,

,
1,

gi

gingin

gin

gin

gin

gigi

gingin

gi

gi

Nn

Nn

Nn

Nn

ff

Nn

x

xu

u

x

u

xu

xu

u
x

(4.33)

The constant ε in Eq. 4.33 may be set close to the floating-point precision 
limit. 
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Fig. 4.32. Example for the convergence graph of the problem outlined in Fig. 4.31 

4.4 Combinatorial Problems 

In combinatorial problems, parameters can assume only a finite number of 
discrete states, so the number of possible vectors is also finite. The term 
“combinatorial optimization” is often equated with “discrete optimization 
on finite sets” even when a problem is the result of quantizing a highly 
constrained continuous problem (Babu and Munawar 2001; Du and Par-
dalos 1998; Press et al. 1992; Reeves 1993). Such problems are combina-
torial (Du and Pardalos 1998; Corne et al. 1999) in a wide sense because 
they are viewed as “rearrangement problems” (Pahl and Damrath 2000). 
For example, picking the best optical glass for a telescope objective is a 
wide-sense combinatorial problem because a glass’s optical properties (in-
dex of refection, dispersion, etc.) are continuous variables that are rendered 
discrete only because a limited number of glass types are commercially 
available. DE has solved wide-sense combinatorial problems (Babu and 
Munawar 2001; Storn 2000) in which discrete parameters are numerical 
and arithmetic operations are defined (see Sect. 4.2.5). 

Many of the most familiar combinatorial problems, like the traveling 
salesman problem, the knapsack problem, the shortest-path problem, etc. 
(Syslo et al. 1983), are strict-sense combinatorial problems because they 
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have no continuous counterpart. For example, the single constraint 
(bounded) knapsack problem reflects the dilemma faced by a hiker who 
wants to pack as many valuable items in his or her knapsack as possible 
without exceeding the maximum weight he or she can carry. In the knap-
sack problem, each item has a weight, wj, and a value, cj (Eq. 4.34). The 
goal is to maximize the value of items packed without exceeding the 
maximum weight, b. The term xj represents the number of items with 
weight wj and value, cj:
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The solution to this problem will be a set of integers that indicate how

many items of each type should be packed. As such, the knapsack problem 
is a strict-sense combinatorial problem because its parameters are discrete, 
solutions are constrained and it has no continuous counterpart (only a 
whole number of items can be placed in the knapsack). 

In other strict-sense combinatorial problems, parameter values are dis-
crete because they are symbolic. For example, in the board game of Scrab-
ble, players are given seven randomly selected letters. Each letter has an 
associated numerical score. The game’s objective is to find the combina-
tion of letters with the maximum score, subject to the constraint that letters 
form a real word that shares one or more letters with a word already on the 
board. In this strict-sense combinatorial problem, the objective function 
(word score) is numerical, but parameters are discrete, non-numerical let-
ters whose combinations are highly constrained by dictionary entries and 
the existing board state. 

For a problem like Scrabble, a parameter state is a letter whose meaning 
is understood in the context of language, not a number that measures quan-
tity. Unless a symbolic combinatorial problem can be reformulated into 
one whose parameters measure quantity, DE is not likely to be effective 
because its mutation operator, like all numerical optimizers, relies on 
arithmetic operators (add, subtract, multiply, divide, modulo, etc.) rather 
than general data manipulation operations (swap, replace, move, etc.). 

DE may prove effective on strict-sense, knapsack-like problems whose 
parameters measure quantity and whose constraints are not particularly re-
strictive, but its ability to optimize strict-sense problems also depends on 
the number and nature of any constraints. Strong constraints like those im-
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posed in the traveling salesman problem make strict-sense combinatorial 
problems notoriously difficult for any optimization algorithm. In DE’s 
case, the high proportion of infeasible vectors caused by constraints pre-
vents the population from thoroughly exploring the objective function sur-
face. To minimize the problems posed by infeasible vectors, algorithms 
can either generate only feasible solutions, or “repair” infeasible ones. The 
remainder of this chapter explores one approach that generates only feasi-
ble solutions and three others that rely to varying degrees on repair mecha-
nisms. Each method proposes an analog of DE’s differential mutation op-
erator to solve the traveling salesman problem. 

4.4.1 The Traveling Salesman Problem 

The Traveling Salesman Problem (TSP) is a fairly universal, strict-sense 
combinatorial problem into which many other strict-sense combinatorial 
problems can be transformed (Syslo et al. 1983; Dolan and Aldous 1993). 
Consequently, many findings about DE’s performance on the TSP can be 
extrapolated to other strict-sense combinatorial problems.  
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c4 c5
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y

d
5,3

d 3,
4

d
4,2

d 2,
1

d1,5

Fig. 4.33. An example of a five-city TSP. The tour indicated is one possible solu-
tion.

In the TSP, a salesman wants to minimize his travel expenses by finding 
the shortest route that visits each city in his territory just once. More gen-
erally, let there be M cities ci, i = 1, 2, ..., M, each of which is at distance 
di,j = dj,i to some other city cj, j not equal to i. The total distance for the tour 
is
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Figure 4.33 shows an example of a five-city tour. 

4.4.2 The Permutation Matrix Approach 

The basic idea behind DE is that two vectors define a difference that can 
then be added to another vector as a mutation. The same idea transfers di-
rectly to the realm of permutations, or the permutation group. Just as two 
vectors in real space define a difference vector that is also a vector, two 
permutations define a mapping that is also a permutation. This generaliza-
tion of DE can be applied to the TSP because if cities are labeled with 
natural numbers, a valid tour is just a permutation of the sequence (1, 2, 
…, M). For example, xr1 and xr2 in Eq. 4.36 encode tours, each of which is 
a permutation (M = 5): 
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Labels for cities in vectors xr1 and xr2 do not have to be numbers, but using 
numerical tags makes it easy to compute and apply the permutation matrix,
P, that xr1 and xr2 define: 
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Like DE’s difference vector, the randomly derived permutation matrix can 
permute a third randomly chosen vector into a mutant. Because all opera-
tions are permutations, mutants are always feasible solutions, i.e., all are 
valid tours that visit each city just once. 

Figure 4.34 outlines an algorithm that scales the effect of the permuta-
tion matrix. Setting δ = 1 leaves the permutation matrix unchanged, while 
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δ = 0 reduces it to diagonal form. Intermediate values perform a fraction of 
the permutation defined by P.

...
for (i=1; i<M; i++)//search all columns of P
{
   if (element p(i,i) of P is 0) //1 not on diagonal
   {
      if (rand() > δ)  //if random number ex [0,1] exceeds δ
      {

j=1; //find row where p(j,i) = 1
         while(p(j,i) != 1) j++;
         swap_rows(i,j);
      }
    }
}
...

Fig. 4.34. Algorithm to apply the factor δ to the difference permutation, P

In practice, this approach tends to stagnate because moves derived from 
the permutation matrix are seldom productive. In addition, this method is 
unable to distinguish rotated but otherwise equal tours. Because they dis-
play a unique binary signature, equal tours can be detected by other means, 
although this possibility is not exploited in the algorithm described in Fig. 
4.34. This scheme is similar to the one described in Ruettgers (1997) who 
used it with some success on scheduling problems. 

In part, a permutation takes a value from one parameter and copies it 
into a parameter with a different index. Like ordinary vector addition, tra-
ditional DE only combines values from parameters having the same index. 
The following two approaches resemble traditional DE because they both 
use vector addition, although their ultimate effect is to shuffle values be-
tween parameters, i.e., generate permutations.  

4.4.3 Relative Position Indexing 

Another way to guarantee that mutant trial tours are (almost) always valid 
is to transform parameters into the floating-point interval [0,1], perform 
mutation and then convert mutant parameters back into the integer domain 
using “relative position indexing” (Lichtblau 2002a). The first step in this 
simulation of DE mutation is to divide each parameter by the vector’s 
largest element, in this case, M = 5. 
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The subscript, f, denotes a vector’s floating-point representation. After a 
third vector is chosen and normalized 
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the mutation is applied: 
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The floating-point mutant vector, vf, is then transformed back into the inte-
ger domain by assigning the smallest floating value (0.23) to the smallest 
integer (1), the next highest floating value (0.37) to the next highest integer 
(2), and so on to obtain 
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This backward transformation, or “relative position indexing”, always 
yields a valid tour except in the unlikely event that two or more floating-
point values are the same. When such an event occurs, the trial vector must 
be either discarded or repaired. 
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This method looks attractive at first sight and the results are reasonable, 
albeit not competitive with special-purpose TSP-solvers (Lichtblau 2002a, 
2002b). A closer look, however, reveals that DE’s mutation scheme to-
gether with the forward and backward transformations is, in essence, a 
shuffling generator. In addition, this approach does not reliably detect 
identical tours because the difference in city indices has no real signifi-
cance. For example, vectors with rotated entries, e.g., (2, 3, 4, 5, 1) and (1, 
2, 3, 4, 5), are the same tour, but their difference, e.g., (1, 1, 1, 1, −4), is 
not zero. 

4.4.4 Onwubolu’s Approach 

Like Lichtblau, Onwubolu and Babu (2004) label cities with integral nu-
merical indices, transform vectors into the real domain, manipulate them 
and then transform them back into the integer domain. Onwubolu and 
Babu defined the forward transformation of city indices into the continu-
ous domain as 

( )ε+⋅+−= 11'
ii xx (4.42)

where ε is a small number. The backward transformation is defined as 

( ) ( )[ ]ε−⋅+= 21round '
ii xx (4.43)

where the round() function rounds the argument to the nearest integer. 
Like the previous two methods, this approach impedes DE’s self-

steering mechanism because it fails to recognize rotated tours as equal. In 
addition, Onwubolu and Babu’s method usually generates invalid tours 
that must be repaired. Even though competitive results are reported in On-
wubolu and Babu (2004) and Onwubolu (2003), there is reason to believe 
that the success of this approach is primarily a consequence of prudently 
chosen local heuristics and repair mechanisms, not DE mutation. 

4.4.5 Adjacency Matrix Approach 

When tours are encoded as city vectors, the difference between rotated but 
otherwise identical tours is never zero. Rotation, however, has no effect on 
a tour’s representation if it is encoded as an adjacency matrix. An adja-
cency matrix is a symmetric, M × M matrix matrix in which the entry in 
row i and column j is the number of connections from city i to city j (Do-
lan and Aldous 1993). The tour in Fig. 4.33 generates the adjacency ma-
trix:
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For example, city c1, which corresponds to both row 1 and column 1 of A1,
is connected to city c2 and to city c5 because there are ones in the second 
and fifth columns of row 1, as well as in the second and fifth rows of col-
umn 1.  

Because the TSP allows each city to be visited only once, the elements 
of A1 must be either ones or zeros. More particularly, there must be exactly 
two ones in each row and in each column. In addition, the main diagonal 
of the adjacency matrix must be zero because there is no route from a city 
to itself. An adjacency matrix that satisfies the above requirements consti-
tutes a valid TSP matrix. 

Like the permutation matrix, the adjacency matrix is a semi-numerical, 
logical operator whose binary elements can be computed by comparing ei-
ther numeric or non-numeric city symbols. Since matrix entries are zeros 
and ones, differences must be taken in the finite field GF(2), or Galois 
Field 2. All values in GF(2) are either 0 or 1 and all arithmetic operations 
are performed modulo 2, meaning that 2 is added to, or subtracted from, 
each computed result until only 0 or 1 remains. Equation 4.45 shows that 
addition and subtraction are the same in GF(2): 
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The notation 

( ) yxyx ⊕=+ 2mod (4.46)

is shorthand for modulo 2 addition, also known as the “exclusive or” logi-
cal operation. 

The difference matrix ∆i,j
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is the analog of DE’s traditional difference vector. For example, given the 
valid TSP matrices A1 and A2,
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their difference is 
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From Eq. 4.49 it is apparent that ∆i,j itself need not be a TSP matrix. For 
example, the first row and column of a valid TSP matrix cannot be all ze-
ros.

Rotated but otherwise equal tours generate identical adjacency matrices. 
Consequently, the difference matrix between equal but rotated tours is al-
ways zero. Figure 4.35 shows that when two tours are not equal, the differ-
ence matrix drops connections that are common to both A1 and A2.
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Fig. 4.35. Example for the difference matrix ∆i,j and its graphical interpretation 
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The TSP’s tight constraints make it unlikely that adding a difference 
matrix to a valid TSP base matrix will produce an adjacency matrix that 
satisfies the TSP’s requirements. Consequently, invalid TSP matrices must 
be repaired to ensure that each city is connected to exactly two others. One 
possible repair mechanism is based on the bounce-back method of parame-
ter constraint handling (Sect. 4.3.1). In particular, if adding the difference 
matrix to a randomly chosen TSP base matrix does not yield a valid TSP 
trial matrix, then this trial matrix is discarded, and a “2-exchange” (Syslo 
et al 1983) is performed on the TSP base matrix (Fig. 4.36) instead. 

Fig. 4.36. The “2-exchange” heuristic mutation 

The 2-exchange reconnects two cities in a different way. First, two cities 
are randomly selected except that both must be vertices of the difference 
matrix and not connected to each other. Next, an immediate neighbor of 
each city is randomly chosen except that the neighbors may not be the 
same city. The 2-exchange then swaps the neighbors of the two previously 
selected cities.  

This scheme preserves good sections of the tour if the population has 
almost converged, i.e., if most of the TSP matrices in the population con-
tain the same subtours. When the population is almost converged, there is 
a high probability that the difference matrix will contain just a few ones, 
which means that there are only a few cities available for a 2-exchange. To 
avoid stagnation, a population initialized with randomly generated tours 
must be large enough so that every city can be selected for a 2-exchange 
by a difference vector. This minimum population size depends on the 
probability that a city will be isolated in the difference matrix because two 
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adjacent city connections are the same. To reduce the probability of stag-
nation, entirely random 2-exchange moves are allowed with a probability 1 
− p, p ∈ [0, 1]. Figure 4.37 shows that this method is competitive with 
simulated annealing. 

The dominant move in this scheme is the 2-exchange repair algorithm, 
not the application of the difference matrix. This claim can easily be veri-
fied by running the algorithm without the 2-exchange repair algorithm 
which quickly leads to stagnation. As such, selection is the only aspect of 
DE in this technique that makes a significant contribution to resolving the 
TSP. This is to be expected because the TSP is so heavily constrained that 
a general-purpose mutation scheme is very unlikely to generate valid tours. 

4.4.6 Summary 

Although DE has performed well on wide-sense combinatorial prob-
lems, its suitability as a combinatorial optimizer is still a topic of consider-
able debate and a definitive judgment cannot be given at this time. Al-
though the DE mutation concept extends to other groups, like the 
permutation group, there is no empirical evidence that such operators are 
particularly effective. Similarly, tagging what is fundamentally symbolic 
data with numerals makes it possible to implement DE-style mutation op-
erations, but the resulting differentials reflect arbitrary labeling choices, 
not inherent metrical relationships or the population’s correlation with the 
objective function surface. Most of the gains seen when DE-style operators 
are invoked in these circumstances can be traced to repair mechanisms and 
DE’s elitist selection scheme. More generally, the particular nature of 
strict-sense combinatorial problems – their constraints and use of symbols 
or numerical values – is more important in determining DE’s success than 
is the fact that they are strict-sense problems.  

Certainly in the case of the TSP, the most successful strategies for the 
TSP continue to be those that rely on special heuristics (Onwubolu 2003; 
Michalewicz and Fogel 2000; Freisleben and Merz 1996; Dueck 1993). 
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Fig. 4.37. Convergence graph (above) for a relatively small, 50-city TSP (below) 
that was solved with simulated annealing (Press et al. 1992) and with the adja-
cency matrix approach. The final tour length for SA was 5.8835 and 5.875 for DE. 
Control parameters for DE were Np = 800 and p = 0.6. 
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4.5 Design Centering 

Design centering is a constraint satisfaction problem whose goal is to find 
the solution, which, when perturbed, remains feasible more often than any 
other solution. Such problems are common in manufacturing where imper-
fections in production processes are inevitable. For example, analog elec-
tronic circuit design relies on components like resistors and capacitors 
whose actual values inevitably differ from their stated values (Zhang and 
Styblinski 1995). Similarly, mechanical designers must contend with shape 
variations due to machine imprecision or tempering processes. Design cen-
tering also plays an important role in silicon chip manufacturing where 
processes cannot be perfectly controlled. Design centering maximizes pro-
duction yield by finding the point least likely to produce an infeasible vec-
tor when manufacturing variations are taken into account. 

When perturbed by the probability density function (PDF) that charac-
terizes the production process, the vector that yields the most designs satis-
fying all constraints is the design center, x0. Mathematically, design cen-
tering is the task of finding x = x0 such that 

maximum.)(PDF
ROA

00 =xx d (4.50)

Loosely speaking, design centering tries to find the most interior point, for 
example, by finding the point that maximizes the minimum distance to the 
ROA’s rim. This problem is non-trivial since the ROA is generally un-
known. In addition, the PDF that models vector deviations plays an impor-
tant role in defining the shape whose design center is sought. For example, 
the largest hypersphere that can be inscribed inside the ROA is not neces-
sarily the best shape to represent the effects of perturbations. 

4.5.1 Divergence, Self-Steering and Pooling 

Populations driven by DE exhibit three properties that facilitate design 
centering: divergence, self-steering and pooling. Divergence is the ten-
dency of the population’s variance to increase over time when there is no 
selective pressure. Self-steering is the ability to adapt step sizes and orien-
tations in response to the ROA’s shape. Pooling describes the population’s 
persistence in areas within the ROA where trial vectors have the greatest 
chance of survival. 

Populations evolve within the ROA the same way that they do on objec-
tive function plateaus. Just as all vectors situated on a plateau have the 
same objective function value, those that inhabit the ROA are all consid-
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ered equally feasible. In both cases, there is no selective pressure other 
than that exerted by trial vectors replacing their equally feasible targets. 
Since differential mutation inevitably places some trial vectors within the 
ROA but beyond the hull that encloses the current generation, the popula-
tion expands if F is not too small (see Fig. 4.38). If, however, F is a nor-
mally distributed random variable that is below Zaharie’s limit, the popula-
tion will converge even if feasible trial vectors always replace feasible 
target vectors (see Sect. 2.5.1) (Zaharie 2002). Otherwise, vectors diverge, 
their differentials become longer and the expansion accelerates. Only the 
ROA’s boundary halts the expansion because infeasible vectors cannot re-
place feasible ones. Figure 4.39 shows how divergence quickly disperses a 
highly localized initial population. 

x0

-0.4 -0.2 0 0.2 0.4

0

-0.2

-0.4

0.4

0.2 ROA

x1

Fig. 4.38. Some of the feasible trial vectors that replace feasible target vectors will 
lie beyond the current population’s boundary causing vectors to diverge over time 
if F is above Zaharie’s limit. 

While divergence helps DE quickly explore the ROA’s full extent, self-
steering adapts the rate of divergence to the ROA’s shape. The second pic-
ture in Fig. 4.39 shows that as vectors conform to the “racket handle” 
shape, the differentials they generate reinforce the population’s tendency to 
spread horizontally. Coupled with divergence, self-steering allows vectors 
to quickly escape from the racket handle. Once the population enters the 
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ROA’s open area, steps begin to grow vertically while they continue to ex-
pand horizontally. 
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Fig. 4.39. Divergence, self-guiding and pooling of the vector population. Results 
were generated using DE/rand/1/bin with Np = 30, F = 0.9 and Cr = 0.5. 

After the population expands into the ROA’s open area, pooling keeps it 
there. Because vectors in the ROA’s most expansive region are the points 
most likely to create a feasible trial vector, there is a natural tendency for 
vectors to pool there. As the final picture in Fig. 4.39 shows, tightly con-
strained areas like the racket handle are abandoned as vectors pool in a less 
restricted environment. The program, racket.exe, on the accompany-
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ing CD allows experimenting with the divergence, self-guiding and pool-
ing effects. 

4.5.2 Computing a Design Center 

Applying DE to design centering involves three steps. The first step is to 
ensure that all Np population members inhabit the ROA, either by perturb-
ing a known solution with, for example, a multi-dimensional Gaussian dis-
tribution, or by applying DE in conjunction with Eq. 4.21 (Lampinen’s cri-
terion) and waiting until all constraints are satisfied. 

Once the population consists of Np feasible vectors, the second step is to 
run DE long enough for the population to spread over the entire ROA. One 
indicator that the population has reached equilibrium is that the time aver-
age of the mean vector remains constant within certain bounds, i.e., the 
time average 
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should satisfy 

η<− −1,, kavkav xx (4.52)

where η is a small number. 
The third step is to decide how to define the design center. For convex 

ROAs, several authors (Brayton et al. 1981; Lueder 1990; Sapatnekar et al. 
1994) argue that it makes sense to use the average value itself as the design 
center. If, however, the ROA is non-convex, the mean vector can fall into 
an infeasible zone. Figure 4.39 illustrates a non-convex ROA. 

Another measure that provides a rough estimate of the design center is 
the point that maximizes the center index:
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Equation 4.52 assumes that all vectors are feasible. The center index is 
based on the idea that if feasible vectors are uniformly distributed, the 
ROA’s most interior points also have the nearest neighbors. Figure 4.40 
shows the center index for the problem defined in Eqs. 4.16–4.19 except 
that bounds have been changed from 1.04, 0.4, 0.8 to 1.1, 0.5, 0.4, respec-
tively. The small circle shows that the design center is well placed even 
though the ROA is non-convex. It has to be admitted, however, that this 
method for estimating the design center is still in its infancy. Program code 
for this example can be found on this book’s accompanying CD. 

Fig. 4.40. The design center for ROA described by Eqs. 4.16–4.19 but with differ-
ent constraints (1.1, 0.5, 0.4). Here, the design center is based on maximizing the 
center index (Eq. 4.53). Results were generated using DE/rand/1/bin with Np =
100, Cr = 1 and F = 0.75 with jitter: Fj = 0.75+randj((0,1) − 0.5)⋅0.0001.

Design centers are less than optimal to the extent that neither the mean 
vector nor the center index takes into account the PDF to which parameters 
are subject (except to assume that it is uniform). While DE holds promise 
as a design centering method, more research is needed to develop an effec-
tive design centering implementation. 
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4.6 Multi-Objective Optimization 

Multi-objective optimization attempts to simultaneously minimize K indi-
vidual objective functions. The goal, therefore, is to 
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ℜD is the D-dimensional space of real numbers. The solution to this prob-
lem is unambiguously defined only if there is a single vector that simulta-
neously minimizes all K objective functions. In this special case, the solu-
tion vector, x, satisfies the condition 

{ } *:,...,1 kKk xx =∈∀ (4.54b)

where xk* is a global optimum of the kth objective function, fk(x).
In practice, objectives often conflict, meaning that all K objective func-

tion extremes do not coincide. When all objectives cannot be simultane-
ously minimized, a single, best solution is not easily defined. For example, 
quality control technicians must inspect every item to be certain that each 
meets design tolerances. In many cases, however, absolute certainty about 
a product’s quality is not necessary and the high cost of inspecting each 
unit is not justified. In this example, low cost and defect-free products are 
conflicting objectives. The “best” solution is usually a compromise that 
depends on which objectives are the most important. If each objective 
function can be assigned a weight that indicates its relative importance, 
then the best solution will be unambiguous.   

4.6.1 Weighted Sum of Objective Functions 

Minimizing a weighted sum of objective functions transforms a multi-
objective optimization problem into one with a single objective to which 
DE or any other suitable optimizer can be readily applied. Summing 
weighted objective functions reduces the multi-objective goal to 
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The symbol, wk, denotes the kth objective function weight. 
Multi-objective optimization methods can be classified based on how 

they assign weights, i.e., how they articulate preferences (Hwang and Abu 
Syed 1979; Miettinen 1998; Deb 2001; Coello Coello et al. 2002). 

• A priori. Weights are assigned prior to optimization based on expert 
knowledge.

• Progressive. An expert changes weights during optimization based on 
feedback from an updated set of solutions. 

• A posteriori. Once a set of candidate solutions has been found, an expert 
selects one result and by so doing, implicitly specifies a set of weights. 

A priori preference articulation assumes that objective preferences can 
be ordered and that weights do not change during optimization. If, how-
ever, there are many conflicting objectives, ordering them may be difficult. 
So that weights have the desired impact, objective functions may first have 
to be normalized to compensate for their different dynamic ranges. Deter-
mining the appropriate normalization scale factor can be difficult because 
it requires knowing the range of function extremes – knowledge that the 
optimization itself is supposed to provide. Without additional information 
about other potentially effective solutions, the intricacies of weight selec-
tion and normalization often make the a priori approach impractical. 

Progressive preference articulation is more flexible than a priori weight 
selection because it exploits knowledge gleaned while the optimization is 
in progress. By periodically monitoring the optimization, an expert can 
change weights and affect corrections. Although progressive preference ar-
ticulation represents a level of refinement over a priori weight selection, 
the expert’s biases can inadvertently steer the population to what is ulti-
mately seen as an undesirable compromise. 

Searching for a single result that minimizes a weighted sum of objective 
functions excludes from consideration the many compromise solutions that 
may also be viable. Instead of imposing a set of weights, experts often 
want to find a set of competing solutions without biasing the result by ei-
ther a priori or progressive preference articulation. In a posteriori prefer-
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ence articulation, experts implicitly apply weights by selecting one solu-
tion from a set of equally compelling final possibilities. Algorithms that 
employ a posteriori weight preference are typically based on Pareto-
optimality.  

4.6.2 Pareto Optimality

The concept of a Pareto-optimum was first introduced by the engi-
neer/economist Vilfredo Pareto (Pareto 1886). The Pareto-optimization 
approach to multi-objective optimization can be characterized as follows: 
“the term ‘optimize’ in a multi-objective decision making problem refers 
to a solution around which there is no way of improving any objective 
without worsening at least one other objective” (Palli et al. 1998). 

The central concept of Pareto-optimization is Pareto-dominance. A vec-
tor of objective function values dominates another if none of its objective 
values are higher and at least one is lower. More specifically, let vectors y
= {f1(x), f2(x), …, fK(x)} and y* = {f1(x*), f2(x*), …, fK(x*)} be points in 
the objective function space y ∈ O ⊂ ℜK. Each vector’s components are 
the objective function values of an associated point in the parameter or de-
cision space, x ∈ S ⊂ ℜD. Mathematically, vector y* dominates vector y iff

y* is partially less than y, i.e., if 

{ } { } ).()(:,,1)()(:,,1 yyyy kkkk ffKkffKk <∈∃∧≤∈∀ ∗∗ (4.56)

A solution that is not dominated by any other feasible solution is called
Pareto-optimal, or strongly efficient. More precisely, a solution x* ∈ S is 
Pareto-optimal if there is no other vector, x ∈ S, whose objective function 
vector dominates that of x*. Thus, Pareto-dominance is a relationship be-
tween vectors in the objective function space, O, not the parameter space, 
S.

The Pareto-front is the hypersurface within the objective function space, 
O, that is defined by the set of all strongly efficient solutions. As such, the 
Pareto-front is a set of “best compromise” solutions that cannot be domi-
nated – no objective can be improved without making some other objective 
worse. Armed with such a set of solutions, an expert can learn how much 
improving one objective worsens the others before picking one solution 
from the non-dominated set. 
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4.6.3 The Pareto-Front: Two Examples 

Equation 4.57 outlines a two-dimensional, multi-objective optimization 
problem with two conflicting objectives: 
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Figure 4.41 plots 200 non-dominated solutions to Eq. 4.57 and one domi-

nated solution that is outperformed by many other points with respect to 
both objectives. The distribution of non-dominated points in the objective 
function space approximates the true Pareto-front (Fig. 4.41, right). 
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Fig. 4.41. Plots of 200 non-dominated solutions for the bi-objective problem in 
Eq. 4.57 in both the decision variable and objective function spaces. The Pareto-
front separates feasible solutions from infeasible ones. Non-dominated points were 
generated with the modified version of DE that is described in the next section. 

In this example, solutions also form a front when they are plotted in the 
decision variable space (Fig. 4.41, left). The distribution of Pareto-optimal 
points within the parameter space is a consequence of the particular way in 
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which Eq. 4.57 associates points in the parameter space with their counter-
parts in the objective function space. Depending on the mapping, Pareto-
optimal points may not form a front at all. In the following two-variable, 
two-objective optimization problem, solutions in the decision space are not 
distributed on a front: 
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The dual objective in Eq. 4.58 is to simultaneously minimize the dis-
tance to each of two concentric circles, one with radius 6, the other with 
radius 8 (see Fig. 4.42). Only those points that fall on or between the cir-
cles are Pareto-optimal.  
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Fig. 4.42. A set of 100 different Pareto-optimal solutions for the bi-objective ex-
ample problem Eq. 4.58. Only points on or between the circles are Pareto-optimal. 
The modified version of DE described in the next section generated the non-
dominated set. 



4.6 Multi-Objective Optimization      249 

For any point that lies either inside or outside both circles, there will al-
ways be a solution that improves one objective without worsening the 
other. For example, (0, 5.9) is not a Pareto-optimal solution because it is 
dominated by the Pareto-optimal point (0, 6.1). Inspection shows that the 
point (0, 6.1) is Pareto-optimal because there is no point having a shorter 
distance to one circle, that does not have greater distance to the other. 

In this example (Fig. 4.42), the non-dominated points approximate the 
Pareto-front in the objective function space, but not in the decision vari-
able space where they form an annulus instead. In summary: 

• The Pareto-front contains the Pareto-optimal solutions. The Pareto-front 
divides the objective function space into two parts: one that contains 
non-optimal solutions and one that contains infeasible solutions. There 
is no valid mapping from the decision variable space to the infeasible 
part of the objective function space because by definition there are no 
valid points beyond the Pareto-front. 

• The Pareto-front is not always continuous. For example, constraints, 
quantized parameters or quantized non-continuous objective functions 
can produce a discontinuous Pareto-front. 

• The Pareto-front is not always convex. It can be concave, e.g., serpen-
tine, or consist of disjoint sections, each of which may be either concave 
or convex. 

• The Pareto-front may coalesce to a single point if objectives do not con-
flict or if constraints so restrict it. 

• The Pareto-front may extend toward infinity even if parameters are 
bound constrained. Consequently, it may be necessary to set bounds on 
objective function values. 

• Depending on the problem, neighboring points in the Pareto-front are 
not always neighbors in the parameter space. 

A more detailed discussion of Pareto-optimization and related concepts 
can be found in Miettinen (1998), Deb (2001) and Coello Coello et al. 
(2002).

For most nonlinear, multi-objective optimization problems, determining 
the entire continuous Pareto-optimal surface is practically impossible, but 
finding a discrete set of Pareto-optimal points that approximates the true 
Pareto-front (e.g., Fig. 4.42) is a realistic expectation. While even a simple 
random search can locate Pareto-optimal points, EAs can find multiple 
non-dominated solutions within a single run. 
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4.6.4 Adapting DE for Multi-Objective Optimization 

Problems with multiple objectives resemble those with multiple con-
straints. In both cases, the goal is to find a set of parameters that minimizes 
a set of functions. Because problems in these two domains share this 
common structure, the methods used to solve them are often similar. For 
example, both constrained and multi-objective optimization may benefit 
from a judicious assignment of weights to raw function values. Pareto-
optimal solutions, however, must be determined without weights so that an 
expert will have a set of unbiased options from which to choose. By using 
Pareto-dominance as a selection criterion, a population can be driven to-
ward the Pareto-front in the same way that Lampinen’s dominance-based 
criterion for constrained optimization (Eq. 4.21) pressures vectors toward 
feasible regions. 

Incorporating dominance-based selection into DE involves nothing 
more than comparing the trial and target vectors to determine which one is 
dominant.  
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According to Eq. 4.59, the trial vector ui,g is selected if the target vector, 
xi,g, does not dominate it. Except for containing objective function values 
instead of constraint function violations, Eq. 4.59 is identical to 
Lampinen’s criterion for comparing two infeasible vectors (Eq. 4.21). 

After many generations, some population vectors will be dominated 
while others will not. As a final step, all dominated points in the last gen-
eration should be removed so that the remaining population approximates 
the Pareto-front. More formally, a member, xb, of the final generation’s 
population should be removed from the final population if there exists an-
other vector, xa, that satisfies the condition 
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In many cases, the trial vector ui,g can be rejected before all K objective 
functions have been evaluated. If this shortcut is exploited, DE will exe-
cute more quickly. The flowchart in Fig. 4.43 describes a Pareto-
dominance selection criterion that minimizes the number of objective func-
tion evaluations. 



4.6 Multi-Objective Optimization      251 

Start comparing
vectors i,g

Select vectorxi,g ,

the current
population member.

End of
comparison.

Select vectorui,g ,

the trial vector.

fk(ui,g) ≤ fk(xi,g)

NO

YES

1) Objective function values for
xi,g are stored in order to avoid

unnecessary re-evaluation here.

Evaluatek:th
objective function,

fk (ui,g).

2) Objective function values for
the trial ui,g are stored.

2)

k = 1

k = k + 1

Last objective
function

k = K

NO

YES

1)

?

?

i,gxu

Fig. 4.43. This implementation of the Pareto-dominance-based selection rule in 
Eq. 4.59 rejects a dominated trial vector at the earliest possible phase to avoid per-
forming any unnecessary objective function evaluations. 

Both the selection rule described above and Lampinen’s criterion for di-
rect constraint handling are based on Pareto-dominance. This similarity 
makes it easy to implement dominance-based selection for multi-objective 
problems that are also constrained. Equation 4.61 outlines a Pareto-
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dominance-based selection rule that is designed to handle both multiple 
objectives and multiple constraints: 
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The selection rule in Eq. 4.61 can handle any number of objective and con-
straint functions, including K = 0 (constraint satisfaction problems) and M
= 0 (unconstrained problems). When K = 1 and M = 0, the Pareto-
dominance selection criterion reduces to DE’s original selection rule. 

Equation 4.61 distinguishes three cases in which the trial vector replaces 
the target vector in the next generation. The trial vector wins if: 

1. Both vectors are feasible and the target vector does not dominate the 
trial vector in the objective function space. 

2. The trial is feasible and the target vector is infeasible. 
Both vectors are infeasible and the trial vector’s constraint violations are 

all less than or equal to those of the target vector. 

Unless both the trial and target vectors are feasible, objective function val-
ues are not compared. Ignoring objective function values when one or both 
vectors are infeasible is justified in the same sense that it does not matter if 
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a lens can be designed to give perfect images if it must be made of glass 
that does not exist. The flowcharts in Fig. 4.44 show the selection scheme 
outlined in Eq. 4.61 that minimizes the number of objective and constraint 
function evaluations. According to Fig. 4.44, the most computationally ex-
pensive constraint and objective functions should be evaluated last so that 
early detection of an inferior trial will save the most effort. 
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Fig. 4.44a. Pareto-dominance-based selection with direct constraint handling (Eq. 
4.60). Inferior trial vectors are rejected at the earliest possible phase to avoid per-
forming unnecessary objective or constraint function evaluations. 
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Fig. 4.44b. Continuation of Fig. 4.44a 

The Pareto–DE approach described here is relatively easy to implement 
and should be effective on a wide range of problems. In some cases, how-
ever, this approach may suffer from the same problems that plague other 
multi-objective EAs, including: 
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• The approximated Pareto-front is too far from the true Pareto-front.
• Not enough non-dominated points are found.
• The non-dominated set does not cover the entire Pareto-front.
• The non-dominated set is distributed too non-uniformly along the 

Pareto-front.
• It is difficult to determine when the search is over. Compared to prob-

lems with a single objective, developing a stopping criterion for multi-
objective problems is more difficult because the population cannot be 
expected to converge (see Figs. 4.41 and 4.42).

Examples of other ways in which DE has been adapted for multi-
objective optimization can be found in Chang et al. (1999), Wang and 
Sheu (2000), Abbass et al. (2001), Abbass (2002a, 2002b, 2002c) and 
Madavan (2002). In addition, readers interested in other multi-objective 
EAs should refer to Miettinen (1998), Deb (2001) and Coello Coello et al. 
(2002).

4.7 Dynamic Objective Functions 

Previous sections have assumed that a vector’s objective function value is 
static (Fig. 4.45a). This section explores how DE handles dynamic objec-

tive functions, i.e., functions that do not always yield the same result each 
time a vector is evaluated. The source of an objective function’s dynamism 
can be parameters (Fig. 4.45b), the objective function evaluation (Fig. 
4.45c), or both (Fig. 4.45d).  

In some cases, both the optimal vector and its objective function value 
can be reliably estimated by a time average; in others, the optimum vector 
drifts during the optimization process and must be tracked. Before outlin-
ing how DE handles optimum tracking, the next subsection considers the 
case in which the influence of objective function fluctuations can be aver-
aged out. 
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Fig. 4.45. a A static objective function; b parameter noise; c objective function 
evaluation noise; d both parameter and objective function evaluation noise. The 
subscript, g, is a discrete time index that indicates the population’s current genera-
tion.

4.7.1 Stationary Optima 

Probability distribution functions whose moments (i.e., expected value, 
variance, etc.) are time invariant are known as stationary distributions 
(Yaglom 1962). If the distribution of parameter or objective function 
evaluation fluctuations is stationary and its expectation is finite, then both 
the optimal vector and its objective function value can be reliably esti-
mated. The remainder of this section assumes that objective function value 
noise is stationary and that the expectation of the underlying distribution is 
finite. The next subsection considers the effect that stationary parameter 
noise has on DE’s ability to estimate the location of the optimal vector, x*.
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Parameter Noise 

Parameters may fluctuate because they depend on a manufacturing process 
that is subject to statistical variations. For example, manufacturing irregu-
larities might limit the tolerance for an electronic component to 5% of its 
nominal value. For constraint satisfaction problems, the presence of pa-
rameter noise naturally leads to design centering (see Sect. 4.5). Noisy pa-
rameters can also occur when the precision of readings or adjustments of 
control variables in a physical experiment is limited. 

Although parameter noise is not a factor during optimization’s early 
stages, it interferes with convergence once fluctuations in the parameter 
space become comparable in size to vector differences in the population. 
One way to locate the optimum vector x* is to estimate its position with 
the time-averaged mean value of the population’s current best performing 
vector

integer.,,
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,best

12
best

* gg
gg

g

gg

g

=+−
=≅ xxx

(4.62)

The integers g1 and g2 are the beginning and ending generations, respec-
tively, over which the time average is taken. DE operates as usual, with 
both population and trial vectors competing in one-to-one, winner-takes-all 
competitions, except that at the end of each generation, g1 ≤ g ≤g2, the 
population’s current best vector, xbest,g, is sampled so that the time-
averaged best vector (Eq. 4.62) can finally be computed. 

Figure 4.46 illustrates the effect that adding a uniformly distributed ran-
dom variable to parameters has on DE’s ability to optimize the ten-
dimensional sphere objective function. The mean best vector (Eq. 4.62) 
outperforms the best vector in the final generation, but not the best vector 
obtained when noise is absent. Since there is no objective function evalua-
tion noise in this example, the function value plotted for the mean best 
vector is accurate. The accuracy with which the minimum can be located 
can be improved by increasing the number of generations over which the 
position of the best performing vector is averaged. This, of course, only 
holds if the average is taken over those generations where the function 
value is basically constant. In Fig. 4.46 this region roughly starts at genera-
tion 2500. 

Even though parameter noise makes an objective function value dy-
namic, it does not affect the location of the optimum. Like measurement 
error, parameter noise simply makes the optimum harder to locate. For the 
optimum to actually shift, the objective function evaluation itself must be 
noisy. The next subsection explores the effect of stationary function 
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evaluation noise on DE’s ability to both locate the optimal vector and de-
termine its objective function value. 
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Fig. 4.46. The effect of stationary parameter noise when optimizing the ten-
dimensional sphere objective function. To create the performance plot with noise, 
a random increment equal to 10−6 ⋅(randj(0,1) − 0.5) was added to each parameter 
prior to evaluation. The population’s best value is plotted every 20 generations. 
The algorithm was DE/rand/1/bin, with Np = 50, F = 0.9, Cr = 1, no bound con-
straints. The mean best vector (Eq. 4.62) was averaged over the last 1000 genera-
tions.

Objective Function Evaluation Noise 

Noise can also enter the optimization process during the objective function 
evaluation. For example, the on-line optimization of control parameters for 
an industrial process (controlling a chemical reactor, power plant, etc.) is a 
real-world scenario in which physical measurements of the objective func-
tion value (yield from the process, quality of product, etc.) have limited 
accuracy. In addition, random phenomena affecting the industrial process 
(incomplete mixing, thermal and chemical non-homogeneity, etc.) also 
generate some level of noise. Objective function noise can also arise from 
sensors like those used by autonomous robots seeking to optimize their re-
sponse to their environment (Salomon 1997). Furthermore, any objective 
function that relies on a random number generator (e.g., simulations, game 
playing, etc.) also exhibits evaluation noise. 
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Figure 4.47 shows how DE responds when noise is added to the ten-
dimensional sphere objective function. Results suggest that the time-
averaged population’s best vector is a good estimate for the optimal vector. 
In addition, averaging the current best vector’s objective function value 
over the same span of generations will improve the estimate of the (nomi-
nal) minimum objective function value. 
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Fig. 4.47. The effect of adding stationary noise to the sphere objective function. A 
random increment equal to 10−6 ⋅randi(0,1) was added to each vector’s function 
value. An instance of the best vector’s objective function value is plotted as a 
function of the number of generations. The algorithm was DE/rand/1/bin with Np
= 50, F = 0.9 and Cr = 1. The mean best value was averaged over the last 1000 
generations. 

4.7.2 Non-Stationary Optima 

When an objective function’s minimum is non-stationary, its (running) av-
erage location drifts and the optimization goal shifts to tracking the opti-
mal vector at close range. Problems of this type arise in adaptive systems 
subject to environmental unpredictability. Very little experience has been 
amassed with DE on this type of application, but three cases can be distin-
guished based on the differentiability of the objective function and the op-
timum’s speed relative to the population’s rate of convergence. Each cate-
gory poses problems that require modifying or supplementing classic DE. 
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• Slow drift and differentiable

Problems where the objective function is multi-modal and subject to a 
slow drift may occur in real-world problems where, for example, tem-
perature or an aging-process “slowly” alters the objective function. 
Here, the term “slowly” refers to the rate of change in the position of the 
minimum compared to the time required to find it. DE can be used for 
locating the (current) global minimum, but adaptive stochastic algo-
rithms like the least-mean-square (LMS), the recursive-least-square 
(RLS) (Haykin 1991), or other deterministic optimizer are probably bet-
ter for tracking as long as the assumptions upon which they depend re-
main valid. Unlike DE, such methods do not need to maintain diversity 
in a population. 

• Slow drift and non-differentiable 

If the neighborhood about a slowly drifting optimum is not differenti-
able, then a derivative-based optimizer will no longer be effective. DE, 
however, can be used not only to locate the initial global optimum, but 
also to track it if the population is reinitialized at regular intervals, as 
Fig. 4.48 indicates. To be successful, the minimum’s rate of change 
must be slow compared to the DE’s convergence speed, yet the popula-
tion must not converge too quickly lest difference vectors become so 
small that the population cannot keep pace with the optimum. Thus, re-
quiring DE’s population to maintain sufficient diversity typically limits 
not only the precision with which the minimum can be found, but also 
the precision with which it can be tracked. In addition, parent vectors 

must be re-evaluated every generation so that their objective function 
values remain current and the population is not constantly being dragged 
back to an earlier minimum that no longer exists. 

• Rapid drift and non-differentiable 

An optimum that drifts rapidly and whose neighborhood is non-
differentiable can immobilize a converged population. One strategy for 
keeping the search responsive is to operate in parallel several popula-
tions that have been initialized in a time-staggered fashion (Fig. 4.49). 
Each population has a different degree of convergence and each is reini-
tialized after a specified time. The current lowest objective function 
value taken over all populations is the point of choice for the applica-
tion. Again, the parent population must be re-evaluated at each genera-
tion. The computational expense for this approach is potentially high, so 
it should only be considered when multi-modal, time-dependent objec-
tive functions are otherwise intractable. 
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Fig. 4.48. Applying DE to a gradually changing objective function 
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Fig. 4.49. An example of three independent populations, operating in parallel, 
whose initializations were time staggered 
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5  Architectural Aspects and Computing 

Environments

5.1 DE on Parallel Processors 

5.1.1 Background 

Compared to gradient-based optimizers, evolutionary algorithms (EAs) 
demand more processing capacity because they typically require more ob-
jective function evaluations. Even so, DE’s floating-point encoded se-
lection and reproduction operations, which rely less on random number 
generation, are not as computationally expensive as are their binary-coded 
GA counterparts (Alander and Lampinen 1997). More often, the time re-
quired to generate child vectors is small compared to the time needed to 
evaluate the objective function. In real-world applications, it is not un-
common for the objective function evaluation to consume more than 95% 
of the total CPU time. 

The need for faster processing is particularly acute when optimizing 
models based on simulations, since an acceptable solution may require tens 
of thousands of objective function evaluations. An efficient parallel ap-
proach to such problems is crucial, since a serial processor may take hun-
dreds of hours to optimize models based on simulations.  

5.1.2 Related Work 

Research on parallel EAs gathered momentum in the mid-1980s. Jarmo 
Alander’s comprehensive bibliography of distributed GAs (Alander 1997) 
indicates that a lot of work has been done since. The bibliography cur-
rently contains over 700 references, so this section provides only a very 
short and general overview. Udo Kohlmorgen surveyed implementation 
strategies for parallel GAs (Kohlmorgen 1995), classifying parallel GAs 
into three main types: the farming model, the migration model and the dif-

fusion model.
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Farming Model 

In the farming model, the whole population is kept in a master processor 
that selects individuals for mating and sends them to slave processors who 
perform all other operations, including crossover, mutation and objective 
function evaluation.  

slave slave

slave

master

slave

parameters

function
value

-population
 management

-job manage-
 ment

- evaluation
  of objective
  function

STANDARD MODEL (a farming model)

Fig. 5.1. A coarse-grained distributed EA in a local area network. Only the objec-
tive function evaluation is distributed to slave processors. This implementation 
may suffer from heterogeneous computing resources (see text).

Standard Model 

The standard model is a variation of the farming model that distributes the 
objective function evaluation between slave processors (Fig. 5.1). This 
model has been used, for example, to implement distributed EAs on a local 
area network in Toivanen et al. (1995) and Alander et al. (1994, 1995). 
The migration version of the standard model divides the slave processors 
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into separate populations (Fig. 5.2). To allow sub-populations to commu-
nicate with each other, EAs introduce an “immigration” operator that al-
lows individuals to move between sub-populations. 

slave slave

master

slave

- global control of process

- main population

- independent

 subpopulation

-independent
 reproduction

 of individuals
-immigration of
 individuals

 between the

 populations

immigration of
individuals

MIGRATION MODEL

Fig. 5.2. A coarse-grained, migration type, distributed EA in a local area network. 
The population is divided into independently operating subpopulations. The mi-
gration operator promotes interaction between the otherwise isolated populations 
by allowing individuals to immigrate into subpopulations. 

Diffusion Model 

The diffusion or neighborhood model distributes the population by map-
ping each individual to a single processor (Fig. 5.3). Processors are con-
nected by a topology that defines how information can be exchanged be-
tween neighboring processors. Heinz Mühlenbein and colleagues 
(Mühlenbein et al. 1991) distinguished between the coarse-grained migra-
tion model and the fine-grained diffusion model based on the number of 
individuals assigned to a slave processor. 

To ensure fast communication between processors, a parallel EA may 
need to reformulate its genetic operators (Salomon et al. 2000) as it be-
comes increasingly fine-grained and the demand for efficient, high-speed 
communication becomes crucial (Kohlmorgen 1995). If a traditional EA 
can be implemented as a coarse-grained model, then slower communica-
tion channels, like those available via a Local Area Network, may be ade-
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quate. In favorable cases, run-times scale almost linearly with the number 
of processors when the objective function evaluation is distributed across 
the network. If the objective function is computationally intensive, this 
model is often a good choice. 

border of a local neighborhood around processor X

DIFFUSION MODEL

Fig. 5.3. A fine-grained, diffusion-type, distributed EA in a local area network. 
Each individual is mapped to a dedicated processor. In this example, the proces-
sors are connected in a 4 × 4 grid. Each individual is surrounded by a local 
neighborhood, in this case, a 3 × 3 grid around each processor (the gray-shaded 
local neighborhood of the processor marked X). All genetic operations for an in-
dividual are performed within this local neighborhood. In this example, the popu-
lation is divided into multiple local neighborhoods (16 local neighborhoods here) 
that are partially overlapping. A variety of topologies and neighborhood defini-
tions have been reported in the literature.
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5.1.3 Drawbacks of the Standard Model 

Jouni Lampinen’s investigations into distributing DE across a cluster of 
PCs (Lampinen 1999) were inspired by the encouraging results reported in 
Toivanen et al. (1995), Alander et al. (1994, 1995), Alander and Lampinen 
(1997) and Lampinen and Alander (1998). In the latter three investiga-
tions, the objective function evaluation was distributed to PCs connected 
by a local area network, whereas Toivanen et al. employed a cluster of 
workstations. Both studies relied on the standard model (Fig. 5.1) because 
it is both straightforward and simple. If the slave processes run as back-
ground processes or with a low priority, then processors can also be used 
for other purposes during the optimization. If the network is not dedicated 
to DE, this approach allows the system to take advantage of processor ca-
pacity that is unused by the network without disrupting a processor’s nor-
mally assigned tasks. 

Despite its advantages, the standard model also has shortcomings. For 
example, the generational GA creates the next generation all at once. Indi-
viduals are then passed to the slave processes to be evaluated. The problem 
with this approach is that the next generation cannot be created until the 
previous generation has been evaluated, i.e., until the slowest slave process 
has returned an objective function value. Meanwhile, the faster slave proc-
essors that have already finished run idle. The total time spent idling can 
be high if the computer network is heterogeneous, the computing capacity 
of slave processors varies much, or if the time required for objective func-
tion evaluation varies a lot depending on the values of the parameters. Es-
pecially when objective functions are simulation models, evaluation time 
can be highly input dependent. For example, the size of the model could be 
a parameter, with large models requiring more time to evaluate than small 
ones. Alternatively, iterative solvers used in the simulator may execute a 
different number of iterations for different inputs. Furthermore, the compu-
tational path the simulation takes may depend on its input values.  

In a heterogeneous computer network, the efficiency of a parallel sys-
tem (efficiency = speedup/number of processors) may be less than 50% or 
even as low as 10%. In Kohlmorgen (1995), where the standard model was 
used on a homogeneous network, the efficiency of the standard model 
dropped to 85% when the number of processors was raised to four and to 
70% when the number of processors was raised to eight. The situation will 
become even worse for a heterogeneous network because the slowest slave 
determines the overall speed of the optimization process.  

Another drawback associated with generational reproduction in con-
junction with the standard model distributed EA is that it is impossible to 
use a greater number of slave processors than the number of individuals in 
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the population. Although the standard model cannot take advantage of 
more processors, it can be modified for doing so, and also to improve its 
efficiency. This will be described in the following sections. 

5.1.4 Modifying the Standard Model 

This section describes a simple, yet flexible, distributed DE algorithm 
method developed by Lampinen (1999). The method is generally based on 
the standard, coarse-grained model with computers distributed across a lo-
cal area network (Fig. 5.1), but modifications avoid the drawbacks of the 
usual implementation. Since DE’s selection operator works differently 
than those found in most GAs, earlier approaches (Alander and Lampinen 
1997; Lampinen and Alander 1998) required some major changes.

Both the standard (Fig. 5.1) and migration (Fig. 5.2) models are rela-
tively easy to implement and each offers its own advantages. The migra-
tion model, for example, is able to efficiently use all the computing re-
sources available via local area network. Its network communication rate is 
low since only immigrating individuals need to be transferred. Ultimately, 
however, the migration model proves less adaptable to DE than the stan-
dard model. 

First, the fact that the migration model can use all the processing capac-
ity available via a local area network does not mean that it can solve a 
problem in the shortest time. The migration model is logically different 
from the sequential DE algorithm, so it is difficult to apply knowledge 
gathered with sequential DE to the migration model. There might be diffi-
culties, for example, when selecting values for DE’s control parameters. 
Furthermore, designing the migration operation entails deciding which in-
dividual migrates, where it migrates to and what the migration rate should 
be. Currently, no totally satisfying solutions appear to be available for 
these subproblems. 

In its favor, the standard model is better suited to evaluating computa-
tionally expensive objective functions than the migration model because it 
can provide a quasi-linear speedup with respect to the available processor 
capacity. In the migration model, the same optimization program runs on 
all computers and the effectiveness of the parallelization depends on how 
efficient the migration operation is. For example, there is a high risk that 
all the subpopulations will converge to the same local optimum if the mi-
gration rate is too high. If the migration rate is too low, the benefit of using 
more than one processor will be lost. The optimum migration scheme de-
pends on the problem to be solved, the number of slave processes and the 
control variables of slave processes and other factors. Currently, there is no 
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general migration operation that can efficiently solve an arbitrary optimi-
zation problem. Since the efficiency of the migration model is highly de-
pendent on the design of the migration scheme and because designing a 
good scheme is a non-trivial task, the standard model is the preferable way 
to implement a distributed DE algorithm. 

The standard model’s higher communication rate is only a minor draw-
back. Assuming that the objective function is computationally expensive, 
the communication rate will be comparatively low. Also, the time latency 
to establish a contact, as well as the time required to communicate, are vir-
tually meaningless when compared to the total execution time of the opti-
mization process. In most cases, the communication speed of a 10 Mbit/s 
Ethernet is high enough from both a latency and throughput point of view, 
although this situation can change if the network is also being used for 
other communications. Experience has shown that the modified standard 
model easily achieves over 95% efficiency and even 99% or more seems 
possible (Lampinen 1998). 

5.1.5 The Master Process 

Figure 5.4 shows a general overview of the modified standard model for a 
distributed EA. The master process performs all operations needed to cre-
ate trial vectors. In addition, the master process selects trial vectors based 
on their objective function values and either inserts them into the popula-
tion or rejects them. In addition, the master process evaluates trial objec-
tive function values and manages the slave processes. The slave processes 
are only responsible for computing the objective function values of the in-
dividuals that the master process sends them. 

The master and slave processes communicate via two, shared disk files. 
Any computing resources with access to those two direct access files, e.g., 
via a local area network, can be exploited. The shared interface files can be 
physically located anywhere on the network, i.e., at any hard disk, as long 
as the master process and all slave processes have access to them. Table 
5.1 shows the structure of the shared interface files. 

The first interface file (Table 5.1) is a stack of unevaluated individuals. 
A stack of evaluated individuals is kept in a different interface file. The 
master process passes unevaluated trial vectors to the shared disk file of 
unevaluated individuals. A slave process then picks one individual from 
this file, evaluates it and returns the associated objective function value to 
the shared disk file of evaluated individuals. The slave then immediately 
picks a new individual, evaluates it and returns the corresponding objective 
function value, and so on. 
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master

slave slave

slave

MODIFIED STANDARD

MODEL

Fig. 5.4. A coarse-grained distribution of DE in a local area network based on the 
standard model except that shared interface files serve as a buffer for objective 
function evaluation tasks. The master process and the slave processes are only 
loosely coupled via these files and not synchronized to each other. 

Table 5.1. The structure of shared interface files. The first file is for unevaluated 
individuals and the other is for finished objective function evaluation tasks. Each 
record of these files represents one trial individual.  

SHARED FILE #1, unevaluated individuals

RECORD read by slave  individual cost variable 1 variable 2 variable 3 variable 4

1 1 2 0.00 0.72 0.71 0.56 0.47

2 1 11 0.00 0.77 0.58 0.03 0.04

3 0 1 0.00 0.07 0.12 0.95 0.90

4 0 15 0.00 0.84 0.46 0.73 0.78

5 0 9 0.00 0.57 0.15 0.01 0.18

SHARED FILE #2, evaluated individuals

RECORD read by master individual cost variable 1 variable 2 variable 3 variable 4

1 1 19 1.99 0.53 0.58 0.72 0.17

2 1 4 2.30 0.29 0.78 0.88 0.36

3 1 2 1.48 0.75 0.36 0.02 0.35

4 0 16 1.95 0.81 0.04 0.80 0.29

5 0 7 2.12 0.24 0.66 0.28 0.94
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The master process works like ordinary DE, but with some exceptions. 
Before evaluating a new trial individual, the master process checks the 
shared file of unevaluated tasks. If there is space for a new task, the master 
process moves an objective function evaluation task to the file of un-
evaluated individuals. If there is currently no space in the file of unevalu-
ated tasks, the master process evaluates the current trial individual itself. 
After that, the master process proceeds to the next trial individual and the 
process is repeated. 

At the end of each generation, the master process reads the shared file of 
evaluated individuals. A value of “1” in the first field of a record indicates 
that the task is finished because the master process reads the file before the 
end of the previous generation. To preserve DE’s one-to-one selection 
scheme, each trial is assigned a unique index that pairs it with a vector in 
the current population (called “individual” in Table 5.1). When the evalu-
ated trial vector returns to the master process, this index indicates the 
member of the current population with which the trial is compared during 
survivor selection (Sect. 2.7). Any trial with a lower objective function 
value than that of the corresponding target in the current population is 
transferred from the shared file to the current population where it over-
writes its competitor. Otherwise the trial from the shared file is simply ig-
nored.

In Table 5.1, the first field of records contains either zero or one. If a 
one appears in the file for unevaluated tasks, the record has been read by a 
slave and the task has either already been evaluated, or is currently being 
evaluated. Because this record has already been read, the master process is 
allowed to overwrite it with a new task. A zero indicates that a task is still 
unevaluated and has not yet been assigned to a slave.  

The size of files (the number of records) should be the same as the 
population size of the master process, or higher. This ensures that the file 
of unevaluated individuals always contains work for slave processes and 
that there is always space for evaluated individuals in the shared file of 
evaluated tasks. In Lampinen (1999), the number of records was set to 
twice the population size, i.e., 2Np.

Because the master process uses shared files as buffers, it does not need 
to be synchronized with the slave processes. For example, it is possible 
that a child does not return back to the master process during the same 
generation in which it was created. Preliminary tests suggest that this does 
not diminish DE’s effectiveness, efficiency or robustness. Furthermore, it 
seems possible that this delay slightly improves DE’s robustness by main-
taining a higher level of diversity in the population. When populations are 
small, this added diversity helps DE to avoid premature convergence. This 
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effect, however, still needs to be investigated and supported by experimen-
tal data.

Synchronization is necessary only if two processes (master or slave) try 
to access the same file simultaneously, in which case the process attempt-
ing to access the file must wait a few milliseconds and try again. Access to 
shared files, by either the master process or a slave process, should be set 
to deny-read/write mode; no other process may access a file that is already 
open. Alternatively, some programming environments allow a single re-
cord to be locked against writing to minimize file access conflicts between 
processors. The waiting times due to file access collisions, however, are 
typically insignificant compared to the time required to evaluate a compu-
tationally expensive objective function. Note also that, due to fact that 
master and slave processes are not synchronized on a generation level, the 
number of slave processes is not limited by the population size, as is the 
case for the classic standard model. For further details on master–slave 
synchronization, see Lampinen (1999). 

5.2 DE on Limited Resource Devices 

Limited resource devices are special-purpose processors operating in envi-
ronments in which one or more of the following three categories is subject 
to non-negligible limitations: available program memory, data memory 
and processing capacity. Many consumer products like wireless phones, 
palmtop computers, toys, etc., as well as controller units in cars, home ap-
pliances, etc., face one or more of these limitations. Often, simple proces-
sors must operate with fixed-point arithmetic so the underlying goal is to 
save program memory space and processing time by avoiding divisions 
and high-precision multiplication. This section gives some hints on how to 
write efficient code for limited resource environments. Some of the pro-
posed, “tricks” may alter DE’s convergence behavior, so adequate testing 
is important. 

5.2.1 Random Numbers 

Random number generators seldom receive much attention because they 
are usually functions integrated into a high-level language. Their design 
must be rethought, however, when random number generators are imple-
mented on devices that lack a floating-point unit or where memory space is 
a limited resource. Emulating floating-point operations, especially divi-
sion, is costly in terms of both program memory and processing time. 



5.2 DE on Limited Resource Devices      277 

Since generating floating-point values in the interval [0, 1] requires divi-
sion, random number generators for limited resource devices need to be 
carefully designed. 

Random Numbers for Initialization 

Populations can be initialized in a variety of ways. Initialization can spec-
ify predefined points, a collection of points around a nominal point, etc., 
but most of the time, parameters are initialized with values that are ran-
domly chosen from within the allowed range according to: 

( )L,U,L, )1,0(rand jjjjj xxxx −⋅+= , (5.1)

where randj(0,1) is a uniformly distributed random number from the inter-
val (0,1) that is chosen anew for each parameter. Since initialization re-
quires only Np⋅D random numbers, the generator’s sequence length is not 
of primary importance. For this reason, and also because DE is fairly in-
sensitive to initial conditions, pseudo-random numbers only need be rea-
sonably random. Efficient code is more important on limited resource de-
vices than accurate random simulation. The three random number 
generators described in Figs. 5.5–5.7 are both small and efficient. All three 
random number generators can be found in the file simplerand.cpp on the 
accompanying CD. 

#define PI  3.14159265

float rand01(float *fp_seed)
//Generates random numbers from the interval [0,1].
//Initialize *fp_seed with 4.0 (for example)
{
   float f_x;

f_x = *fp_seed + PI;
f_x = f_x*f_x*f_x*f_x*f_x; //f_x^5

   *fp_seed = f_x - floor(f_x);
   return(*fp_seed);
}

Fig. 5.5. A simple floating-point random number generator from the HP-35 appli-
cation programs (Miller 1981). 
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unsigned int rand15(unsigned long *ulp_seed)
//Generates random numbers from the interval [0,2^15-1],
//so it is suited as a fixed point random number
//in 1.15 format.
//Initialize *ulp_seed with 1 (for example)
{
   *ulp_seed = *ulp_seed*1103515245 + 12345;
   return(unsigned int)((*ulp_seed>>16)& 32767);//modulo 2^15
}

Fig. 5.6. A simple fixed-point random number generator provided by the ANSI C 
committee (Press et al. 1992). The computation modulo N is a logical AND with 
N − 1, provided that N is a power of two. In this case, N = 215.

unsigned int rand15a(unsigned long *ulp_seed)
//Generates random numbers from the interval [0,2^15-1],
//so it is suited as a fixed point random number
//in 1.15 format.
//Initialize *ulp_seed with 1 (for example)
{
   *ulp_seed = *ulp_seed*1664525 + 1013904223;
   return(unsigned int)((*ulp_seed)& 32767);//modulo 2^15
}

Fig. 5.7. A simple random number generator according to Knuth (1981) and Press 
et al. (1992). This generator can operate with modulo 232, in which case the return 
value must be “unsigned long”. 

Random Numbers for Generating Trial Vectors 

To index the population vectors that will be combined into a mutant, most 
DE variants only need random numbers that are integers from the range [0, 
Np − 1]. The conceptually simplest method for generating random popula-
tion indices is to compute floor(r · (Np − 1)), where r ∈ [0, 1] is the float-
ing-point output of a uniform random number generator. As Fig. 5.8 
shows, the multiplication, r · (Np − 1), can be avoided if Np = 2k, k integer.

If the population size does not equal a power of 2, then ui_N can be set 
to the first power of 2 greater than Np. Returned values should then be 
checked to see that they belong to the allowed range, [0, Np − 1]. If a re-
turned value is out of range, then new values are generated until one falls 
within the permitted range. Since all numbers are equally likely, elements 
of the subset [0, Np − 1] will also be generated with equal probability. A 
disadvantage of this method is that generating invalid numbers steals valu-
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able processor time. C code for trial vector selection appears in the file 
rndselect.cpp on the accompanying CD.

unsigned int randNa(unsigned long *ulp_seed, unsigned int ui_N)
//Generates random numbers from the interval [0,ui_N-1] with
//ui_N being a power of two.
{
   *ulp_seed = *ulp_seed*1103515245 + 12345;
   return(unsigned int)((*ulp_seed>>16)&(ui_N-1));//modulo ui_N
}

Fig. 5.8. This code modifies the random number generator in Fig. 5.6 to yield 
numbers in [0, ui_N − 1]. 

unsigned int randNb(unsigned long *ulp_seed, unsigned int ui_N)
//Generates random numbers from the interval [0,ui_N-1] with
//ui_N being a power of two.
{
   *ulp_seed = *ulp_seed*1664525 + 1013904223;
   return(unsigned int)((*ulp_seed)&(ui_N-1));//modulo ui_N
}

Fig. 5.9. This code modifies the random number generator in Fig. 5.7 to yield 
numbers between [0,ui_N − 1]. 

5.2.2 Permutation Generators 

One disadvantage of generating population indices with a random number 
generator is that successive indices may not be distinct. If successive indi-
ces are equal, the generator must be run until a distinct index occurs. The 
random permutation generator avoids the computational expense caused 
by repeated calls for a distinct index, because successive indices are al-
ways distinct. Figure 5.10 illustrates the “urn algorithm” permutation gen-
erator that was developed by C. L. Robinson and published in Herrmann 
(1992). As its name implies, the process can be modeled using two urns. 
The first urn contains marbles marked with the numbers from 0 to Np − 1 
and the second urn is initially empty. Marbles are randomly selected from 
urn number 1 and placed into urn number 2. The sequence of numbers of 
marbles placed in urn number 2 defines the permutation. The operation of 
the algorithm is depicted in Figs. 5.10 and 5.11. 
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[0,  1,  2,  3,  4,  5,  6,  7,  8]

[0,  1,  2,  8,  4,  5,  6,  7,  -]

[3,  -,  -,  -,  -,  -,  -,  -,  -]

1) randomly select an index i from the interval [0,8] from x[]

2) insert x[i] into the destination array y[]

3) last item of x[] goes into x[i]

[3,  6,  -,  -,  -,  -,  -,  -,  -]

[0,  1,  2,  8,  4,  5,  7,  -,  -]

[3,  6,  1,  -,  -,  -,  -,  -,  -]

[0,  7,  2,  8,  4,  5,  -,  -,  -]

4) randomly ...

.

.

.
.
.
.

Fig. 5.10. Visualizing the “urn algorithm” for permuting an array 

...
k      = NP;
i_urn1 = 0;
i_urn2 = 0;
for (i=0; i<NP; i++) ia_urn1[i] = i; //initialize urn1

while (k >= NP-M+1)//M is the amount of indices wanted (must be <= NP)
{
   i_urn1 = (rand15a(&gul_seed)*k)>>15;     //choose a random index

ia_urn2[i_urn2] = ia_urn1[i_urn1];       //move it into urn2
ia_urn1[i_urn1] = ia_urn1[k-1]; //move highest index to fill gap
k = k-1;             //reduce number of accessible indices

   i_urn2 = i_urn2 + 1; //next position in urn2
}
...

Fig. 5.11. C code snippet that illustrates the “urn algorithm” 

The more efficient algorithm shown in Figs. 5.12 and 5.13 implements 
the urn idea with only one array. The trick is to use a bit-swap pointer that 
moves upward one index with every swap. Numbers that are randomly 
drawn from the upper portion of the array are recorded, then placed in the 
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lower part of the array so that they will not be chosen again until the next 
generation.

[0,  1,  2,  3,  4,  5,  6,  7,  8]

[3,  1,  2,  0,  4,  5,  6,  7,  8]

2) randomly select an index j  from the
    interval [i,8] from x[]

3) swap . .

1) set swap position i=0

[3,  1,  2,  0,  4,  5,  6,  7,  8]

[3,  5,  2,  0,  4,  1,  6,  7,  8]

2) randomly select an index j from the
    interval [i,8] from x[]

3) swap

1) set swap position i=1

.

Fig. 5.12. The modified urn algorithm with just one array 

...
for (i=0; i<NP; i++) ia_urn1[i] = i; //initialize urn1

for (k=0; k < M; k++)//M is the amount of indices wanted (must be <= NP)
{
   i_urn1 = ((rand15a(&gul_seed)*(NP-k))>>15) + k;  //choose a random index
   i_swap = ia_urn1[i_urn1];           //element to be swapped

ia_urn1[i_urn1] = ia_urn1[k];       //swap element
ia_urn1[k]      = i_swap;

}
...

Fig. 5.13. C code snippet for the modified urn algorithm with just one array 

...
NP = 2<<k; //NP = 2^k
i_alpha = (rand15a(&gul_seed)*(NP-1))>>15;  //choose a random multiplier
if ((i_alpha%2) == 0 || (i_alpha == 0)) //make sure i_alpha is odd
{
   i_alpha = i_alpha+1;
}
...
for (i=0; i < NP; i++)//generate permuted sequence
{
   i_perm = (i*i_alpha)&(NP-1);  //bitwise AND makes mod NP if NP=2^k
}
...

Fig. 5.14. A permutation generator that needs no array memory 

If memory is a serious issue, then permutations can be generated with-
out arrays. One method is based on the number-theoretic result that the se-
quence i = (α · j)mod(Np), j = 0, 1, 2, …, Np − 1, is a permutation of j = 0, 



282      5  Architectural Aspects and Computing Environments 

1, 2, …, Np − 1 if α and Np are relatively prime (McClellan and Rader 
1979). For example, if Np is itself prime then α can be any number. Mak-
ing Np prime can be a drawback, however, because the modulo function 
will be more complicated to evaluate. Choosing Np to be a power of 2, i.e., 
Np = 2k, is faster because dividing by Np just shifts the dividend k bits to 
the right. As Fig. 5.14 illustrates, the modulo operation can be replaced by 
a bitwise logical AND operation with 2k − 1 when Np = 2k. The permuta-
tion methods mentioned above can also be found on the accompanying CD 
in the file permute.cpp. 

Another, more arcane permutation generator is based on “un-sorting” an 
array that is initialized with the natural numbers 0 to Np − 1 in order. In 
un-sorting, a random decision, i.e. a “coin-flip”, decides whether to swap 
two elements. Repeated random selections produce an unsorted array. The 
“coin-flip” can be done by rounding all output from a [0, 1] random num-
ber generator less than 0.5 to “0” and numbers above or equal to 0.5 to 
“1”. This method may prove useful if existing source code contains a sort-
ing routine that can be modified to either sort or un-sort. 

5.2.3 Efficient Sorting 

As has been shown in previous chapters, (µ + λ) is a viable alternative to 
DE selection that sorts both the current and trial populations according to 
their objective function value. Once the population has been initially sorted 
(ranked), it never again needs to be sorted in its entirety. When a trial vec-
tor is accepted, it is merged into the population array, while the member 
with the worst objective function value is eliminated. A simple sort algo-
rithm, like the bubble sort (Standish 1995), will save program memory, but 
if memory is an issue, then many copy actions may be required. If, how-
ever, speed is an issue, a linked list is the most efficient approach, although 
the linked list itself requires additional memory. Figure 5.15 illustrates 
both approaches. Note how the highest value has to vanish because Np

must stay constant. 

5.2.4 Memory-Saving DE Variants 

If memory in a device is limited, it may be necessary to implement DE 
with only Np·D array locations instead of 2·Np·D. In addition, a single vec-
tor holds the current trial vector, which, if it wins, immediately replaces 
the target vector. With the one-array implementation, the concept of a gen-
eration becomes meaningless because there is no effective separation be-
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tween current and trial vectors. A new generation only means that the loop 
through the population has begun again with the first individual. This form 
of evolution is similar to the way in which a steady-state GA operates. 
Figure 5.16 shows how to implement the DE/rand/1/bin scheme with a 
single population. 

24

4 6 1327 3345 7678

4 6 13 24 27 33 45 76

4 6 13 27 33 45 76 78

24

4 6 13 27 33 45 76 24

a) ordinary array b) linked list

new member
entering the
sorted list

new member
entering the
sorted list

copy action
link pointing to
the successor

Fig. 5.15. Two different approaches for organizing a sorted number sequence. The 
array approach requires the least memory, while the linked list approach allows 
new members to be quickly merged. 
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Fig. 5.16. A DE variant with only one population array of Np individuals 
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If target vectors are always chosen in the order 0, 1, 2, …, Np − 1, then the 
vector selection scheme becomes biased because vectors with lower indi-
ces will be replaced by better solutions before vectors with high indices. 
Computing the target vector index according to the algorithm shown in 
Fig. 5.17 mitigates this bias. 

  ...
  for (k=0; k<NP; k++)
  {
    i_index = (i_iter+k)%NP; //This way of modulo computation is just
    ...                      //done for clarity purposes. In real code
  }                          //use more efficient techniques like
                             //a mod b = a AND (b-1) if b=2^k, k integer.
  i_iter = i_iter+1;         //iteration counter

Fig. 5.17. Computing the target vector index to equalize the mean lifetime of all 
vectors

The one-array implementation is “greedier” than the two-array imple-
mentation since the current and trial populations are not isolated from each 
other by a generation gap. In the one-array version, a trial vector born in 
one generation can become target vector within the same generation, so its 
influence on the population’s subsequent evolution is immediate. Simi-
larly, writing a new vector into a single array of Np individuals improves 
the population more quickly than delaying a surviving trial vector’s par-
ticipation until the next generation. To compensate for this “greediness”, 
the one-array version might require a slightly larger population than would 
otherwise be required. In addition, smaller population sizes call for a 
slightly higher Cr and/or F (Zaharie 2002). When Np must be small, ap-
plying either dither or jitter to F may also prove beneficial (see Sect. 2.5) 
(Storn 2005; Karaboga and Ökdem 2004). 
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6 Computer Code 

6.1 DeMat – Differential Evolution for MATLAB®

This chapter describes DeMat – a collection of MATLAB® m-files that 
provides a framework for solving function optimization problems with dif-
ferential evolution (DE). The accompanying CD contains examples with 
code that includes easily modified graphics support. The following subsec-
tions detail DeMat’s architecture. 

6.1.1 General Structure of DeMat 

DeMat was developed to make it easy to apply DE to an arbitrary optimi-
zation problem. DeMat also provides graphics support, since visually 
monitoring an ongoing optimization is often very helpful. DeMat consists 
of the files shown in Fig. 6.1 and requires no special installation routine to 
run.

deopt.m objfun.m

left_win.mPlotIt.m

Rundeopt.m

needed only for graphics
support under MATLAB ®

Fig. 6.1. The DeMat files. Gray-shaded files must be adapted to each new prob-
lem. The left_win.m file may also need to be modified if the selection criterion 
changes.
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Here is a brief description of the DeMat files: 

deopt.m: This file contains the main DE engine, deopt(), along with 
several different DE mutation and selection operators. It 
also handles crossover and implements boundary con-
straints. This file controls the output of results. 

objfun.m: This file contains the objective function, objfun(), which 
computes objective function (cost) values and evaluates 
constraints. The results of the objective function evalua-
tion are returned in the structure S_MSE. 

left_win.m: left_win() is a function that defines under what circum-
stances the trial (child) vector (corresponding to left input 
argument) wins against the target vector (corresponding to 
right input argument). This function takes both constraints 
and objective function values into consideration when de-
ciding which vector survives. 

Rundeopt.m: This is the main script file for configuring the optimization 
and for experimenting with DE strategies, population 
sizes, etc. All control variables are listed here. To simplify 
parameter passing, control variables are handed over to the 
structure variable, S_struct, that acts as a container for 
information that has to be passed to deopt(), objun() and 
PlotIt().

PlotIt.m: This file contains the plotting routine, PlotIt(). Plotting can 
be disabled by the variable I_plotting, which is set in 
Rundeopt.m. 

6.1.2 Naming and Coding Conventions 

Since type checking in MATLAB® is not very thorough, it is especially 
important to choose a rational naming scheme to maintain the clarity and 
sound structure of the program. For this reason, variable names are in 
Hungarian notation (Cusumano and Selby 1995), i.e., a prefix provides in-
formation about a variable’s type. Hungarian notation also helps to identify 
where assignments may lead to problems. 

The prefix, which can consist of several characters, is followed by an 
underscore, which is then followed by a descriptive name. The highest 
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precedence in prefix construction is assigned to the characters “I”, “F” and 
“S”, which denote integer, float and structure, respectively. The next high-
est precedence goes to “Vr”, “Vc” and “M” for row vectors, column vec-
tors and matrices, respectively. For example, a row vector of floating-point 
variables would have the prefix FVr_, while a matrix of integers would 
have the prefix IM_. For the sake of simplicity, simple loop counter vari-
ables do not need a prefix and may be named k, l, m, etc. MATLAB®,
however, reserves the characters i and j for the imaginary constant, so 
these names should not be used for counter variables (even though 
MATLAB® does not forbid this). 

Table 6.1 shows the prefixes used in the code. Additional prefixes may 
be defined as needed. 

Table 6.1. Variable naming conventions using Hungarian Notation 

Variable Prefix Example Remark 

Integer I I_refresh

Even though typing is not strong 
in MATLAB® it is good to know 
whether a variable is intended as 
an integer 

Float F F_cost_tol         – 

Structure S 
S_x

Can have an arbitrary number of 
attached variables, e.g., 
S_x.I_nc
S_x.I_no
S_x.FVr_ca

  S_x.FVr_oa

Row
vector

Vr FVr_lim_up Length of vector is not indicated 
in the name 

Column 
vector

Vc FVc_test Length of vector is not indicated 
in the name 

Matrix M FM_pop Row and column dimensions are 
not shown in the name 
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Most functions also have a comment header that provides information 
about its arguments and return values. 

feval()

left_win()

FM_ui

FVr_
bestmem

DE engine

FM_
pm1

FM_
pm2

FM_
pm3

FM_
pm4

Shuffling of
population

Initialization

FVr_
maxbound

PlotIt()

I_iter

I_nfeval

I_D

FVr_
minbound

I_itermax

I_NP

I_refresh

I_strategy

F_weight

F_CR
FM_meanv

deopt()

data

functionLegend:

F_VTR

Rundeopt.m

FM_
pm5

FM_pop,
FM_popold

Fig. 6.2. A data flow diagram of DeMat’s most important parts 
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94 23 12 5 41 62 77 45

44 17 55 4 43 25 89 34

F_weight

+
+

+
-

FM_popold

cost value parameter vector

1 2 3 4 5 6 7 8

3 5 2 1 8 7 4 6

3 5 2 1 8 7 46

3 5 2 1 8 74 6

Index of population member

lower
cost ?

44 17 12 4 41 25 77 34

FM_pm2

FM_pm1

FM_pm3

FM_ui

FM_pop

. . .

. . .

Fig. 6.3. A flowchart for DE/rand/1/bin (classic DE) in deopt.m. For simplicity, 
the crossover operation is not shown (Cr = 1).  

6.1.3 Data Flow Diagram 

The data flow diagram (DFD) (Yourdon 1989) provides an overview of a 
program’s functionality. In contrast to flow charts that emphasize algo-
rithmic design, a DFD shows which data is used and which functions or 
processes change the data. By convention, data is indicated by two parallel 
horizontal bars while functions are denoted by ellipses. Function names 
followed by () are explicitly named in the program. If parentheses are 
missing, then the functionality is embedded in a sequence of statements, 
not an explicit function. Arrows indicate the data flow and contain addi-
tional but limited time information. In general, time increases from left to 
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right, and from top to bottom. Figure 6.2 shows the most important data 
and functions of DeMat’s DFD. Here is a brief description of the meaning 
of the data shown in Fig. 6.2: 

F_Vr_maxbound: Vector of upper parameter bounds for initialization. 
F_Vr_minbound: Vector of lower parameter bounds for initialization. 
I_bnd_constr: If set to 1, upper and lower parameter bounds are 

enforced as parameter constraints. 
I_itermax: Maximum number of generations until optimization 

stops.
I_NP: Number of population members (named Np

throughout the book). 
I_D: Number of parameters (named D throughout the 

book).
I_strategy: Selects the DE strategy. See the code for the as-

signment of integer values to strategies. 
F_weight: Factor (named F throughout the book) used for scal-

ing the differential mutation. 
F_CR: Crossover constant (named Cr throughout the 

book).
F_VTR: Value to reach. Optimization stops when this objec-

tive function value is reached. 
I_refresh: Output refresh cycle. After I_refresh generations, a 

new set of values is plotted/printed. 
I_plotting: If set to 1, the function PlotIt() renders graphical 

output. 
FM_popold: Np⋅D matrix containing Np D-dimensional parame-

ter vectors that comprise the current population. 
FM_pop: Np⋅D matrix containing Np D-dimensional parame-

ter vectors that comprise the next population. 
FM_pm1: Same as FM_popold, but with shuffled rows. 

FM_pm2, 3, 4, 5 are similar, but contain a different 
shuffling.

FM_meanv: Contains Np instantiations of FM_popold’s mean 
vector. Note: Keeping an array of Np instantiations 
of the same vector is for coding convenience and 
clarity, but it is not very memory efficient. 

FVr_bestmem: Best-so-far population member. 
I_iter: Generation (iteration) counter. 
I_nfeval: Counter for function evaluations. 

Figure 6.3 illustrates how deopt.m implements DE. All random vectors 
are taken from the shuffled versions FM_pm1, FM_pm2 and FM_pm3 of 
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FM_popold to exploit MATLAB®’s built-in matrix and vector manipula-
tion routines. 

-1 -0.5 0 0.5 1
-2

0

2

4

6

8

10
polynomial fitting

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1
x 10

4 Polynomial coefficients

Fig. 6.4. An example of the graphics output for the polynomial fitting problem 

6.1.4 How to Use the Graphics 

The graphics routines in DeMat have been kept fairly independent of the 
objective function to give the user flexibility in deciding what to monitor. 
MATLAB®’s powerful and versatile graphics capabilities are well suited 
for this purpose. Setting the variable, I_plotting in the rundeopt.m file to 
“1” enables graphical monitoring via the plot function PlotIt() in PlotIt.m. 
Any other value for I_plotting disables plotting. It is good practice to dis-
able plotting while trying to get a new optimization to work. Later, the plot 
function, PlotIt(), can be adapted to the new problem to provide a mean-
ingful graphical output. Figure 6.4 shows an example of DeMat’s graphi-
cal output. The example plotted is the Chebyshev polynomial fitting prob-
lem by Storn and Price (1997), which is repeated here for convenience. 
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with T2k(z) being a Chebyshev polynomial of degree 2k.

Fig 6.5. An example of a DeMat plot of the “Rosenbrock Saddle” that shows the 
results after generation 27. 



6.2 DeWin – DE for MS Windows®: An Application in C      295 

Fig. 6.6. An example of a DeMat plot for the “Rosenbrock Saddle” that shows the 
results after generation 75 

The Chebyshev polynomials are recursively defined according to the 
difference equation Tn+1(z) = 2z⋅Tn(z) − Tn-1(z), with n > 0, integer and with 
the initial conditions T0(z) = 1 and T1(z) = z. The solution to the polynomial 
fitting problem is h(x,z) = T2k(z), a polynomial that oscillates between −1
and 1 when its argument, z, is between −1 and 1. Outside this “tube”, the 
polynomial rises steeply in direction of high positive ordinate values. Fig-
ures 6.4, 6.5 and 6.6 illustrate the versatility of DeMat’s graphics with an 
example that can be generated with the software on the accompanying CD. 

6.2 DeWin – DE for MS Windows®: An Application in C 

This section contains a brief overview of DeWin, a C-based application 
framework for solving function optimization problems with DE. The code 
provides easily modified graphics support for the MS Windows® operating 
system. By setting a compiler switch, the code can also be compiled as a 
console application devoid of any graphics support. After minor modifica-
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tions, the console application should work on any operating system. 
DeWin has been designed to strike a balance between being universal and 
simple. Including all the ideas in this book would have cluttered the code 
with many more #define and #ifdef statements. The authors hope that this 
compromise between simplicity and completeness will prove useful and 
that any missing ideas can be easily implemented. 

6.2.1 General Structure of DeWin 

DeWin has been designed to make it easy for the user to apply DE to any 
given optimization problem. Since it is often helpful to visually monitor an 
ongoing optimization, simple graphics support is also provided. There is 
no special installation routine required to run DeWin. DeWin consists of 
the files shown in Fig. 6.7. 

de4_0.cpp eval.cpp

de.hrandom.h

plot.h

graphics.h

in.dat out.dat

sort.cpp

needed only for graphics
support under Microsoft Windows ®

Fig. 6.7. The files required to compile, link, and run DeWin. The gray-shaded files 
must be modified to the demands of each new problem. 

Here is a brief description of the DeWin files: 

de4_0.cpp: This file contains the main DE engine, devol(). It also con-
tains several different mutation and selection operators and 
handles both crossover and boundary constraints. In addi-
tion, this file controls the output of results. Defining the 
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compiler switch DO_PLOTTING enables graphics support 
for programs compiled under Microsoft Windows® as Mi-
crosoft Windows® applications (see Fig. 6.8). If 
DO_PLOTTING is undefined, then the program must be 
compiled as a console application (see Fig. 6.9). This con-
sole version should work on other operating system, al-
though tests have only been done for Microsoft Win-
dows®. Another compiler switch, BOUND_CONSTR, 
enforces the parameter bounds given in fa_minbound[] and 
fa_maxbound[] (for definitions see below) throughout the 
optimization when BOUND_CONSTR is defined. If 
BOUND_CONSTR is undefined the parameter bounds are 
enforced during initialization only. 

de.h: This file contains some general constants and, more impor-
tantly, the definition of a population member. The struc-
ture below defines a population member: 

typedef struct 
//*************************************
//** Definition of population member 
//*************************************
{
   //parameter vector 

         float fa_vector[MAXDIM];   
                 //vector of objectives (costs) 
         float fa_cost[MAXCOST];   
                 //vector of constraints 
         float fa_constraint[MAXCONST];   

} t_pop; 

This structure contains not only the vector components 
(parameters), but also the objective function values (costs) 
and constraint arrays needed for multi-objective and/or 
constrained optimizations. 

eval.cpp: This file contains the objective function, evaluate(), and 
the left_vector_wins() function that defines the circum-
stances under which the trial vector wins against the target 
vector. The left_vector_wins() function is the routine that 
takes constraints and objective function (cost) values into 
consideration when deciding which vector survives. 
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Fig. 6.8. An example of how to start building DeWin for Microsoft Visual C++ ®

(version 5.0) when DO_PLOTTING is defined. The Win32 application allows the 
plotting routines to be used. 

Fig. 6.9. An example of how to start building DeWin for Microsoft Visual C++®

(version 5.0) when DO_PLOTTING in undefined. In this case, only console out-
put will be active. 
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random.h: This file contains the “Mersenne twister” random number 
generator created by Matsumoto and Nishimura (1998). 

sort.cpp: This file contains the sorting function, sort(), that ranks the 
population array in ascending order where cost[0] is the 
sorting criterion (even if more than one cost exists). The 
sort() function is needed for the “best of parent and child” 
selection, i.e., (µ + λ) selection. 

in.dat: This file holds the control variables that allow the user to 
experiment with various DE strategies, the number of 
population members, etc., without recompiling the entire 
program. An example of the values in in.dat is 

3 choice of method i_strategy 

10000 maximum number of iterations i_genmax 
10 output refresh cycle i_refresh 
19 number of parameters gi_D 
200 number of parents i_NP 
0.85 weighting factor f_weight 
1. crossover constant f_cross 
1345 random seed i_seed 
1 selection flag i_bs_flag 
-1000        lower parameter bound 

fa_minbound[0]
-1000        lower parameter bound 

fa_minbound[1]
...
-1000        lower parameter bound 

fa_minbound[18]
+1000        lower parameter bound 

fa_maxbound[0]
...
+1000        lower parameter bound 

fa_maxbound[18]

The source code contains further details on the purpose of 
these variables. 

out.dat: At the end of the optimization, this file will contain infor-
mation showing the convergence behavior, i.e., the im-
provement of the best objective function value (cost) over 
time. It also contains the final parameter values. 

plot.h: This is the public domain graphics library written by Eric 
Brasseur and enhanced by the authors. 
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graphics.h: This file contains the graphic functions graphics_init(), 
draw_graph() and update_graphics(), all of which must be 
adapted to the demands of each problem.  

6.2.2 Naming and Coding Conventions 

DeWin’s coding conventions follow a similar line of thought as those for 
DeMat. Constants defined with #define are in uppercase letters to distin-
guish them from variables. Except for the graphics library in plot.h, vari-
able names are in Hungarian notation (Cusumano and Selby 1995), i.e., a 
prefix gives information about a variable’s type. Hungarian notation helps 
to identify where typecasting is necessary and where assignments may lead 
to problems that the compiler does not report. Hungarian notation also 
warns of the possibility of side effects when accessing a global variable. 

The prefix, which can consist of several characters, is followed by an 
underscore that is then followed by a descriptive name. The highest prece-
dence in prefix construction is assigned to the character “g”, which denotes 
a global variable. The next highest precedence goes to “p” for pointer vari-
ables. The next highest precedence goes to data representations like “f” for 
float, “i” for integer, etc. The lowest precedence has “a” for arrays. For ex-
ample, a global array of floating-point variables would have the prefix 
gfa_, while a global pointer to a floating-point array would have the prefix 
gpfa_. For the sake of simplicity, simple loop counter variables may be 
named i, j, k ,etc., and do not need a prefix. 

Table 6.2 shows the prefixes that this code uses. If needed, one may de-
fine additional prefixes, e.g., d_ for double-precision variables. 

Most functions contain a comment header that gives information about 
both global variables and those that are passed as function arguments. An 
(I) indicates an input variable, whereas (I/O) stands for input/output and 
means that the function will change the value of the corresponding vari-
able.

6.2.3 Data Flow Diagram 

As in DeMat, the DFD indicates data by two parallel horizontal bars and 
functions by ellipses. Function names followed by () are explicitly named 
in the program. If () is missing, then the functionality is embedded in a se-
quence of statements, not an explicit function. Arrows indicate the data 
flow and contain limited additional time information. In general, time in-
creases from left to right, or from top to bottom. Images of three-
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dimensional cylinders indicate files. Figure 6.10 shows the DFD of 
DeWin. Here are the meanings of the data in Fig. 6.10: 

i_seed: Seed value for the random number generator, which 
should be positive. 

fa_minbound[]: Array of upper parameter bounds. 
fa_maxbound[]: Array of lower parameter bounds. All parameters of 

a population vector are randomly initialized within 
the limits defined by fa_minbound[] and 
fa_maxbound[]. If the compiler switch 
BOUND_CONSTR is defined, then these bounds 
also serve as bound constraints. 

i_genmax: Maximum number of generations until optimization 
stops.

gi_NP: Number of population members (named Np

throughout the book). 
gi_D: Number of parameters (named D throughout the 

book).
i_strategy: Selects the DE strategy. See code for the assignment 

of integer values to strategies. 
f_weight: Factor (named F throughout the book) used for scal-

ing the differential mutation. 
f_cross: Crossover constant (named Cr throughout the 

book).
i_bs_flag: Flag indicating which selection method is used. 

i_bs_flag = 1 (TRUE), enables “best of parent and 
child selection”, i.e., (µ + λ) selection, whereas 
i_bs_flag = 0 (FALSE) enables DE’s standard “trial 
vs. target” selection. 

i_refresh: Output refresh cycle. After i_refresh generations, a 
new set of values is plotted/printed. 

gla_mt[]: State array for the random number generator. 
gl_mti: State variable for the random number generator. 
i_r1, …, i_r4: Random variables ∈ [0, i_NP] that are mutually ex-

clusive.
t_mean: Contains the mean population vector of the current 

population. 
gi_gen: Generation (iteration) counter. 
t_temp: Temporary structure that holds the trial vector. 
gt_best: Current best population member. 
ta_pop: The population array that contains the current (old) 

and new populations side by side. Two pointers, 
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pta_old and pta_new, indicate the start of the corre-
sponding array (Fig. 6.11). 

Table 6.2. Naming variables in Hungarian Notation. 

Variable Prefix Example Remark 

typedef struct t t_pop
Structure defining 
a population 
member 

char c c_dummy –

int i i_strategy 

Integer variable 
where bit-width is 
not a major 
concern 

long l l_iter 
long is defined as 
32 bits 

float f f_x –

global g gl_nfeval 
A long variable 
which can be 
accessed globally 

pointer p pt_pold 
A pointer to a 
structure

array a ta_pop[2*MAXPOP] 
An array of 
structures

File pointer Fp Fp_out –
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evaluate()

left_vector_
wins()

t_temp

gt_best

ta_pop[]

DE initialization
or DE mutation

i_r1 i_r2 i_r3 i_r4

genrand()

gla_mt[] gl_mti

sgenrand()

i_seed

update_
graphics()

gi_gen

gl_nfeval

gi_D

fa_minbound[]
fa_maxbound[]

i_genmax

gi_NP

i_refresh

i_strategy

f_weight

f_cross t_mean

devol()

print results

out.dat

in.dat

Fp_in

Fp_out

File

data

functionLegend:

i_bs_flag

Fig. 6.10. A data flow graph of DeWin’s most important parts  
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pta_old

pta_old

pta_new

pta_new

gi_gen = k

gi_gen = k+1

ta_pop[2*MAXPOP]

ta_pop[2*MAXPOP]

Fig. 6.11. Assigning populations to ta_pop[ ] 

Fig. 6.12. An example of DeWin’s graphics that plots the Chebyshev polynomial 
fitting problem. 

6.2.4 How To Use the Graphics 

The graphics in DeWin are only loosely coupled to the objective function 
so that the user can decide what the graphics should monitor. To keep code 
simple, DeWin’s graphics capabilities are basic, yet zooming in and out is 
possible by drawing a rectangle around the region of interest with the left 
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mouse button clicked (zoom in). A right-click of the mouse on the graph 
zooms out to the original scale. A right-click in the picture also clears out 
any artifacts that may occur. 

Figures 6.12 and 6.13 plot the Chebyshev polynomial fitting problem 
described earlier. 

Fig. 6.13. Zoomed-in graph of the Chebyshev polynomial fitting problem  

The basic graphics routines are located in plot.h, which has been written 
by Eric Brasseur and extended by the authors. Ordinarily, the plot.h file 
should not be changed. All functions needed to modify the graphics dis-
play are located in graphics.h. 

6.2.5 Functions of graphics.h 

void graphics_init(void): 

This function defines the plotting ranges for the x– and y–axes. See the 
code for further details. 
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void draw_graph(float fa_params[], int i_D, char color):

This function defines what should be drawn on the screen. Usually 
fa_params[] holds the current best parameter vector and the variable i_D 
defines its dimension. The variable “color” defines the color in which the 
graph is drawn. The currently available options are shown in Table 6.3: 

Table 6.3. Color options for function draw_graph() 

char c Color chosen 
“r” Red 
“b” Blue 
“g” Green 
“s” Black 
“w” White 
“y” Gray 

void update_graphics(float best[], int i_D, float fa_bound[], long    l_nfeval, int i_gen, float 
f_emin, int i_strategy, int gi_genmax): 

The update_graphics() function is usually called many times during the op-
timization. This function calls draw_graph() to address the variable aspects 
of plotting. The fixed aspects, like grid lines and axes, are coded into up-
date_graphics() itself. Plotting works by erasing the old graph and replac-
ing it with the new one. The parameters are: 

** Parameters     :best[]        (I)    Parameter vector 
**                 i_D           (I)    Dimension of the parameter 
**                                      vector
**                 fa_bound[]    (I)    Array defining a tolerance 
**                                      scheme for the
**                                      current example 
**                 l_nfeval      (I)    Current number of accumu- 
**                                      lated function evaluations 
**                 i_gen         (I)    Current number of accumu- 
**                                      lated generations 
**                 f_emin        (I)    Current best objective 
**                                      function value 
**                 i_strategy    (I)    DE strategy (coded as
**                                      a number) 
**                 gi_genmax     (I)    Maximum number of genera- 
**                                      tions

Some Basic Functions from plot.h 

Below are the basic drawing functions in plot.h that will be of greatest help 
when writing a customized plot with draw_graph() and update_graphics(). 
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void    fline(float x0, float y0, float x1, float y1, char c): 

Draws a line from (x0,y0) to (x1,y1) with the color defined by the charac-
ter variable c (see above). 

void    fcircle(float xm, float ym, float radius, char c): 

Draws a circle with radius “radius” around the point (xm,ym) with the 
color defined by the character variable c (see above). 

void    frect(float xlu, float ylu, float xrl, float yrl, char c): 

Draws a rectangle from the upper left upper corner (xlu,ylu) to the lower 
right corner (xrl,yrl) with the color defined by the character variable c (see 
above).

void    box(char c): 

Draws a box around the plot with the color defined by the character vari-
able c (see above). 

void    grid(char c, int ix, int iy): 

Draws ix and iy grid lines in the vertical and horizontal direction, respec-
tively, and prints the tic labels. Drawing is done with the color defined by 
the character variable c (see above). 

void    myprint(float x, float y, char *s): 

Prints the string pointed to by *s starting at the location (x,y). 

6.3 Software on the Accompanying CD 

Figure 6.14 shows how the software on the accompanying CD is organ-
ized. There is a directory with code that has been exclusively written for 
this book. This code is in either MATLAB® or C, i.e., it is contained in the 
DeMat and DeWin directories. There is also code that has been contributed 
by various authors, which in many instances has been written before work 
on this book even started. Although most of this code does not contain the 
latest versions of DE, it has been included to offer a wider variety of lan-
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guages. A third section contains demo programs that may be part of com-
mercial packages that use DE. To use this code, refer to the relevant  
readme files.

Main DE code in C

Random number generating code in C

Objective function examples in C

Main DE code in MATLAB®

Objective function examples in MATLAB®

Demo programs using DE

DE-code in other programming languages

Fig. 6.14. The directory structure of the accompanying CD 

Disclaimer of Warranty 

THIS SOFTWARE AND THE ACCOMPANYING FILES ARE 
PROVIDED “AS IS” AND WITHOUT WARRANTIES AS TO 
PERFORMANCE OR MERCHANTABILITY OR ANY OTHER 
WARRANTIES WHETHER EXPRESSED OR IMPLIED. NO 
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS 
OFFERED.
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Good data processing procedure dictates that any program should be 
thoroughly tested with non-critical data before relying on it. The user must 
assume the entire risk of using the programs. 

MATLAB® is a registered trademark of The Math Works, Inc. 
WINDOWS® is a registered trademark of Microsoft Corporation. 
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7 Applications 

The test bed of multi-modal functions is a valuable tool for benchmarking 
algorithmic performance. Test functions also make it easy to study how 
dimension, epistasis, the number of local optima and other variables affect 
an optimizer’s performance. Even so, separable or symmetric test func-
tions are typically easier to solve than epistatic, real-world problems of 
similar size, yet epistatic test functions with millions of local optima are 
much more difficult to minimize than the majority of real-world optimiza-
tion tasks. Furthermore, real-world problems involve the art of objective 
function design, something that is absent when it comes to predefined test 
functions. A clever design of the objective function may considerably de-
crease the size of the search space, or convert the problem into one that is 
easier to solve. As an outcome, often a better solution may be obtained 
with less computation, and with a lower probability of failure. Therefore, 
the design of the objective function is as important a success factor as is 
the design of the optimization algorithm. Sometimes a good objective 
function design can even be crucial for the solution of the entire problem. 
This is also something to be learned from real-world examples. 

Those who have real-world problems to solve are often the best judges 
of an optimizer’s practical value. Their experiences more closely reflect 
both the true effort that an optimizer requires and the utility of the results 
that it provides. In addition, independent research with DE helps to ensure 
that a balanced view of the algorithm’s abilities and potential emerges 
without any bias that DE’s creators may inadvertently display in their 
analysis. 

Taken together, test functions and practical examples give a more com-
plete picture of DE’s abilities than test functions alone can provide. This 
chapter is, therefore, devoted to presenting the experiences of scientists 
and engineers who have successfully applied DE to the optimization tasks 
that are central to their research. In part, these applications serve as 
“worked examples” that can help answer questions about DE that are not 
addressed in this book. 

Several applications highlight DE’s performance on highly epistatic, 
multi-modal optimization problems like the many-body problem in Sect. 
7.1 and the inverse problems in Sects. 7.5, 7.10 and 7.11. In addition, sev-
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eral applications compare DE’s performance to that of more traditional 
techniques like Powell’s method (Sect. 7.5), the downhill simplex method 
(Sect. 7.5), simulated annealing (Sect. 7.1) and the simple genetic algo-
rithm (Sects. 7.1 and 7.4). Sometimes DE is faster, sometimes not, but its 
success is less dependent on initial conditions than competing algorithms 
and it almost always yields an equal or better result that is more precise, 
especially when handing data with a wide dynamic range. 

Like all random search algorithms, DE sometimes suggests novel or un-
conventional designs. Such was the case when DE designed an air com-
pressor system with commercially available components (Sect. 7.3). On 
occasion, DE arrives at a solution that was not just unexpected, but also 
unintended. For example, when DE optimized a reflector’s performance, 
its solution was to enclose the light source (Sect. 7.2)! DE has also found 
algebraic codes that not only perform near the theoretical limit, but also 
execute faster than their classically derived counterparts because they are 
simpler (Sect. 7.7). In fields like digital filter design, DE has produced de-
signs that traditionally would require considerable expert knowledge (Sect. 
7.8). DE’s improvements over existing designs are often significant. When 
used in conjunction with finite element modeling, DE improved the per-
formance of a radial active magnetic bearing by 8% (Sect. 7.9). 

A few applications adapt DE for special purposes. For example, in Sect. 
7.6, DE is implemented in parallel to perform image registration. Perform-
ance scaled almost linearly as the number of processors increased. Section 
7.12 outlines how DE optimized parameters on-line to control plasma for 
semiconductor processing. 

As these and other researchers have discovered, DE is robust, versatile, 
accurate and reliable. There is every reason to believe that other applica-
tions that adopt DE can reap benefits on a par with those reported in this 
chapter.



7.1 Genetic Algorithms and Related Techniques for 
Optimizing Si–H Clusters: A Merit Analysis for Differential 
Evolution

Nirupam Chakraborti 

Abstract. Differential evolution (DE) has been successfully utilized to 
predict the ground state structures of a number of Si–H clusters. The com-
putations are based upon a non-orthogonal tight-binding model developed 
for the Si–H system. The energy functional constructed from this model 
includes contributions of both electronic and pairwise interaction between 
the atoms and the energy minimization has been carried out using DE. The 
results are compared with the previous studies of these clusters where 
other tight-binding models, simple genetic algorithms and simulated an-
nealing were used. Also, some specific advantages of DE over the other 
techniques have been identified and highlighted in this study.  

7.1.1 Introduction 

The need for newer and often exotic materials now seems to be ever in-
creasing. The challenge now is not just to analyze the structure and proper-
ties of some existing materials, but to design, on the computer screen, 
some hitherto unseen clusters and molecules, tailor-made for some specific 
purpose. This has rendered the atomistic structure calculations of clusters 
and molecules of immense practical importance. Since the ultimate objec-
tive of most of the simulations is to identify a ground state corresponding
to a global minimum of the energy functional, the problem essentially re-
quires a fast and efficient optimizer, for which techniques like simulated 
annealing (SA) have been traditionally used, and genetic algorithms (GAs) 
are actually late entrants. However, some of the recent success stories of 
calculating the structures of large carbon molecules (Wang and Ho 1997), 
large polymeric materials (Keser and Stupp 2000) and various silicon 
(Morris et al. 1999) and Si–H clusters (Chakraborti et al. 1999, 2002) sim-
ply indicate that GAs are actually going to stay in this area. This indeed 
has a far-reaching consequence in the area of computational material de-
sign, as the GAs have actually rendered the search for the ground state en-
ergy minimum a thorough and efficient process. They are already showing 
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an edge over a number of existing techniques and are definitely worthy of 
further exploration. 

Some of the inherent shortcomings of the simple genetic algorithm 
(SGA), however, quite regularly show up in such complex computing 
processes. In the case of a large number of variables, typical of many 
molecules and clusters, mapping all of them in a binary format to accept-
able accuracy requires manipulating lengthy arrays containing ones and ze-
ros, and this often slows down the computation process to an unacceptable 
level. Furthermore, binary arithmetic has the implicit disadvantage of 
sometimes being stranded in a Hamming cliff. In this situation, as is well 
known, any small change in the real space would require a very large 
change in the corresponding binary. This halts progress of the solution and 
often makes fine convergence impossible in a near-optimal scenario. Fur-
thermore, in SGA, the rate of mutation is not self-adjusting in nature. The 
requirements of mutation at the beginning and end of the computational 
process are, however, not necessarily the same. The user can, and some-
times does, induce an ad hoc adjustment of the mutation probability as the 
solution progresses, but a realistic estimate of the required temporal 
changes in the mutation probability still remains quite cumbersome. Fi-
nally, SGA is not geared for searching beyond the prescribed variable 
bounds, which, at least in few cases, may not be precisely known.  

All such problems can be easily tackled in the computing environment 
prescribed by DE (Price and Storn 1997), where all the genetic operations 
are performed on the real-coded variables themselves, thereby totally 
eliminating the risks of ending up in a Hamming cliff. The concept of mu-

tating with vector differentials that DE proposes automatically makes mu-
tation a self-adjusting phenomenon, because the vector differential remains 
quite large for the initial random population and, analogous to a noise 
term, progressively decays as the population gradually converges. So far, it 
appears that DE has been tested for just one materials-related problem 
where it has successfully calculated the ground state structures of a number 
of Si–H clusters (Chakraborti et al. 2001). Since this particular system has 
also been studied by the ab initio method (Balamurugan and Prasad 2002; 
Prasad 2002), SA (Gupte and Prasad 1998; Gupte 1998) and SGA with and 
without Niching (Chakraborti et al. 1999, 2002), it is taken here as the 
paradigm case to establish the efficacy of DE for such types of studies. We 
begin with a description of the system model. 
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7.1.2 The System Model  

The Basics and the Background 

A study of Si–H clusters is quite important from a practical point of view 
because hydrogenated amorphous silicon is a highly promising opto-
electronic material and during its formation through the glow discharge of 
silane (SiH4) gas, various assemblages of silicon and hydrogen are known 
to play very important roles (Gupte 1998). As indicated above, in order to 
locate the ground state energy levels of the clusters, the computational task 
of the DE algorithm is to locate the atomic coordinates corresponding to 
the minimum energy values. The computing difficulties are enormous, 
since it is virtually possible to construct an infinite number of candidate 
solutions in a messy multi-dimensional fitness landscape, and the task of 
identifying the ground state solution there is often worse than locating the 
proverbial needle in a haystack! This is essentially an energy minimization 
problem; therefore, the fitness value can be taken as the negative of the en-
ergy functional. One needs a rigorous description of the energy, consider-
ing the interactions between the electrons, as well as the ionic cores of the 
atoms. This can be done from first principles devoid of any empirical or 
adjustable parameters, as attempted in the Car–Parrinello approach (Car 
and Parrinello 1985). Although known for their accuracy, such ab initio 

schemes are often unmanageably computing intensive. For the covalently 
bonded materials an excellent alternate is the tight-binding approach, 
which has been used in conjunction with DE (Chakraborti et al. 2001). 
Further details are provided below. 

The Tight-Binding Model 

The tight-binding approximation treats the system as consisting of ionic 
cores and an electron gas and is now very widely used for studying cova-
lently bonded materials (Wang and Ho 1997). It attempts to calculate the 
total energy functional for the entire system ( )totalE  by adding up the one -
particle eigenvalues and the individual pair potential terms, such that 

paireltotal EEUE ++= 0
(7.1)

where the constant 0U  shifts the cohesive energy as prescribed by the user. 
elE  denotes the energy associated with the occupied eigenvalues of the 

electronic system and pairE  is the sum of pair potential terms caused by 
the repulsion between the ionic cores. Denoting the occupancy of the kth
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eigenstate as kg , and occN as the number of occupied orbitals, the elec-
tronic contribution to the total energy is expressed as 

.
1=

=
occN

k

kk

el gE ε
(7.2)

Furthermore, summing the pair potential terms related to repulsion be-
tween the ionic cores, pairE  is obtained as 

( ).
<

=
ji

ij

pair rE χ (7.3)

Utilizing this basic definition for total energy, the wave functions of 
these eigenstates are given in terms of the non-orthogonal basis as 

i

i

n

in C φψ ⋅= (7.4)

where iφ  are the basis functions. In the non-orthogonal tight-binding 

theory employed here the basis functions are localized on each atom re-
sembling its atomic orbital, and spherical harmonic functions ( )imY  are 
used to describe the angular parts. The characteristic equation is then ex-
pressed as 

( ) 0=−
i

ij

jijijij CSH ε (7.5)

where ijH  denotes the Hamiltonian matrix elements between the ith and 

jth orbitals, such that  

.ji

ij HH φφ= (7.6)

The overlap matrix elements between them are expressed as 

.ji

ijS φφ= (7.7)

Further details of calculating the Hamiltonian and the overlap elements 
are provided elsewhere (Gupte 1998). 
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7.1.3 Computational Details 

In order to apply DE to the present problem (Chakraborti et al. 2001), a 
Cartesian coordinate system was adopted in a cubic search space of 5 Å 
each side and a search was conducted for the atomic coordinates corre-
sponding to the ground state structure. Out of the infinite atomic arrange-
ments possible in this solution domain, the task of DE was to locate the 
unique configuration leading to the ground state with minimum energy. 
DE could perform this task quite satisfactorily. A DE code was tailor-made 
for this particular work, following the guidelines available in the literature 
(Price and Storn 1997). A population size of ten times the number of vari-
ables appeared to be adequate in most cases and a scheme for adjusting the 
mutation constant and crossover probability was evolved through system-
atic trial and error. For a number of clusters DE reached the near-optimal 
range rather quickly compared to the SGA-based studies performed previ-
ously (Chakraborti et al. 1999, 2002). The effect was more pronounced in 
some of the larger clusters: Si6H, for example, was computed within just 
350 generations. In general, however, a few hundred to over a thousand 
generations were necessary to resolve a structure, and often the computa-
tion for larger assemblages took less time compared to some of the smaller 
ones.

All the calculations were performed in a local area network of a number 
of Silicon Graphics workstations in the SG 200 Origin series. The calcula-
tions were very computationally intensive; a few even took several months 
to converge when submitted as background jobs in a multiple-users envi-
ronment, and apparently there was a nonlinear increase in the problem 
stiffness with increasing problem dimension. Even then, the use of DE re-
sulted in a considerable amount of savings in terms of CPU time, as the re-
cent ab initio calculations for the same system (Balamurugan and Prasad 
2002; Prasad 2002) took considerably longer than the evolutionary ap-
proach. In fact, DE could locate the near-optimal range rather quickly 
compared to some other techniques – SA, for example (Gupte and Prasad 
1998; Gupte 1998). An elitist feature was introduced into the DE algorithm 
used in this problem, which turned out to be an absolute necessity for this 
sort of calculation. The movement of the elite was closely monitored and 
the decision for convergence was taken on the basis of the performance of 
the best individual, rather than an average member of the population. 
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7.1.4 Results and Discussion 

Evolution of the Three-Dimensional Clusters 

Some of the hydrogenated silicon clusters were previously studied using 
an empirical tight-binding (ETB) approach (Katircio lu and Erkoç 1993). 
The three-dimensional nature of most of the clusters was not adequately 
highlighted in that work, as the cluster geometries could not be optimized. 
It has been possible to overcome this problem by coupling the DE with a 
tight-binding formulation. A typical case is shown in Fig. 7.1 for Si2H2.
This is a symmetrical structure where the two silicon atoms are bound to 
each other and both the hydrogen atoms are bonded strongly to a silicon 
atom as the mirror image of each other. 

a) b)

Fig. 7.1. The ground state structure of the Si2H2 cluster: a calculation by DE and 
SGA; b prediction from ETB model 

As evident from Fig. 7.1, these structural features could not be fully re-
vealed using the ETB formulation alone and, therefore, the optimization 
through DE has a very special role to play. The Si–H bond length is calcu-
lated as 1.54 Å. The calculated value of cohesive energy is 10.14 eV, 
which is in excellent agreement with the earlier computations using SGA 
and SA (Chakraborti et al. 1999, 2002; Gupte 1998). DE was able to re-
solve this structure approximately within 500 generations and, in fact, a 
near-optimal situation was obtained much sooner. A variable mutation 
constant between 0.02 and 0.3 and variable crossover probability between 
0.5 and 0.9 were judiciously used over a population size of 120. The 
mechanisms of probability variation were evolved through systematic trial 
and error. 
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Several Si–H clusters have been calculated fairly recently using DE 
(Chakraborti et al. 2001). Here we will analyze a few selected ones, show-
ing some characteristic trends. 

a) b)

Fig. 7.2. Ground state structures of a Si2H and b Si3H calculated by DE and SGA. 

The Symmetric and Asymmetric Clusters 

Many of the clusters calculated in a recent study (Chakraborti et al. 2001) 
were highly symmetric, and a few were not. DE was successful in resolv-
ing both types, as shown in Fig. 7.2. Like other studies using SA (Gupte 
1998) and SGA (Chakraborti et al. 1999, 2002), the calculations using DE 
have also determined the Si2H structure as an asymmetric planar structure 
with the hydrogen atom located closer to one silicon atom than the other. 
The ground state cohesive energy is determined as 6.56 eV which is very 
similar to the values obtained in earlier calculations. Although the cohesive 
energy calculated through DE is actually identical to what was obtained 
through SGA (Chakraborti et al. 1999, 2002), the bond lengths are now 
slightly altered. Furthermore, some ab initio calculations (Balamurugan 
and Prasad 2002; Prasad 2002) reported a symmetric structure for this 
cluster. This perhaps suggests a significant multi-modality of the solution 
space, an important issue that warrants further analyses. Because of the 
structure’s high asymmetry, calculation of this structure was a little cum-
bersome. It was necessary to run the DE code for about 400 generations to 
obtain complete convergence. 

In the Si3H structure two silicon atoms are situated symmetrically with 
respect to the third. The lone hydrogen atom is situated at the axis of sym-
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metry. The structure is planar with an Si–H bond distance of the order of 
1.8 Å, which is greater than that existing in the SiH cluster. DE determined 
the cohesive energy of the ground state structure as 10.61 eV, which is 
well in accord with the other predictions (Chakraborti et al. 1999, 2002; 
Gupte 1998). DE calculations were run with a mutation constant of 0.25 
and a crossover probability of 0.8 for approximately a thousand genera-
tions to obtain this structure, which essentially shows the same symmetry 
as that observed in the recent ab initio calculations (Balamurugan and 
Prasad 2002; Prasad 2002).  

a) b)

c)

Fig. 7.3. The ground state structure of Si2H4 cluster: a DE and SGA calculation; b
prediction by SA; c prediction from ETB model. 
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The Consequences of a Complex and Multi-modal Fitness 
Landscape

The energy functional that has been constructed here gives rise to a strong 
multi-modality in a complicated fitness landscape, containing closely 
spaced energy peaks. Negotiating such a rough terrain would be a Hercu-
lean task for any optimizer, and in this situation DE seems to have done a 
very commendable job. For example, in case of Si2H4 (Fig. 7.3), DE pro-
duced a structure energetically superior to those obtained by both SA and 
SGA (Gupte 1998; Chakraborti et al. 1999), fully resolving the symmetry 
predicted by ETB calculations (Katircio lu and Erkoç 1993) in three di-
mensions. The structure shown in Fig. 7.3 corresponds to a cohesive en-
ergy of 17.02 eV, where the values computed through SA and SGA were 

16.93 and 17.01 eV, respectively. This structure looks similar to what 
has been obtained through SGA (Chakraborti et al. 1999, 2002) but in 
variance with the structure determined through SA (Gupte 1998). Al-
though DE converges to a lower minimum, energetically, the minima pre-
dicted by DE and SA are just 0.09 eV apart. The existence of two different 
minima at such a close proximity is indicative of a strong multi-modality, 
and the success of DE in locating the better of the set, without resorting to 
any niching strategy (Goldberg 1998), as was done in the case of SGA, 
speaks volumes for the excellent searching ability of this scheme. To en-
sure stability of the structure, the calculations were run for about 1300 
generations. A mutation constant of 0.2 was mostly used along with a 
crossover probability of 0.8. 

The Behavior of Hydrogen 

The nature of the hydrogen bonding plays a key role in the stability of Si–
H clusters. In amorphous hydrogenated silicon, hydrogen often forms 
some weak dangling bonds with silicon, which tend to deteriorate on ab-
sorption of some photon energy, rendering the material unsuitable for most 
practical applications. Evolutionary computing, through both DE and GAs, 
have revealed that hydrogen can be bonded to a single silicon atom or can 
be made to form a bridge bond with a number of silicon atoms. Two typi-
cal clusters, Si4H and Si2H3, are shown in Fig. 7.4. In Si4H the lone hydro-
gen is bonded to an silicon atom, while in Si2H3, two hydrogen atoms form 
bridge bonds with a pair of silicon atoms, and the remaining hydrogen is 
bonded to a single silicon atom. 

The ground state structure of Si4H is quite similar to that of Si4 dis-
cussed earlier (Gupte 1998). The presence of hydrogen causes some distor-
tion in the structure, but retains the essential geometric features of Si4. To 
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resolve this fully, the DE calculations were run for about 2000 generations 
with a mutation constant of 0.3 and a crossover probability of 0.8. The co-
hesive energy for the ground state structure was calculated as 14.81 eV, 
which is quite comparable to the values calculated by the other techniques 
(Gupte 1998). 

The structure of Si2H3 obtained by DE (Fig. 7.4) qualitatively shows the 
same atomic arrangements as what was obtained earlier by both SGA and 
SA (Chakraborti et al. 1999, 2002; Gupte 1998). However, by some quirks 
of computing DE predicted the cohesive energy as 7.04 eV, as opposed to 
a value of 12.87 eV computed earlier. In fact, this is the only case where 
DE failed to reach the correct convergence and performed in an inferior 
way compared to both SGA and SA. The calculations were continued for 
about 900 generations, varying the mutation constant between 0.0001 and 
0.2 and the crossover probability between 0.5 and 0.99, and an apparently 
premature convergence was obtained. The reasons for the poor perform-
ance of DE in this case are not clearly understood. Due to its unique repro-
duction strategy, DE essentially remains a greedy scheme, which con-
verges really fast, but sometimes may lead to problems. However, this 
result can be taken as a very rare exception rather than a rule, as this prob-
lem was not encountered for any other clusters in the study. 

a) b)
Fig. 7.4. Configurations predicted by both DE and SGA: a the ground state struc-
ture of the Si4H cluster; b the ground state structure of the Si2H3 cluster 
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Hydrogen in Relatively Large Clusters 

In all the clusters studied here by DE the hydrogen atoms were observed to 
occupy positions either outside or at the surface of the clusters. In no case 
was hydrogen found to be situated inside the clusters. Hydrogen also 
seems to form multi-centered bonds with two or more silicon atoms, where 
it is not strongly attached to any particular one of them. Also, it appears 
that even a single hydrogen atom can very significantly alter the geometry 
of a silicon cluster. Such findings are quite prominent, particularly in rela-
tively large clusters like Si5H (Fig. 7.5) and Si6H (Fig. 7.6). 

a) b)

Fig. 7.5. Si5H cluster: a the ground state structure predicted by DE; b a slightly 
higher energy structure obtained by ab initio calculations.  

In the ground state configuration of Si5H revealed through DE (Fig. 
7.5), three silicon atoms are situated on the same plane as the lone hydro-
gen. The structure is symmetric along this plane with two silicon atoms 
symmetrically placed on two sides of it. This is quite deviant from the re-
ported structure of Si5, and in fact it is more like the structure of Si6 (Gupte 
1998). The hydrogen therefore causes a very large distortion in the Si5

structure, which was also observed in the earlier studies. The cohesive en-
ergy was calculated as 23.90 eV, and with variable mutation constants 
between 0.1 and 0.3 and the corresponding crossover probabilities between 
0.5 and 0.85, DE was able to obtain this relatively large structure within 
just 600 generations.  

An alternate structure with slightly higher cohesive energy obtained in a 
recent ab initio calculation (Balamurugan and Prasad 2002; Prasad 2002) 
is also shown in Fig. 7.5. The hydrogen in this configuration is completely 
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outside the silicon lattice and is attached to just one silicon atom. The 
multi-centered bonds in larger clusters therefore break with very little en-
ergy input, and this phenomenon may have some significant implications 
in selecting materials for opto-electronic devices like light sensors, thin 
film transistors, light-emitting diodes, etc., where hydrogenated amorphous 
silicon is currently emerging as a strong candidate. 

Similar trends were also observed in Si6H, and both the DE and SGA 
calculations have placed the hydrogen atom at the surface of cluster (Fig. 
7.6). DE quite efficiently resolved this relatively large configuration. The 
ground state structure shown in Fig. 7.6 was obtained within just 350 gen-
erations with a mutation constant of 0.2 and a crossover probability of 0.9. 
The cohesive energy was calculated as 23.90 eV, which is identical to 
what was obtained with SA (Gupte 1998) and better than that predicted 
with SGA (Chakraborti et al. 1999, 2002). 

The ground state structure of Si6H appears to be a slightly distorted bi-
capped tetrahedron. The distortion, as expected, is caused by the presence 
of hydrogen in the lattice, which shifts the silicon atoms in its immediate 
neighborhood. 

a) b)

Fig. 7.6. The ground state structure of the Si6H cluster: a DE calculation; b SGA 
calculation

An Evaluation of the Performance of DE 

From the experience of studying Si–H (Chakraborti et al. 2001), a clear 
picture emerges regarding the efficacy of DE. A few salient points are 
highlighted below. 
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• Real coding in DE requires far less data storage, and the absence of any 
mapping between binary and real numbers makes it execute faster. 
These features make DE an ideal candidate for the calculation of large 
clusters, where the CPU time is crucial. 

• Except for one single exception, DE in the present context always pro-
duced results either comparable to or better than those obtained by SGA 
and SA. 

• DE effectively is a greedy scheme, preferring either the better child or 
the better parent. This leads to a speedy convergence in most cases, but 
may backfire in some. 

• The self-adjusting mutation scheme in DE is a definite advantage. 
• DE can negotiate non-smooth fitness landscapes, as encountered in the 

present study. 
• The introduction of elitism in DE was found to be highly beneficial in 

the present case.
• At least during this investigation, DE resolved very closely spaced 

multi-modality without resorting to any niching strategies. 

For large computations of this sort, the power of DE can perhaps be 
more efficiently realized by developing a parallel version of the current DE 
methodology. Future researchers in this area might closely explore such an 
option.

7.1.5 Concluding Remarks 

The success of DE use demonstrated here could be of immense signifi-
cance to the general area of computational materials science, because the 
methodology described here can be easily extended to materials like giant 
fullerenes and carbon nanotubes and can be effectively tried out for a large 
number of hitherto unsolved materials-related problems. Applications of 
GAs have opened up a new pathway in materials research, particularly in 
materials design. This can now be further enriched by the adoption of DE, 
and the time is quite ripe for its vigorous promotion by materials research-
ers at large. 
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7.2 Non-Imaging Optical Design Using Differential 
Evolution

David Corcoran and Steven Doyle 

Abstract. The application of differential evolution to non-imaging optical 
design is explored here. The objective is to create a mirror shape which re-
flects light from a source to produce a desired light distribution in some 
target region. Differential evolution uses a cost measure to numerically de-
termine the quality of a proposed solution against a desired solution and 
various cost measures specific to non-imaging optical design are exam-
ined. A reverse engineering strategy is used to test the design methodology 
for a point light source, which lends insight into the differential evolution 
approach, and validates it for two geometric classes of problems. In these 
the target distribution comes from either a parabolic mirror shape or an el-
liptical mirror shape. The methodology is also validated for an extended 
light source.

7.2.1 Introduction 

Luminaire reflectors can be found in car head-lamps, lighting fixtures, in-
deed anywhere there is some form of artificial lighting. It may be surpris-
ing but the design of such reflectors can be a time-consuming and costly 
exercise taking of the order of years to complete in the case of car head-
lamps. The reason is the trial and error approach which is adopted by the 
designer. Software packages which aid in the design process exist, yet they 
still require an interactive procedure of varying the design and then testing 
it over many iterations, a process which is not just time consuming but 
must eventually fail as the complexity of a design increases. Observation 
of the design search space for such problems demonstrates the necessity 
for a global optimization process (Doyle et al. 1999a). Prompted by the 
genetic algorithm work of Ashdown (1994), we have explored the use of 
differential evolution (DE) to automate non-imaging optical design and 
found that the technique is not only valid but also feasible (Doyle et al. 
1999a, 1999b, 2001). 
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7.2.2 Objective Function 

The task of a non-imaging optical designer is that, given a light source, a 
reflector design is required which will cast a desired distribution of light 
on some target surface (henceforth referred to as the target distribution). 
The objective function must therefore provide a means of calculating a 
light distribution and measuring the difference between this and the target 
distribution. In this regard the key elements of the objective function are a 
ray tracer and a cost measurement. 

Ray Tracer 

The distribution from a light source reflector combination can be calcu-
lated using a ray-tracing approach as illustrated in Fig. 7.7. 

Fig. 7.7. Ray tracing a Bezier curve 

In ray tracing one makes use of the geometric nature of light: that is, 
light travels in straight lines and upon reflection from a smooth surface the 
angle of incidence of a light ray is equal to its angle of reflection. A light 
source can then be considered a source of light rays with each ray being 
described by a parametric vector of the form 

R = S + tRU (7.8) 

where R is the ray position, S is a vector locating the source of the ray, 
U is the ray direction and tR is the ray parameter with tR ∈ [0, 1]. 
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Mathematically a mirror can be represented by a Bezier curve (Bezier 
1974), a continuous parametric curve determined by a small number of pa-
rameters called control points (see Fig. 7.7). In two dimensions a cubic 
Bezier curve can be written as 
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where Pi are the control points 
iy
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P
 and tB is the Bezier parameter, tB ∈

[0, 1]. 
The parameters P1, P4 and P2, P3 determine the end position points of 

the curve/mirror and the magnitude and direction to the curve at these 
points. Changing the control parameters thus allows a continuum of poten-
tial mirror designs P = [P1, P2, P3, P4] to be generated. The objective func-
tion can then be written in general terms as f(P) = C, which is a cost (C)-
based function to be minimized using DE. 

To calculate the resultant light distribution for a particular mirror de-
sign, P, rays are launched discretely and are reflected from the mirror ac-
cording to  
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where N is the normal to the mirror at the point of intersection, the latter 
obtained from solving for the incident ray Rinc = Q(tinc). The reflected ray 
is then described by 

refrefref USR Rt+=     where ( ).ref inctQS = (7.11)

Multiple reflections are also allowed by iteration in which Rinc becomes
Rref and the process continues to some desired limit imposed by computa-
tional constraints. The resultant distribution can then be determined by cal-
culating the intersection of the reflected rays with bins or ray-collecting 
elements distributed over the target surface. The area for ray collection is 
called the intercept region (see Fig. 7.8 for an example). As the purpose 
here is mirror and not source design, rays that are cast directly from the 
source to the target surface without reflection are not considered in the cal-
culation of the resultant distribution.
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Cost Measurement 

A figure of cost for a particular mirror design can be based in general 
terms on some numerate difference between the target and resultant distri-
butions. We have investigated various cost measurements (Doyle et al. 
2001) and it is instructive to examine a few examples to gain an insight 
into the operation of DE for design problems. 

In preliminary work, problem-specific cost measurements were used 
(Doyle et al. 2001). For example, a focusing solution could be achieved by 
requiring DE to maximize the number of reflected rays in a single intercept 
bin, of narrow angular width with respect to the source, accomplished by 
applying the cost measurement 

C = T  R (7.12)

where T is the total number of rays and R is the number of intercepting 
rays. Interestingly, observation revealed that DE first attempted mirror de-
signs that would result in any rays being directed toward the intercept re-
gion, then later attempted designs that maximized the reflected ray num-
ber. This points toward an inherent strength of DE: that is, it is capable of 
finding not only an optimum solution but also developing a solution strat-
egy.  

To generalize the approach to non-specific design problems, the angular 
width of the intercept region was extended and divided into a number of 
ray-collecting bins. The following simple cost measurement was applied 
where Ti is now the desired number of rays in a collecting bin, Ri the num-
ber reflected into that bin and N the number of bins: 
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There is, however, an underlying difficulty with this approach: that is, 
the cost biases the selection of mirror solutions toward those with diver-
gent ray reflections. A mirror design proposed by DE which casts rays out-
side the intercept region can potentially have a lower cost than one which 
casts rays into the region but in the wrong bins. To circumvent this the 
number of these outer rays was added as a penalty to the cost: 
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The ray number ∞R  is determined by counting those reflected rays that 
intersect the target surface but not the finite region in which the intercept 
bins are located. This is equivalent to including an infinite intercept region, 
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though note that individual mirror shape ultimately determines how much 
of this region is available. 

Remarkably, with the new cost measurement implemented, it was found 
that when the target was in the far field (taken to be a distance several 
times the mirror dimension) the generated optimum mirror shapes often 
enclosed the light source preventing any rays from reaching the intercept 
region. To understand this, consider first that the initial population of trial 
mirrors used by DE is generated randomly. As the binning region, i.e., the 
region containing the N collecting elements, is small in comparison to the 
intercept region, one might expect the initial cost of the population mem-
bers to be 
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where R is the total number of rays reflected and α is the fraction of these 
rays in the binning region. It is assumed here that α ≤ 0.5  and Ri, the num-
ber of rays reflected into each bin, is less than Ti. A closed mirror solution 
will therefore have the lower cost
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particularly in the far field (as α decreases with distance) and DE simply 
selects the optimum solution. It must be stressed that DE is working cor-
rectly; the issue is that a simple cost measurement may have hidden unex-
pected behavior. The final version of the cost measurement and the one 
used in the results detailed below (unless otherwise stated) solves this 
problem by the inclusion of a component that penalizes any difference be-
tween the total desired ray number in the binning region and the total re-
flected ray number which reaches the entire intercept region: 
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7.2.3 A Reverse Engineering Approach to Testing 

To investigate the DE approach to non-imaging optical design, it is useful 
to choose test problems for which the solution is already known. In this re-
gard two classes of mirror design problems have been examined (Doyle et
al. 1999a), one in which the output light distribution diverges/converges 
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and one in which the light distribution is maintained. These correspond to 
elliptical and parabolic mirror designs respectively. Casting the light dis-
tribution from either of these mirrors on a distant surface produces a target 
distribution for a known mirror shape. Using this as the target for the ob-
jective function, DE should in principle be capable of reverse engineering 
the problem to determine the original mirror shape. A DE algorithm (Storn 
and Price 1997) was implemented initially with a population size of 40, a 
crossover constant of 0.2 and a noise scaling factor of 0.8. Target distribu-
tions were generated on planes from point light sources at near, middle and 
far fields defined by the reducing angular width of the distributions with 
respect to the source. Further details of the parameters for the parabolic 
and elliptical problems can be found in our earlier work (Doyle et al. 
1999a).

Sample results are presented in Fig. 7.8 for a near-target distribution 
generated by a parabolic mirror with the point source located at its focus. 
In this figure the generating mirror is presented with the solution obtained 
by DE. Overall for this problem the average cost (from ten computational 
runs), after a maximum of 104 iterations and expressed as a percentage of 
rays launched, was 2%. The low average cost and visual inspection of Fig. 
7.8 demonstrate that the DE approach has performed exceptionally well. 
Interestingly, while all mirror solutions presented produce close to, and in 
Fig. 7.8c exactly, the desired distribution, only in one of these cases is the 
mirror close to being the generating parabolic shape. This is a recurrent 
feature of the DE solutions. It arises because there is more than one solu-
tion to the design problem and the DE strategy is general enough to be able 
to find these solutions. From the point of view of a designer this offers the 
very beneficial property of flexibility. For instance, in addition to meeting 
a physical requirement one might choose from the collection of designs 
one which is aesthetically pleasing. As the target distribution is removed to 
further distances and its angular width decreases with respect to the source, 
the design problem becomes more difficult. It has been observed that at the 
benchmark 104 iterations the average cost increases to 18% and 38% in the 
middle and far field. Nevertheless by increasing the number of iterations 
by a factor of four it has been shown that the cost for a middle-field prob-
lem can be reduced to 5% (Doyle et al. 1999a). 
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a)

b)

(c)

Fig. 7.8. Sample results from the DE approach to mirror design. On the left a se-
lection of ray-traced optimum mirror designs proposed by the strategy. The para-
bolic mirror used to generate the target distribution is also shown. On the right the 
overlaid target distribution and resultant distributions are shown. Black and white 
boxes represent an excess and deficit respectively. 
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For elliptical test problems the point source was located at the first focal 
point. Provided the target was located beyond the second focal point of the 
generating ellipse, the cost for the DE solutions was typically ≤ 2% regard-
less of the distance to the target. The reason is, in contrast to the above 
parabolic problem, the angular width of the target distribution here remains 
constant irrespective of its distance. As before, it was found that a number 
of potential solutions existed for this problem, which in the main were 
scaled versions of the generating ellipse (see Fig. 7.9). The DE strategy 
does appear to have increased difficulty if the target distribution is placed 
at the second focal point and this can be understood in terms of its reduced 
angular width (Doyle et al. 1999a). Nevertheless, it is found that while the 
average cost is 23%, optimum solutions of cost ≤ 10% can still be gener-
ated at the 104 iteration benchmark, an example of which is shown in Fig. 
7.9.

Fig. 7.9. As Fig. 7.8 but for an elliptical mirror, with the target distribution at the 
second focal point. 

7.2.4 A More Difficult Problem: An Extended Source

The more practical problem of non-imaging optical design for an extended 
light source is now examined. One can think of an extended light source, 
such as a fluorescence tube, as simply being a conglomerate of point light 
sources. The greater complexity, however, will be expected to increase the 
number of computations necessary for ray tracing a mirror design.

The choice of DE strategy and corresponding crossover and scaling fac-
tors was considered with the objective of improving computational effi-
ciency. To this end a parabolic middle-field distribution with point light 
source (see above) was selected as the desired or target distribution and a 
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selection of eight DE strategies applied (Doyle et al. 1999b). For each 
strategy, three values, 0.5, 0.7 and 0.9, were used for both the crossover 
and noise scaling factor, and a cost was established based on an average of 
eight computational runs benchmarked at 5 × 103 iterations. The 
DE/best/2/bin strategy produced the lowest average cost of 3%, for a 
crossover of 0.9 and noise weighting of 0.7. This is the method used to 
generate the results presented below. Within statistical error the strategy 
DE/rand/1/bin would also have been acceptable giving an average cost of 
3.4% for a crossover of 0.9 and noise weighting of 0.9. The large values 
for the crossover and noise in both cases indicate a bias toward the random 
exploration of the problem search space. 

Fig. 7.10. A circular light source model 

A circular light source model was selected as the extended source (see 
Fig. 7.10). In photometry the quantity of light power is the luminous flux 
Φ (Pedrotti and Pedrotti 1993). The circular source here was discretely 
sampled at a number of equally spaced points and each point allowed to 
generate a Lambertian distribution of rays at regular angular intervals, i.e., 
one following a luminous flux profile of Φ = Φo cos θ.  The geometry se-
lected for the target region was also circular, centered on the source, and 
consequently the angle subtended by the ray-collecting bins remained con-
stant. Accordingly, the initial cost measurement used for the extended 
source was 
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where in each element Ti is the target flux, iΦ the reflected flux and ∞Φ is
the reflected flux outside the ray-collecting region. 

An implication of an extended source is that by virtue of its size, it may 
obstruct reflected rays and in reality might prevent them from reaching the 
target region. To allow for this, any reflected rays found to intersect the 
circular source were excluded. In addition, it was recognized that a mirror 
design which reduced the ray number from reaching the target would be a 
poorer design than one that does not. The second term in the cost meas-
urement above already penalizes such mirror designs implicitly, as a re-
duction in luminous flux reaching the overall intercept region would cause 
this term to increase. An explicit penalty scheme was also explored: 
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where RETΦ , the flux intercepted by the source, was added to the cost. 
The test problem selected for the extended source was to determine a 

mirror shape capable of producing a limited Lambertian output defined by 
us to be one where iΦ  obeyed the following relationship: 
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where α is the angular width of the target distribution, T is the total lumi-
nous flux in the target distribution, θ is the angular position in the target 
(with respect to the source) and N is the number of ray-collecting elements. 
In addition, we have explored the behavior of DE strategy as the source 
size is increased, α is decreased and T is increased. Details can be found in 
our earlier work (Doyle et al. 1999b). 

As in the case of the point source, over a wide range of the parameters 
explored DE performed exceptionally well with typical costs of ~6%. For 
80% of the cases studied it was found that the costs of the mirror solutions 
proposed by the explicit scheme were lower than those from the implicit 
scheme. Moreover, the fraction of luminous flux returned to source was 
also always lowest in the explicit approach. While the cost was observed to 
increase with target size reduction and source size increase, this was un-
derstood in terms of the limitations imposed on the search space size. For 
example, if we restrict the size of the mirror to be comparable to a mirror 
size, clearly there is a physical limitation to the optimum solution DE can 
provide.
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7.2.5 Conclusion 

The use of DE has been explored as a design methodology for non-
imaging optics, in which the objective is to generate a mirror shape, for a 
given light source, that produces a desired light distribution. Overall it ap-
pears that the approach is adept at generating mirror solutions for two 
broad classes of design problem, namely parabolic and elliptical target dis-
tributions produced for a point light source. The approach has also been 
validated for a more realistic extended light source. 

The investigation has revealed some interesting features with regard to 
the general application of DE to design problems. It has been observed, for 
example, that in addition to generating a solution, design strategies for ob-
taining a solution may emerge. With regard to the cost measure, one must 
caution against naively choosing a measure that simply indicates a numeri-
cal difference between a desired design quantity and a solution-generated 
quantity. As has been seen here, this can lead to unexpected results which, 
although meeting the cost measure criteria, fall far short of the design cri-
teria. The case in point is where DE generates a mirror design that simply 
encloses the light source to achieve a minimum cost. Lastly, one should be 
aware that for certain design problems there may be more than one poten-
tial solution in the search space. The distinct advantage of DE here is that 
its stochastic nature allows these to be discovered, presenting the designer 
with a possible choice of potential designs.
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7.3 Optimization of an Industrial Compressor Supply 
System

Evan P. Hancox and Robert W. Derksen 

Abstract. This section demonstrates a modified version of differential 
evolution (MDE) that produces the n best solutions for the real-world 
problem of selecting the optimum combination of compressor supply sys-
tem components. The selection is based on the plant’s unique compressed-
air requirements. The cost function considers the initial purchase price and 
the cost of operating over a user-specified number of years. The results 
demonstrate MDE’s ability to produce non-intuitive solutions. Data repre-
senting 4060 unique industrial plants is presented to demonstrate the effect 
of various settings of F, K, and population size on convergence rates. The 
performance of MDE was verified using test cases with known solutions in 
order to obtain 100% certainty of the results presented here. 

7.3.1 Introduction 

Differential evolution (DE) was applied to the real-world engineering 
problem of selecting equipment for an industrial compressor system. Due 
to the fact that compressor system components are available in discrete 
sizes, databases of actual components available in the marketplace were 
created that represented each of the parameters in the population vectors. 
Databases were created using information retrieved from freely distributed 
catalogue software from ZeksProTM (ZEKSPRO 2002) and Compressed 

Air Systems (Compressed Air Systems 1999). 
The industrial compressor system can be broken into two parts: the sup-

ply side and demand side. For the system studied here, the supply side 
(Fig. 7.11) consisted of air compressors, pre-filters to remove any com-
pressor oil or other mists from the air stream that may damage the desic-
cant material in the air dryer, desiccant air dryers that remove moisture 
from the air stream down to a dew point of 40oC, after-filters to remove 
any desiccant dust that may carry over from the dryer, storage receivers 
(tanks), and a proportional–integral–derivative (PID) flow controller. The 
flow controller facilitates high-pressure storage in the receiver on the sup-
ply side and precise supply to the low-pressure demand side. The demand 
side represents the remaining system piping and end use equipment. 
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Fig. 7.11. A schematic layout of the components in a pneumatic supply system. 
Air enters the system from the atmosphere and passes through each component 
bank in the sequence indicated. The bank consists of an array of a sufficient num-
ber of identical components to meet demand. This problem has six degrees of 
freedom as we have five separate discrete values that we can select, namely the 
compressor, pre-filter, desiccant air dryer, after-filter and flow controller; and one 
continuous value, the receiver volume. 

7.3.2 Background Information on the Test Problem 

Typically, industrial compressors are sized according the largest expected 
flow conditions plus a safety factor to ensure adequate supply. Other air 
treatment equipment is then sized to allow maximum delivery rates of the 
compressors. Where downtime is seen as unacceptable, one or more addi-
tional compressors of full capacity are installed for backup purposes. Fi-
nally, the sizing of storage receivers is often based on a rule of 1 US gallon 
for each standard cubic foot per minute (scfm) of compressor capacity 
(Compressed Air Systems 1999). This approach simply does not afford the 
optimum setup. 

7.3.3 System Optimization 

Engineers are beginning to recognize the importance of improving condi-
tions on the demand side, along with the need for flow controllers and in-
creased supply side storage (Foss 2002). These improvements increase the 
efficiency of the system and reduce operating costs. However, the overall 
system is not as efficient as it could be: system designers still rely on rules 
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of thumb and the advice of equipment suppliers when it comes to sizing 
receivers and other supply equipment. It is the authors’ contention that in 
order to achieve a complete peak operating efficiency, the entire system 
must be optimized. The test case presented here considers optimization of 
the supply side of the system and assumes the demand side has been effec-
tively designed or upgraded. 

It is only necessary to consider one type of industrial compressor sys-
tem, to show that DE can be easily applied to a real-world application such 
as this. Including other system types would require expansion of the objec-
tive function and mean little to the investigation. The test problem assumes 
the use of rotary screw compressors, mist/oil eliminator pre-filters, desic-
cant air dryers, after-filters, storage receivers and flow controllers. Further, 
the addition of a wider range of component types only serves to make the 
number of catalogue entries larger and make the search take longer. We 
elected to limit both the number of components within a catalogue and the 
types of components considered, as characteristics of the search should be 
the same. 

While the test program optimizes the supply side, it does so according to 
the fluctuating compressed-air requirements of the demand side. We can 
construe the demand as a variable that can be broken into different con-
stituents made up of profiles.  

7.3.4 Demand Profiles 

For purposes of the test program, a demand profile is described as the de-
mand for compressed air over a given period and is rated in scfm (standard 
cubic feet per minute). The operational workweek is divided into different 
segments in an attempt to define the overall consumption rates into unique 
flow profiles: off hours, base and peak demand.  

Off hours represents the smallest consumption rate and may occur over-
night or on weekends. Base demand represents the overall average con-
sumption rate that occurs during normal operation. Peak demand depicts 
the enduring highest consumption rate that can occur at peak times of op-
eration. For example, peak rate can occur at the beginning or end of any 
shift or while a high-demand process runs.  

After determining the demand rates for each of the above flow profiles, 
it is necessary to determine the accumulated hours per week over which 
each profile occurs. The hours are accumulated and are not necessarily 
contiguous. In other words, peak hours are a summation of timed events 
added up over the week and can occur during base and off hours flow pro-
files, or they can include long-duration events that may represent an entire 
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work shift. Finally, the test program requires the total number of hours per 
year for each of the above profiles.  

The test program requires three more flow types that must be identified 
in order to fully describe typical flow conditions. Maximum plant flow is 
the absolute maximum sustained demand that can be created at any given 
time. Spike demand is demand that may occur for a very short duration, on 
the order of a few minutes, that surpasses the output capacity of all com-
pressors. Surge demand is a similarly sudden, short-duration increase in 
demand that surpasses currently loaded compressors.  

7.3.5 Modified Differential Evolution; Extending the Generality 
of DE

The optimization method selected for this project was DE. The theory and 
details of DE are thoroughly discussed in Price (1999) and will not be ex-
panded on here. This selection was based on previous experience of find-
ing the optimum shape of turbo machinery cascade aerofoil profiles (see 
Rogalsky et al. 2000). The conclusion of this work was that DE was highly 
effective at finding the global minimum, as it did so without fail in a com-
parison with other optimization methods. This becomes more important as 
the topology of the solution space becomes more complex. As is the case 
when the number of degrees of freedom and nonlinearity increase, the 
number of minima and maxima also increase. This, as well as the ability to 
deal with integer and discrete parameters, stimulated the interest in this 
work.

Modified differential evolution (MDE) extends the generality of DE for 
engineering design, by seeking more than a single best solution. In the case 
of the test program, producing n best solutions allows an engineer to deal 
with unique circumstances after the fact simply by selecting the appropri-
ate best solution that fits that set of circumstances. 

The main advantage of finding the n best solutions is that the designer 
has more choices. For example, the test program often produced results 
that showed that different component combinations had minor differences 
in overall costs over the test period, leaving the final selection to the de-
signers’ preference. Preference cannot easily be modeled into an objective 
function.

Table 7.1 lists the ten best solutions from one of the test cases. Each so-
lution is a unique combination of components that vary in model, size or 
number of specific components, and is capable of meeting operational re-
quirements. The narrow range of total costs clearly demonstrates the value 
of the n-best approach. 
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Table 7.1. An example of the n-best solutions (n = 10) obtained using MDE 

Configuration Total 
costs

Component change from global best 

Best $207,053 Best system 

2nd $207,290 Larger after-filter, fewer replacement cartridges < 
service

3rd $207,385 Single larger receiver (18 ft high) (best had two 
smaller units, 13.8 ft high) 

4th $207,386 Six smaller receivers (8 ft high) 

. .  

. .  

10th $207,738 Single larger receiver (18 ft high), larger after-filter, 
fewer replacement cartridges 

7.3.6 Component Selection from the Database 

Separate databases were created for each of the components, based on sup-
plier catalogues, with information such as brake horse power (BHP), pres-
sure drops (∆P), throughput capacities and list prices. Each parameter was 
represented by a floating-point value equal to its integer index in the cata-
logue. This allows the parameter to be treated as a continuous variable. 
Checking that the value is within the appropriate range for the parameter, 
and randomly selecting a value within the range if it is outside, ensures 
that the boundary constraints of the database are maintained. To avoid a 
downward bias and ensure that the final database entries can be selected, 
the floating-point value is incremented by 0.5 and converted to integer 
value when the database was referenced.  

7.3.7 Crossover Approaches  

Biased Toward the Best-So-Far Vector  

Initial trials focused on simply tracking the n best-so-far candidates in an 
array, but still relied on the single best-so-far for mutation purposes. Tests 
began with the following crossover function (Storn and Price 2002) 
DE/rand-to-best/exp:
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child[n] = child[n] + F · (Current_best[n] - child[n]) +  

F · (Parent[r1][n] - Parent[r2][n]). 

(7.21)

While the single best solution was consistently located, this approach 
often missed some of the n best values. This behavior was due to the effect 
of the current best vector, which pulled the entire population in its direc-
tion very quickly. This of course was the intended purpose of DE’s inven-
tors Storn and Price. However, this influence proved too great to ensure 
finding all n local minima along with the global minimum. 

Non-Biased Approach 

Another test was devised using a non-biased approach, which used the fol-
lowing crossover function (Storn and Price 2002) DE/rand/1/exp: 

child[n] = child[n] + F· (Parent[r1][n] - Parent[r2][n]). (7.22)

While a non-biased crossover method showed some success in prelimi-
nary investigations, it was very slow to converge to all n-best solutions and 
was soon abandoned. The question became, how could DE be forced to 
find all n minima, while doing so with the speed and accuracy the original 
inventors intended for the absolute minimum? 

New Approach 

To resolve the speed/accuracy convergence problem for n best solutions, a 
solution was devised based on one of Storn and Price’s original ap-
proaches, namely “DE/rand-to-best/exp”. The new approach uses a biased 
crossover method, but randomly biases the search toward one of the n best-

so-far as opposed to the single best-so-far. This has the effect of speeding 
up the search while maintaining the integrity and spirit of the original 
scheme.

The new version, which we can denote “DE/rand-to-rand-n_best/exp” in 
keeping with the nomenclature set out by Storn and Price (Price 1999), is 
as follows: 

child[n] = child[n] + K · (n_best[m][n] - child[n]) +  

F · (Parent[r1][n] - Parent[r2][n]). 

(7.23)

Note that the [m] in the two-dimensional array represents the random se-
lection from the n best list, which causes the population to converge to-
ward all n best minima and not just the global minimum. This new ap-
proach proved to be successful and was used for the data collection and 
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analysis of F and K. The n best list was maintained in a fashion depicted 
by the following pseudo-code: 

if(current < n_best)  insert_candidate(); (7.24)

where the insert_candidate() function places the candidate in the list ac-
cording to cost. 

Objective Function 

Once a component is selected the number of components was computed to 
satisfy minimum capacities based on demand requirements. In this case, 
compressors are added until their combined output exceeds the peak output 
required during plant operation. Finally, the number of compressors is 
saved. A similar approach is repeated for each component except the re-
ceiver.

The volume of the receiver was calculated as the sum of the spike and 
surge volumes. The spike and surge volumes were calculated using 

scfm)flow(spike
 volumespike

allowableP

SFatmPspiket ⋅⋅⋅
=

(7.25)

where the spike volume is the volume to be added to the receiver capacity 
in ft3, tspike is the duration of spike in minutes, spike flow scfm is the flow 
rate above total compressor capacity, Patm is atmospheric pressure, SF is a 
user-defined safety factor, and ∆Pallowable is the allowable pressure drop in 
the receiver. A similar formula was defined for the surge volume, but 
surge flow scfm represents the flow rate above that of the currently loaded 
compressors.

Now that there are enough components to assemble a workable system, 
the cost of the system is determined across the three main flow regimes. 
The objective function determines the cost of the system by summing the 
initial capital requirements and the accumulated cost of operating the sys-
tem for a given time period – five years for the test program. The opera-
tional costs include the cost of electricity and replacement filters. 

The off hours flow profile performance and cost is computed as follows. 
First the total capacity of operating compressors must be equal to or 
greater than off hours demand. This approach allows us to tailor the num-
ber of operating compressors for each demand profile. Now, the portion of 
the trim compressor output that will contribute to repressurizing the re-
ceiver is given by 
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Xscfm = (# operating compressors) · (compressor scfm) - 
 (off hours demand scfm)

(7.26)

The flow the receiver will contribute to the system demand while the 
trim compressor is in the unloaded state is given by 

Yscfm = (off hours demand scfm) - ((# operating compressors) -1) · 
(compressor scfm).

(7.27)

We can find the time required to repressurize the receiver from 

t1 = (receiver volume) · ∆Pallowable / (Xscfm · Pa), (7.28)

and the time that the receiver will supply the trim portion of the air with 
the trim compressor in the unloaded state from 

t2 = (receiver volume) · ∆Pallowable / (Yscfm · Pa) (7.29)

The cycle time of the trim compressor is t1 + t2, and must be within the 
compressor manufacturer’s specifications to prevent overloading of the 
motor. 

We assume a proportional pressure drop occurs across units and calcu-
late the drop as 

+
= high

P
low

P

prefilters
P

scfmprefilter

scfmhoursoff

2prefilters#

1 (7.30)

The pressure drops for the dryers and after-filters are found in the same 
way. Then the total pressure drop becomes 

.rsafterfiltePdryersPprefiltersPtotalP ∆+∆+∆=∆  (7.31) 

The cost of operating the compressors while refilling the receiver occurs 
during t1, which was found earlier. The actual BHP load during this time 
must account for an extra 0.5% to overcome each 1 psig pressure drop 
(Compressed Air Systems 1999): 

BHPactual_1 = t1 · (# operating compressors) · BHPloaded · ∆Ptotal  · 
1.005 

(7.32)

The units for BHPactual_1 are (BHP · minutes). The actual BHP load dur-
ing t2 must account for the unloaded trim compressor and the remaining 
fully loaded compressors. An unloaded compressor is running but not pro-
ducing air. Hence 

BHPactual_2 = t2  · [(# operating compressors - 1) · BHPloaded · ∆Ptotal

· 1.005 + BHPunloaded]. 
(7.33)
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The cost of purged air from the heat-less desiccant dryers is based on 
the volume and cost of air purged for a given profile: 

%purged1

 volumeprofile%purged
 volumepurge

−
⋅= (7.34)
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where motor is motor efficiency, and BHPloaded is the horse power draw of 
the compressor while the unit is producing air. The total cost of the profile 
becomes 

air.purgedofcost
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(7.38)

The calculations shown to this point for the off hours profile are re-
peated for the base and peak profiles. Finally, the total cost of operating 
the components (during each profile) over the study period is added to the 
total capital cost of all components along with the replacement cost of all 
filter elements. 

The number of filter elements required for the pre-filters and after-filters 
is determined for the study period. The replacement interval will be the 
rated element life scaled by the ratio of total rated throughput to total ac-
tual profile flow rate. The total number of elements required over the study 
period is simply the time multiplied by the element life.  

Thus, the study period has a direct effect on the selection of the compo-
nents in that as the years of the study increase, the effect of the purchase 
price reduces and the effect of operating the components increases.  

No consideration was given to interest rates and the cost of electricity 
was fixed. However, this is a minor point considering that the test software 
is meant simply to demonstrate that MDE will work on a real-world indus-
trial problem. 
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7.3.8 Testing Procedures 

Population sizes were tested at increments of 60, from 120 up to 3000 
members. Each population size was tested on (up to) 4060 unique input 
profiles which were defined to cover the full range of the databases, and 
represented 4060 separate and unique industrial compressed-air demand 
profiles. In order to speed data collection, MDE was required to converge 
to all n best values within an arbitrary ceiling of 8,064,000 objective func-
tion evaluations. This number matched the complete comparison of all 
possible parameter combinations for the test program. 

If the modified DE failed to converge (within the arbitrary ceiling) to 
the n best for any one of the 4060 input variations during the testing of a 
given population size, that population size was discarded. This is not to say 
that MDE would have failed to converge for the given population size 
without the arbitrary ceiling, but no further testing was conducted in this 
direction. Upon successful convergence for all 4060 input variations or 
failure for one, the population size was incremented and the inputs began 
again from the initial settings. Figure 7.12 shows the results of the data 
collection.

7.3.9 Obtaining 100% Certainty of the Results 

To facilitate data collection when testing for multiple best solutions, it be-
came necessary to know ahead of time, with 100% certainty, the n best so-
lutions that the MDE software would hunt for. Therefore, a separate pro-
gram was written using the same input parameters, settings and objective 
function that the MDE program would use, but that evaluated every possi-
ble combination of components. An arbitrary value of 10 was chosen for n,
thus the ten best solutions for each input profile were saved in a uniquely 
named file that was subsequently loaded for the MDE trials with the corre-
sponding input profile. This way the ten best solutions were known prior to 
testing the MDE approach. This approach also meant that each unique pro-
file setting required only one analysis with the separate program that com-
pared all combinations of components 

Extensive testing was not conducted with other values of n. The known 
solution of the ten best vectors had no influence on the MDE process and 
was accessed simply to verify convergence and reduce the time it took to 
collect data. To that end, code was modified so that the MDE version of 
the program would load the correct answers and, after each generation, it 
would compare the list of values it had found with the correct values. 
When all values matched, the MDE program would cease to run. The 
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number of objective function evaluations required to converge to the ten 
best solutions was tracked by updating the current convergence count at 
the time of each cost improvement. A standalone version of the test pro-
gram limits the number of function evaluations to some arbitrary number 
greater than the expected convergence rate based on experimentation. 

Fig. 7.12. Test results showing the average number of function evaluations 
required to find the ten best solutions as a function of population size, F and K.

7.3.10 Results 

The results of this test program showed that the optimum system changes 
from favoring single compressor systems to dual compressor systems 
when longer time intervals were examined. This is not what an engineer 
would intuitively expect, and indicates the importance of DE as a design 
tool.

Each point on the graph in Fig. 7.12 represents the average number of 
function evaluations it took to converge to the ten best solutions in 4060 
unique tests of a given population size. 

The tested values of F = 0.5 with K = 0.5 failed to converge within the 
arbitrary ceiling for at least one of the 4060 input variations for each popu-
lation size tested – hence the absence of representative data for that setting. 
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Similarly, the absence of data depicting a setting of F = 0.8 and K = 0.6 is 
due to the same cause. 

The results seem to indicate some of the outer limits of the values of F
and K that can ensure convergence under the test conditions enforced here. 
It is quite likely that exact limitations will be problem specific and others 
will find success with different population sizes than those shown in Fig. 
7.12. However, it is expected that the general influence of F and K will 
remain the same. 

In general, increasing the value of K increases the convergence rate but 
requires a larger population to ensure convergence consistency under test-
ing conditions. Increasing the value of F has the opposite effect; moreover, 
increasing the population size tends to slow convergence. 

The setting of F = 0.8 and K = 0.45 proved to be the best setting of those 
tested for this problem. This setting, coupled with a population size of 
1620 members, converged to the ten best solutions at a mean of less than 
40,000 function evaluations for all inputs tested. When one compares this 
with the 8,064,000 function evaluations it took to find solutions while 
comparing all possible combinations of components, the power of MDE 
becomes clear. The effectiveness of MDE increases with the increase in 
the size of the databases, increase in the number of parameters or the in-
clusion of continuous variables.  

7.3.11 Summary 

The results of this work clearly show the beneficial value of MDE for de-
sign optimization. The method maintains the speed and properties of DE, 
and reliably retrieves the n best solutions to the component selection. The 
n best multiple solutions allow the designer choice without having to code 
preference into the objective function. Ultimately, the designer can easily 
select the most effective combination of components without giving up the 
flexibility of preference.  

The results demonstrated that DE and its offspring MDE can result in 
the natural discovery of non-intuitive solutions to a design optimization. 
This was demonstrated by the finding that the optimum number of com-
pressors would change as the study period increased; using current design 
methods most engineers would assume that number to be constant. We 
have concluded that DE and MDE are the most appropriate choice for the 
construction of design optimization codes. 

This section also demonstrated that increasing the value of K increases 
convergence rate but requires a larger population to ensure convergence 
consistency. Increasing the value of F has the opposite effect and increas-
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ing the population size tends to slow convergence. These findings should 
be valid for any version of DE but the precise values of F, K and popula-
tion size that prove the most effective will be problem specific.  
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7.4 Minimal Representation Multi-Sensor Fusion Using 
Differential Evolution 

Rajive Joshi and Arthur C. Sanderson 

Abstract. We present the application of differential evolution to solve a 
class of multi-sensor fusion problems commonly encountered in building 
intelligent robotic systems. The class of multi-sensor fusion problems is 
characterized by a set of sensors observing a common environment model. 
The observed data features are modeled as a projection or a “view” of an 
(unknown) underlying environment model into the sensor space, with un-
known uncertainty and correspondence transformation injected in the ob-
servation process. The observed features may include outliers or may cor-
respond to environment model features, via an unknown correspondence 
mapping.

The goal of multi-sensor fusion is to find the best environment model 
identity, transformation parameters and the correspondence mapping that 
map the model features to observed data features. We use the minimal rep-
resentation size criterion to formulate the model search problem. The 
minimal representation approach is based on an information measure as a 
universal yardstick for fusion, and provides a framework for integrating 
information from a variety of sources. The minimal representation size cri-
terion favors the selection of the simplest explanation that is the most 
likely explanation of the observed multi-sensor data. 

We develop a differential evolution approach to the search for minimal 
representation multi-sensor fusion solutions. Laboratory experiments in 
robot manipulation using both tactile and visual sensing demonstrate that 
differential evolution is effective at finding useful and practical solutions 
to this problem for real systems. Comparison of this differential evolution 
algorithm to traditional genetic algorithms shows distinct advantages in 
both accuracy and efficiency. 

7.4.1 Introduction 

Multi-Sensor Fusion and Model Selection in Robotics 

Multi-sensor fusion is a central problem in robotic systems, where interac-
tion with the environment is critical to successful operation. It is a key 
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component in systems capable of interacting with their environments and 
making semi-autonomous decisions based on sensory data to accomplish 
various manipulation, navigation and assembly tasks. 

Figure 7.13 shows an example of multi-sensor fusion used to guide ma-
nipulation of an object, taken from our laboratory setup. The Anthrobot 

(Ali and Engler 1991) five-fingered hand grasps an object, and senses the 
contact points with the surface of the object using tactile sensors. The tac-
tile sensors extract a touch position in the kinematic reference frame of the 
hand. In addition, a CCD camera views the position of the same object and 
extracts vertex/edge features of the object image. Both the tactile features 
and the visual features are related to the position and orientation (“pose”) 
of the object, and in practice we wish to combine these two sources of in-
formation to improve our ability to accurately manipulate the object. 

In this setup, the hand is visible in the field of view of the camera, and 
introduces extraneous vertex features in the image. Typically, about half of 
the image vertex features are due to the hand occluding parts of the object 
– thus the vision data alone may not be sufficient to estimate the three-
dimensional pose of the object. We used a five-fingered hand, and for 
typical grasps, at most three distinct object surfaces are contacted by the 
fingertips. The tactile data from these contacts is usually not rich enough to 
uniquely estimate the three-dimensional object pose by itself. By fusing 
the vertex features from the image and the contact points from the finger-
tips, we expect to correctly estimate the object pose and also the feature 
correspondence in the two data sets. The fusion of the tactile and image 
feature data is used to derive an improved estimate of the object pose 
which guides the manipulation. In general, the object shape must also be 
identified, from a library of possible object shapes. 

In a typical multi-sensor fusion problem in robotics, such as the tactile–
visual example above, we can choose from a number of environment 
model structures, environment model parameters, uncertainty models and 
correspondence models. The uncertainty and the registration/calibration 
models are often chosen a priori, whereas the sensor constraints can be ob-
tained from physical modeling. However, in complex robotic environ-
ments, the a priori choice of the environment model structure, parameters 
and correspondences is difficult. The object may belong to some library of 
parameterized object models with corresponding choices of data scaling 
and data subsample selection as precursors to the pose estimation itself. In 
this context, three important model selection issues must be addressed: 

• Environment model class selection: What is the environment model 
class? How many parameters are required to specify it? What is the pa-
rameter resolution? 
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• Environment model parameterization and data scaling: What are the 
values of the environment parameters? How should the data from differ-
ent sensors be scaled to determine these parameter values? 

• Data subsample selection: Which data features are used to determine 
the environment model parameters? What subset of the data is consis-
tent in the definition of the pose for a given estimator? What data fea-
tures should be considered outliers? 

Fig. 7.13. The Anthrobot five-fingered hand holding an object in the field of view 
of a fixed camera. The contact data obtained from tactile sensors mounted on the 
fingertips is fused with the processed image data obtained from the camera, to es-
timate the position and orientation of the object. 

Much of the recent progress in multi-sensor fusion (Luo and Kay 1989; 
Hager 1990; Abidi and Gonzalez 1992; Kokar and Kim 1993; Dekhil and 
Henderson 1998; Joshi and Sanderson 1999b) for robotics has been based 
on the application of existing statistical tools to (a) estimate the position of 
objects with known geometric models (Smith and Cheeseman 1986; Dur-
rant-Whyte 1987; Nakamura 1992), (b) estimate the parameterized shape 
of an object from sensor information (Bolle and Cooper 1986; Allen 1988; 
Porill 1988; Shashank et al. 1988; Eason and Gonzalez 1992) and (c) esti-
mate a probability distribution of objects or object features (e.g., surfaces) 
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based on sensor models (Elfes 1989). These methods require a priori selec-
tion of the model class, number of parameters and data subsamples used in 
estimation. The model selection problem is complementary to the estima-
tion process itself and is intended to choose an effective combination of 
model structure and estimation method for a given class of problems. 

The multi-sensor fusion and model selection framework (Joshi and San-
derson 1994, 1996; Joshi 1996) uses a minimal representation size crite-
rion (Segen and Sanderson 1981) to choose among alternative models, 
number of parameters, parameter resolutions and correspondences. The 
representation size or description length of an entity is defined as the 
length of the shortest length program that reconstructs the entity. The ob-
served data, thought to be arising from a library of environment models, is 
encoded with respect to one of these models. The minimal representation 
size criterion selects the model which minimizes the total multi-sensor data 
representation size, and leads to a choice among alternative models which 
trades off between the size of the model (e.g., number of parameters) and 
the representation size of the (encoded) residuals, or errors. Intuitively, the 
“smaller”, less complex, representation is selected as the preferred model 
for a given estimator. 

Searching for the Best Interpretation 

The minimal representation size interpretation is obtained by minimizing 
the multi-sensor fusion criterion. For the tactile–visual multi-sensor fusion 
problem (Fig. 7.13), the search space is the cross-product of the continuous 
six-dimensional pose parameter space (Sect. 7.4.3), the discrete space of 
possible correspondences between the observed vision data and the object 
vertices, and the possible correspondences between the observed tactile 
data and the object faces. Finding the best pose and correspondences is 
generally recognized to be a difficult search problem (Grimson and 
Lozano-Pérez 1984; Linnainmaa et al. 1988; Huttenlocher and Ullman 
1990; Joshi 1996; Joshi and Sanderson 1999b). 

We use a differential evolution program to search for the best interpreta-
tion from the data collected in the laboratory experiments. As developed in 
this work, the search problem is difficult because we have posed it as a 
broad search over many general pose configurations (local minimal), and 
have chosen not to impose heuristic constraints to simplify the search. In 
practice, there are many such heuristics which may be imposed for specific 
problems, and they would often improve the execution time of the search. 

The methodology presented here is a general approach to fusion which 
is not restricted to geometric pose estimation, and in fact may be applied to 
a variety of problems in model identification from a wide perspective, in-
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cluding model-based identification of parameters from noisy data and pri-
oritization in noisy data sets. 

7.4.2 Minimal Representation Multi-Sensor Fusion 

Generic Multi-Sensor Fusion Framework 

The general model-based multi-sensor fusion problem (Joshi 1996; Joshi 
and Sanderson 1999b) is summarized in Fig. 7.14 which shows S sensors
observing an unknown environment, described by an environment model,

( )θΞ=Eq , where Ξ denotes the model structure, and θ  denotes a particu-
lar parameter instantiation. In our representative problem, an environment 
model is a polyhedral-shaped object with six associated pose parameters. 

Each sensor observes some set of M model features, { } MyY ,1= , and 

produces a set of N data features, denoted by { } NzZ ,1= . A data feature, z,

may be related to a model feature, y, by a general constraint equation h:

( ) .0; =zyh (7.39)

Some observed data features may not be related to the underlying envi-
ronment model; these are referred to as outliers or unmodeled data fea-
tures, with a symbol 0y , and may lie anywhere in the sensor measurement 

space .
The association between the observed data features and the model fea-

tures (or 0y ) is given by a correspondence, ω , that maps data feature in-
dices to model feature indices: 

{ } { }MN .,,1,0,,1: →ω (7.40)

where the special index 0 is used to denote outliers. The correspondence is 
often unknown, and may be many-to-one, as is the case for tactile sensors 
where several contact points may correspond to the same object face; or 
one-to-one as is the case for vision sensors where at most one image vertex 
point may correspond to an object vertex. 

The mapping from an environment model to the model features is de-
noted by a model feature extractor, F, where { } ( )α;EqFy =  is a function 
of the environment model and the sensor calibration. Thus, for the tactile 
sensor, this mapping extracts the object faces from the instantiated shape 
structure, while for a vision sensor it extracts the visible object vertices. 
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Fig. 7.14. Environment and sensor models 
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The model feature extractor F, the sensor constraint h and the corre-
spondence ω  are collectively referred to as a sensing channel

( )ω,, hFH = ; they define the sensor structure which has the same form for 
all sensors of a given type. However, the uncertainty, the measurement 
range and the calibration parameters differ between different sensors of the 
same type and must be determined for each sensor; they define the sensor

coefficients ( )α,, ΥΨ=Sq . The sensing channel and the sensor coefficients 
constitute a sensor model.

Minimal Representation Multi-Sensor Fusion 

The minimal representation approach (Joshi 1996; Joshi and Sanderson 
1996, 1999b) is based on the principle of building the shortest length pro-
gram which reconstructs the observed data. The length of this program or 
representation size is well defined for sensors, and may be regarded as the 
“information”, in bits, contained in the data. It depends on the system’s 
“knowledge” of the environment, specified by an environment model li-
brary – hence the approach is inherently model based. The “best interpreta-
tion” minimizes the total representation size of the observed multi-sensor 
data.

The total representation size is obtained by adding the model representa-
tion size and the data representation size for each sensor as shown in Fig. 
7.15. Details can be found in Joshi (1996) and Joshi and Sanderson (1996, 
1999a, 1999b). 

The “best interpretation” is an instantiated environment model and cor-
respondences, found by minimizing the total representation size of ob-
served multi-sensor data. The multi-sensor fusion algorithm searches for 
the minimal representation size interpretation, in the space of all possible 
environment models and their parameterizations, and the space of all pos-
sible legal correspondences. 

The search space is the cross-product of the environment model space 
and the correspondence spaces, which may be part discrete and part con-
tinuous; often the general search problem quickly becomes computation-
ally impractical. 

There are three basic components of the search problem: 

1. Environment model instantiation: An environment model structure, 
chosen from the library, must be instantiated with specific parameters. 
Thus, ( )θΞ=Eq , where the structure, ( )⋅Ξ , and the parameters, θ , must 
be somehow instantiated. 
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Fig. 7.15. Minimal representation size of the multi-sensor data fusion scheme 
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2. Correspondence computation: The minimal representation size corre-
spondences can be computed, given an instantiated environment model. 
One approach to computing the correspondence for a given instantiated 
environment model is based on using a minimum weight assignment al-
gorithm; it operates in cubic time of the number of features (Joshi 1996; 
Joshi and Sanderson 1999b). 

3. Search engine: A search engine systematically instantiates environment 
models, computing the minimal representation size correspondences for 
each one, in order to find the minimal representation size interpretation 
in the space of possible model parameters and correspondences. 

We utilize evolution programs, in particular differential evolution (DE), 
to drive the search, and find the minimal representation interpretation of 
the observed multi-sensor data. 

7.4.3 Differential Evolution for Multi-Sensor Fusion 

A search can sequentially iterate through the structures in the environment 
model library, and compute the minimal representation data correspon-
dences for each instantiated environment model (Joshi 1996; Joshi and 
Sanderson 1999b). A DE program is used to search the space of environ-
ment model parameters. The DE as applied to the tactile–visual fusion 
problem (Fig. 7.13) is summarized below. Details can be found in Joshi 
(1996) and Joshi and Sanderson (1996, 1999a, 1999b). 

Representation. Given a preselected environment model structure, an in-
dividual p in the population represents the environment model parameters: 

( ) .θ=pS (7.41)

All points in the parameter space Θ  must be representable by the spe-
cific form chosen for the environment model parameters.

For the tactile–visual sensor fusion problem (Fig. 7.13), the environment 
model library consists of rigid polyhedral objects, parameterized by the ob-

ject pose. The three-dimensional pose is described by a translation, t , and 

a rotation, exp( n̂ φ /2), of angle [ )πφ 2,0∈  about an axis n̂  (Fig. 7.16a). 
This pose representation is expressed as a six-parameter vector in the DE, 
as shown in Fig. 7.16b, and results in a uniform sampling of the orientation 
and translation space (Joshi 1996; Joshi and Sanderson 1996, 1999b). 
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Fig. 7.16. The object rotation is given by a rotation of angle φ  around an axis n̂ .

Fitness Evaluation. The fitness function is the total multi-sensor represen-
tation size (Fig. 7.15):

( )( ) [ ].,,, )()1( QZZqLpS S=Φ (7.42)

For an individual, ( ) θ=pS , the fitness is evaluated as follows: 

1. If Θ∉θ , the total multi-sensor representation size is defined to be .
2. Otherwise, for Θ∈θ :

a) For each sensor: 
i. Extract the model features. 
ii. Compute the minimal representation size correspondence, using 
graph matching algorithms (Gondran and Minoux 1984; Joshi 
1996; Joshi and Sanderson 1999b). 
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b) Compute the total minimal representation size for this parameter vec-
tor (for the minimal representation size correspondences just computed). 

For the vision sensors (Fig. 7.13) the representation size is calculated by 
encoding the errors between features predicted by an instantiated model 
and the observed data as follows. The digital image, obtained from a fixed 
calibrated camera, is processed to extract vertex features, expressed in 
pixel coordinates. The intrinsic camera calibration is used to convert these 
pixel coordinates into image coordinates expressed in the camera frame, 
and constitute the vision data features. These are related to the object verti-
ces (model features), according to the perspective projection constraint, for 
a pin-hole camera model. The observation errors are described by an ellip-
soidal sensor accuracy (Joshi 1996; Joshi and Sanderson 1999b), equal to 
the size of a pixel. The measurement space is equal to the image size. At 
most one vision image vertex can correspond to an object vertex, i.e., the 
vision correspondence must be one-to-one (Joshi 1996; Joshi and Sander-
son 1999b). 

Similarly, for tactile sensors (Fig. 7.13) the representation size is calcu-
lated by encoding the errors between features predicted by an instantiated 
model and the observed data as follows. Tactile sensors mounted on the 
hand’s fingertips provide contact locations relative to the fingertips. The 
forward kinematics of the calibrated arm–hand kinematic chain is used to 
compute the location of these contact points relative to the base of the ro-
bot, and constitute the touch data features. These are related to the object 
faces (model features) according to a containment constraint, i.e., contact 
points must lie within an object face. The observation errors are described 
by an ellipsoidal sensor accuracy, whose diameter is equal to the position-
ing accuracy of the arm–hand manipulator. The measurement space is 
equal to the workspace volume accessible by the robot hand. Several con-
tacts may be made on an object face, resulting in a many-to-one corre-
spondence (Joshi 1996; Joshi and Sanderson 1999b). 

Reproduction. The standard DE crossover operator is used. Typically, K = 
2 differentials are used, the scale factor [ ]2,0∈F  and the greediness 

[ ]1,0∈γ .

Selection. The standard DE selection operator is used: each offspring 
competes with its parent and survives only if its fitness is better. 

Initialization. The parameter vectors are drawn randomly from the space 
of legal environment model parameters .Θ∈θ  This ensures a diverse ini-
tial population. 
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Termination Condition. A parameter is considered η % converged if at 

least η % of the population shares the same value (within some pre-
specified parameter tolerance) as the best individual in the population, for 
that parameter. The population is considered to be η % converged when all 

the parameters have η % converged. 
The evolution is terminated when (a) the population reaches a certain 

desired level of convergence, or (b) the maximum number of generations 
is exceeded, or (c) the maximum time limit is exceeded. 

7.4.4 Experimental Results 

Setup

Experiments were conducted on simulated data and laboratory data. Two 
different objects, Lwedge and Pedestal (Fig. 7.17), were used. A 100- 
member DE/best/2 DE algorithm with 8.0=F  and 8.0=Cr  was used to 
search for the minimal representation size pose and the correspondences 
for each sensor. The search is terminated when the population reaches 50% 
convergence (parameter tolerance of 0.1), or when the maximum time 
limit of 900 CPU seconds is exceeded, or when a maximum of 1000 gen-
erations has been completed. 

a) Lwedge b) Pedestal

Fig. 7.17. The object library 
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For simulated data, a typical problem size was chosen, consisting of 16 
vision data features of which 50% were spurious, and 9 tactile data fea-
tures of which 15% were spurious. The search is considered to have cor-
rectly converged (to the global minimum), if it reaches within 14 bits of 
the simulated multi-sensor data representation size. 

For laboratory data, the translation search space was restricted to a 
505050 ××  cube, in the interest of computation time. The entire space of 

orientations and correspondences was searched. The vision preprocessing 
and the DE search parameters were kept the same for all the experiments 
with laboratory data. 

Quality of Solutions 

For simulated data, the results on 100 randomly generated problems for an 
environment library containing Lwedge and Pedestal are given in Table 
7.2. The mean errors and standard deviations are tabulated among those 
DE searches which correctly converged, and the correct object shape was 
chosen.

For laboratory data, the results from Experiment 1, using the Lwedge

object, are shown in Figs. 7.18a, 7.18b and 7.18c. The interpretation errors 
for the six experiments, using both vision and touch sensors, touch sensor 
alone and vision sensor alone, are summarized in Table 7.3. 

Table 7.2. Model selection performance of an environment model library contain-
ing two object models, on 100 randomly generated problems. Each problem had 
16 vision data features with 50% outliers, and 9 touch data features with 15% out-
liers.

Trials = 100 Correctly converged = 81 Misclassified = 0 
 Mean Standard deviation 
Rotation axis error 0.033372° 0.184239°
Rotation angle error 0.028648° 0.165689°
Translation error 0.165613 0.100419
Vision correspondence error 2.222222 1.151086
Touch correspondence error 0.172840 0.380464
Representation size deviation 6.340123 3.828411 

Environment Model Class Selection. As Tables 7.2 and 7.3 illustrate, the 
object shape was correctly selected in these experiments, thus demonstrat-
ing that representation size is effectively used to trade off between the 
model class and data error residuals.

Environment Model Parameterization and Data Scaling. From Table 
7.2 and 7.3, it can be seen that the estimated interpretation produced by the 
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multi-sensor fusion of touch and vision data was close to the reference in-
terpretation for almost all the experiments. The multi-sensor pose estima-
tion errors are comparable in magnitude to the sensor errors themselves. 

Table 7.3. Summary of experimental results 
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a) Camera image and vertex features

b) World and camera reference frames 

c) Estimation error

Fig. 7.18. Laboratory Experiment 1 results 
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Fig. 7.19. Representation size vs. the number of vision outliers for Experiment 1 
multi-sensor data. The minimal representation size interpretation with four outliers 
corresponds to the underlying model itself, and gives the best trade-off between 
the number of unmodeled features (model size) and the encoded error residuals. 

The multi-sensor fusion estimate dramatically improved the pose esti-
mates obtained from either sensor used independently (Table 7.3). Closer 
examination of the data reveals that the tactile data is incomplete since at 
most three different surfaces are contacted by the fingers, in these experi-
ments. Several different poses of the object may result in the same contact 
configuration – therefore multiple solutions exist. The vision data set con-
tains spurious data features introduced by the presence of the hand holding 
the object, as can be seen from Table 7.3 and Fig. 7.18a. In Experiments 1, 
4 and 6, at least 50% of the vision data features were spurious, and can 
lead to incorrect interpretations when the vision data is used alone. 

Multi-sensor fusion of tactile and vision sensors compensates for the de-
ficiencies in using either sensor alone – the minimal representation size 
framework automatically selects an appropriate combination of the vision 
and touch sensor constraints to correctly determine the pose parameters. 

Data Subsample Selection. The vision and touch data correspondences 
were meaningfully selected in all the experiments (Tables 7.2 and 7.3). In 
our implementation, the hidden object vertices were not removed, and 
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some of the spurious vision data features got matched to these “extra” vi-
sion model features. 

The correspondence selection/data subsampling property of the frame-
work is illustrated by a plot in Fig. 7.19 of minimal representation size vs. 
the number of outliers. The minimum of this plot corresponds to the under-
lying interpretation which best explains the observed data, reported in Ta-
ble 7.3. The minimal representation size solution trades-off between the 
number of unmodeled data features and the modeled error residuals, and 
automatically selects a subset of the data features consistent with the object 
pose.

Convergence 

Figure 7.20 shows the progress of the DE algorithm on Experiment 1 
multi-sensor data. The algorithm starts with a population of 100 randomly 
chosen individuals. The population cluster shrinks around the minimal rep-
resentation size interpretation. 

Fig. 7.20. Progress of the 100-member DE algorithm on Experiment 1 multi-
sensor data. DE/best/2, F = 0.8, Cr = 0.8. 

Figure 7.21a shows the plots of representation size versus the number of 
generations, for the DE search on the six laboratory experiments. As can 
be seen from these plots, the DE fully converged within 400 generations in 
all cases. The run-times are of the order of a few minutes on a SPARC 20 
(Table 7.3). Figure 7.21b shows a plot of the percentage convergence ver-
sus the number of generations for the DE. As can be seen from this plot, 
the orientation parameters converge first followed by the translational pose 
parameters. This is typical of the DE for this application. 

When the observed data is incomplete or inconsistent, multiple interpre-
tations result in nearly the same representation size. In such cases, succes-
sive runs of the DE may produce varying results, due to the multiple global 
minima. As the noise in the observed data increases, or as the number of 
observed data features increases, the DE converges correctly more often, 
and is more reliable. This is due to the minimal representation size search 
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landscape becoming smoother with deeper valleys, when the observation 
errors or the number of data features increase. 

a) Representation size 

b) Percentage convergence 

Fig. 7.21. DE progress on experimental data. Using a 100-member algorithm 
DE/best/2, F = 0.8, Cr = 0.8. The DE ran until the population reached 99% con-
vergence. The parameter tolerance for convergence was set to 0.01, and checked 
every ten generations. 
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a) Vision data: 20 features, 50% outliers. 

b) Touch data: 10 features, 15% outliers. 

Fig. 7.22. CPU time (SPARC 20) and DE generations vs. the number of data fea-
tures for the DE search algorithm. 

As seen from Table 7.2, 81% of the DE searches correctly converged to 
the global minimum. This number may be further improved by tuning the 
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DE search parameters Np, F and Cr. In practice, several DE searches may 
be executed (in parallel) to improve the reliability of the search. 

Time Complexity 

Figures 7.22a and 7.22b show the CPU time versus the number of data fea-
tures for an environment model library containing just the Lwedge object.

From these plots, we can see that the DE converges in approximately 
200 generations, and requires approximately 16,000 minimal representa-
tion size correspondence evaluations. These values seem to change very 
little with problem size. The CPU time increases linearly with the number 
of data features N. This is consistent with the theoretical analysis (Joshi 
1996; Joshi and Sanderson 1999b). 

7.4.5 Comparison with a Binary Genetic Algorithm 

We compared the performance of the DE algorithm to that of a simple bi-
nary genetic algorithm (GA), which uses the one-point crossover and mu-
tation operators for reproduction, and stochastic universal sampling for 
natural selection (Goldberg 1989; Michalewicz 1996). The environment 
model parameter vector is represented as a binary string, with 32 bits per 
element and arranged linearly, as shown in Fig. 7.16b. A population of 100 
individuals was used, and the crossover probability was 0.5, while the mu-
tation probability was chosen to be 0.05. These GA parameters were se-
lected after some trial and error, to minimize the representation size at the 
end of the search. 

The performance of this GA is compared with the 100-member 
DE/best/2 algorithm, with F = 0.8, Cr = 0.8, on Experiment 1 multi-sensor 
data. Both the GA and DE were run until the population reached 99% con-
vergence, or the maximum time limit of 900 CPU seconds was exceeded, 
or a maximum of 1000 generations was exceeded. The parameter tolerance 
for the DE convergence was set to 0.01. The convergence was checked 
every ten generations. 

Figure 7.23a shows a plot of the representation size against the number 
of generations for the DE and GA. The GA ran until the maximum time 
limit of 900 CPU seconds was exceeded, while the DE terminated upon 
reaching 99% convergence in 634 CPU seconds. These times are on a 
SPARC 20 Sun workstation. The DE found a much smaller value of repre-
sentation size in less time and a fewer number of minimal representation 
size correspondence evaluations than the GA. The interpretation errors for 
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the DE and GA are given in Table 7.4. The DE solution had smaller inter-
pretation errors. 

a) Representation size 

b) Percentage convergence 

Fig. 7.23. DE vs. GA progress on Experiment 1 multi-sensor data, showing a 100-
member DE/best/2 algorithm, F = 0.8, Cr = 0.8, and a 100-member binary GA 
with crossover probability 0.5 and mutation probability 0.05. The GA ran until the 
time limit of 900 CPU seconds expired. The convergence was checked every ten 
generations. 
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Table 7.4. Comparison of the interpretation error using a DE and GA for Experi-
ment 1 multi-sensor data 

 DE GA 
Rotation axis error 0.05605° 0.16949° 
Rotation angle error 2.2022° 4.0203° 
Translation error 1.867 27.092 
Vision correspondence error 4 8 
Touch correspondence error 0 0 
Representation size deviation 73.102 24.064 
CPU time (seconds) 634 >900 

Figure 7.23b shows a plot of the percentage convergence against the 
number of generations for the GA. As can be seen from this plot, it is diffi-
cult to discern any regular convergence pattern for the pose parameters. 

In our experience, the GA convergence was less consistent than that of 
the DE – successive runs of the GA produced widely varying solutions 
when compared to the DE, on the same problem. Decreasing the number 
of bits per element in the GA binary string representation resulted in pre-
mature convergence. This can be explained by the coarser parameter reso-
lution, due to the fewer number of bits. Increasing the number of bits per 
parameter resulted in very long computation times with very slow conver-
gence, if at all. This can be explained by the higher dimensionality of the 
GA binary search space, in which the more significant bits of the parame-
ter vector are treated the same as the less significant bits. 

7.4.6 Conclusion 

We have examined the use of differential evolution to solve the minimal 
representation problem in multi-sensor fusion. 

In this study the focus has been on the nature of the representation itself 
and the associated search algorithms, rather than on building a practical 
system. The understanding and performance of these measures and algo-
rithms provides the basis for further improvement in practical systems. The 
differential evolution search algorithm has been implemented in a “ge-
neric” form: that is, no additional heuristics or specific problem knowledge 
has been added. This approach permits a more objective assessment of the 
minimal representation size criterion for multi-sensor fusion. In practice, 
problem-specific heuristics might be added to improve the efficiency of 
implementation for a particular problem domain. For example, in object 
recognition problems, typical heuristics might include: (a) pose space clus-
tering to reduce the search space (Linnainmaa et al. 1988; Grimson and 
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Huttenlocher 1990), (b) using transform space geometry to prune pose pa-
rameters (Breuel 1992; Cass 1988), (c) pruning matches based on relations 
which must be satisfied by both data and model features (Fischler and 
Bolles 1981; Grimson and Lozano-Pérez 1984; Faugeras and Hebert 
1986), and (d) using a fixed-size subset of data features for generating 
pose hypothesis (Chen and Kak 1989; Huttenlocher and Ullman 1990). 

The laboratory experiments demonstrate the automatic selection of envi-
ronment model class (object identity), the environment parameter values 
(object pose) and the sensor data correspondences (touch and vision corre-
spondences), in the minimal representation size framework for multi-
sensor fusion and model selection. Differential evolution search run-times 
are a few hundred seconds on a SPARC 20 (Table 7.3). In practice, robotic 
manipulation using multi-sensor data must be done in real time, and it be-
came clear that the general evolutionary algorithms are too slow to esti-
mate pose at sampling speeds for continuous motion. For practical use of 
the method in “real-time” control applications, this global search proce-
dure should be augmented with an incremental search procedure, which 
sequentially updates the estimated model as data is acquired during the 
execution of the real-time control task. 

A major advantage of the minimal representation approach is the at-
tainment of consistent results without the introduction of problem-specific 
heuristics or arbitrary weight factors. The use of an information-based cri-
terion provides a type of universal yardstick for sensor data from many 
disparate sources, and therefore supports efficient implementation to new 
domains. The model selection properties of this framework are comple-
mentary to the estimation process itself, and the framework chooses an ef-
fective combination of model structure and estimation method for a given 
class of problems. 

The extension of this approach to many different types of models and 
estimation problems is an important element of this methodology, and its 
use for general parametric model estimation with noisy data is open for 
further research. 
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7.5 Determination of the Earthquake Hypocenter: A 
Challenge for the Differential Evolution Algorithm 

Bohuslav R žek and Michal Kvasni ka

Abstract. Determination of the earthquake hypocenter represents a basic 
problem routinely solved in seismology. The problem belongs to the class 
of simpler problems in geophysics, but it is still difficult to solve. The 
dimension of the model space is low (three coordinates of the hypocenter 
plus origin time, resulting in four parameters to be searched for), but the 
forward problem exhibits a case-to-case-dependent degree of nonlinearity. 
The standard solution is based on minimizing the time residuals 
(differences between observed and computed arrivals of seismic waves) in 
the common L2 norm. We have compiled a set of 56 synthetic earthquake 
hypocenter location tasks, which was submitted to three different 
optimizers for solution: (i) Powell’s method, (ii) the downhill simplex 
algorithm and (iii) the differential evolution (DE) algorithm. Each 
localization process listed was performed two times using exact and 
approximate forward modeling. Our analysis has shown that the DE 
algorithm has worked with 100 % reliability, while other optimizing 
algorithms have often failed. The accuracy achieved by using the DE 
algorithm was at least the same or better than that achieved by competing 
algorithms. The only minor disadvantage of the DE algorithm is a higher 
computational effort needed to reach the solution. 

7.5.1 Introduction 

The localization of the focus of an earthquake belongs to the oldest inverse 
problems ever solved in geophysics. Reliable knowledge of the 
coordinates of the focus and origin time is extremely important for most of 
the more advanced studies, e.g., for the determination of earthquake 
magnitude, focal mechanism, stress conditions around the focus, etc. A 
proper solution to the location problem is therefore of significant 
importance. The standard location procedures are based on kinematic 
principles. The focus of an earthquake is supposed to be a point from 
which seismic waves radiate in all directions. Basically, two types of 
seismic waves (P and S waves) can propagate from the source to the 
receivers at different velocities. The arrival times of these waves can be 
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picked out on seismograms recorded at a number of surface seismic 
stations distributed in seismogenic regions. Using appropriate knowledge 
of the geological structure of the region traversed by the rays, synthetic 
arrival times may be theoretically calculated. The correct position of the 
hypocenter and origin time are indicated by the close agreement between 
the observed and computed arrival times of selected seismic phases. 

The earthquake location problem is represented as an optimization task 
in a four-dimensional model space. Let X0, Y0, Z0 be the Cartesian coordi-
nates of the hypocenter, and T0 the origin time of the earthquake. Then our 
four unknown parameters form a model vector m = (X0, Y0, Z0, T0). Let ti

be the ith observed arrival time (i.e., the time at which some seismic wave 
has reached a recording station), and i the corresponding calculated (theo-
retical) counterpart. Both ti and i can be arranged as components of n-
dimensional vectors t and , respectively. Obviously, i depends on all hy-
pocentral coordinates including origin time, i = i(m). Observed and cal-
culated arrival times are used to form a data vector d = t , whose com-
ponents (time residuals) should be as small as possible. The dimension of 
the data space is n = dim(d) m = dim(m) = 4 in order to ensure formally 
uniqueness of the solution. In real cases, many stations (10–100) contrib-
ute to the location process of an earthquake and the problem is overdeter-
mined as a rule. Commonly, the problem is solved in the L2 norm; the fol-
lowing minimization represents the search for the optimum solution: 
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where C is the data covariance matrix (Cii = ( i)
2, Cij = 0 for i j) and i

are standard (Gaussian) deviations, and  = n  4 is the number of degrees 
of freedom. The anticipated idea appeared originally in 1910 (Geiger 
1910), and has been used widely in many standard location programs (Lee 
and Lahr 1972; Klein 1978; Herrmann 1979; Lienert et al. 1986). Due to 
the nonlinearity of the problem (  = (m) represents a system of nonlinear 
equations often available in numerical form only, i.e., the system is not 
given analytically), Eq. 7.43 should be solved iteratively. The standard 
approach is based on an iterative least squares search: 

d.CGGGmmm ..).(, T-1T=+→m (7.44)

In Eq. 7.44, G is the matrix of partial derivatives Gij = i/ mj and m is 
the correction term. The above outlined approach is fast, but suffers from 
at least the following drawbacks: 
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1. Linearization of an essentially nonlinear problem is acceptable only if 
the available starting model is not very far from the true solution. 

2. Real data times ti are frequently contaminated by reading errors, and the 
obligatory implicit L2 norm is rather restrictive (Shearer 1997). 

3. There are cases (even if not very frequent) when the G
T.G matrix is 

nearly singular – the condition number may be of order 1029 (Buland 
1976) and numerical difficulties can arise. 

4. Evaluation of the derivatives is problematic; in some parts of the model 
space they may be discontinuous or may not exist at all due to a 
complicated velocity structure. 

There is an alternate approach: Eq. 7.43 may be solved using another 
search algorithm. Those algorithms that do not rely on the gradient of 2

are especially potential candidates for successful implementation. The 
downhill simplex algorithm (Nelder and Mead 1965; Olsson and Nelson 
1975; Press et al. 1992) was used in Rabinowitz (1988). The genetic algo-
rithm (Sambridge and Gallagher 1993; Billings et al. 1994; Bondar 1994), 
simulated annealing (Billings 1994), interval arithmetic (Tarvainen et al. 
1999) and grid search (Sambridge and Kennett 1986; Fischer and Horálek 
2000; Janský et al. 2000) are also known to have been utilized in earth-
quake hypocenter location problems. According to our experience (R žek
and Kvasni ka 2001), the DE algorithm represents a suitable compromise 
between the reliability of getting a true and accurate solution, and the ef-
fectiveness of the search. 

Nevertheless, the location problem includes a further difficulty. Evalua-
tion of the theoretical arrival times requires perfect knowledge of the ve-
locity model. Unfortunately, the actual geologic medium is very complex. 
As a consequence, the corresponding velocity model is potentially discon-
tinuous, inhomogeneous and anisotropic. Many rays may then connect se-
lected two points within such a medium and “multi-pathing” takes place. 
The opposite case is also possible: no ray exists which could connect two 
points in our model. Despite the problems with the evaluation of arrival 
times in a complex medium, even more problems are posed by the fact that 
“perfect knowledge” of the underlying velocity model is very rarely 
achieved. These problems may be partially overcome by introducing a 
formal, artificial model for evaluation of the arrival times as described by 
Xie et al. (1996). The latter approach gives a relatively good solution for 
the position of the epicenter, but the depth of the focus is rather imperfect. 
In many situations, such a restricted solution is valuable at least as a first 
step in the data processing sequence. Simplified and approximate formulas 
have another unwanted property: the optimized 2 functional (Eq. 7.43) is 
probably multimodal, has flat valleys and is surely difficult to solve. 
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Originally, the use of a genetic algorithm was recommended. In the fol-
lowing, we shall discuss the possibility of introducing a much more power-
ful DE algorithm. 
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Fig. 7.24. An example demonstrating the propagation of direct and head waves 
from the focus to the surface stations within a layered medium. Station A may be 
illuminated by a direct wave due only to the relatively small epicentral distance. 
Station B may record both direct and head waves. Scales for information only. 

Table 7.5. The one-dimensional P-wave model used for location 

Depth (km) Velocity (km/s) 

0–5 5.7 

5–18 6.0 

18–39 6.4 

>39 7.9 

7.5.2 Brief Outline of Direct Problem Solution 

Probably the best way to study and demonstrate the properties of a selected 
inverse problem is to generate synthetic examples with a priori known 
solutions and submit them to the inversion. We shall follow this way as 
well. In order to keep our analysis as simple as possible, we shall use only 
one-dimensional layered velocity models (i.e., models consisting of a 
sequence of homogeneous isotropic layers separated by horizontal 
interfaces). The focus of the earthquake may be anywhere inside the 
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model, and recording seismic stations will be distributed irregularly along 
the surface. Each station will report only one fastest P-wave arrival. Under 
such simplifications, the ray corresponding to the direct (refracted) wave 
and the appropriate time of propagation may be calculated for any possible 
source–station pair. Under specific conditions (sufficiently great epicentral 
distance, high-velocity layer below the focus) another “head” wave may 
exist and may reach the same station along a different ray and at a different 
arrival time. Any one of the direct or head waves may be the faster one 
(see Fig. 7.24). While the head wave may be determined analytically in a 
finite number of steps, the direct wave must be calculated iteratively using 
the shooting or bending method. A rigorous explanation of how to 
construct the rays and how to calculate the propagation times is beyond the 
scope of this section, and may be found in, for example, ervený et al. 
(1977).
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 7.5.3 Synthetic Location Test 

In order to keep our numerical experiments on a realistic basis we tried to 
simulate typical location problems for seismic events originating in the 
Gulf of Corinth, Greece. The routinely used velocity model recommended 
in Tselentis et al. (1996) consists of three homogeneous isotropic layers 
and a homogeneous isotropic half-space with the parameters given in Ta-
ble 7.5. The lowermost interface of our model corresponds to the Moho 
discontinuity separating the Earth’s crust and the upper mantle, therefore 
the velocity model is of regional validity. As long as the velocity in all lay-
ers increases with depth, all interfaces potentially generate head waves. We 
decided to initiate 56 fictitious earthquakes with foci in a regular 50×50 
km grid at a depth of 40 km. Hypothetical recordings were enabled by 16 
seismic stations, distributed on the surface according to the actual distribu-
tion of real field seismic stations in Greece (Fig. 7.25). All arrivals from 56 
events at the 16 stations were exactly computed for the predefined velocity 
model. Then, we had to run more or less different location problems for 56 
times in order to make one test set. We have completed many variants of 
testing, but only a few typical results will be presented here. The search 
space for hypocenters was a box with dimensions 350×400×80 km (the last 
one is depth). 

We shall present an optimization equivalent to the minimization of Eq. 
7.43 using three different standard optimizers in the following: 

1. Powell’s method for nonlinear optimization (Press et al. 1992). 
2. The downhill simplex algorithm (Nelder and Mead 1965; Olsson and 

Nelson 1975; Press et al. 1992). 
3. The original DE algorithm presented in Price and Storn (1997) and 

Storn and Price (1997). 

Both methods 1 and 2 do not require special tuning or adjusting control 
parameters. As for method 3, it was found empirically that the location 
problem is nearly insensitive to the adjustment of internal parameters 
(R žek and Kvasni ka 2001). Then, we fixed the population size at Np = 
10 × model_space_dimension, with a crossover probability Cr = 0.5 and 
scale factor F = 0.7. The starting position of each hypocenter was chosen 
randomly. We calculated the theoretical arrival times i using two methods: 

1. Arrivals were calculated exactly using the same velocity model and the 
same algorithm employed in the preparation of the synthetic problem 

2. Arrivals were calculated approximately using the algorithm given in Xie 
et al. (1996), which has the great practical advantage that the actual 
velocity model need not be known. On the other hand, two extra 
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artificial parameters must be added to the parameter space and the 
inversion becomes more difficult due to the unfavorable topography of 
the optimized functional. 

In conclusion, we shall present results obtained by the three optimizers 
applied to two clones of the optimized functional; that is, six different 
modes will be discussed. 

7.5.4 Convergence Properties 

We monitored the current value of 2 in the course of minimization, 
depending on the number of misfit evaluations. The corresponding graphs 
are arranged in triplets in Fig. 7.26. Each graph contains 56 curves 
connected with the location of 56 synthetic earthquakes. 

The left part of Fig. 7.26 represents the location of error-free data using 
consistent forward modeling. Ideally, each curve should then reach exactly 
zero at the end (perfect fit achieved). Due to rounding errors, the iterative 
method of refracted wave computations and the scaling, final values of 
misfit around 10 4–10 3 may be considered as sufficiently accurate 
solutions.

• If Powell’s method is used (Fig. 7.26, upper right), only 46 events out of 
56 are satisfactorily located. In 10 cases, the search terminates far from 
the correct position. In successful cases, this method needs a broad 
range of 5.102–104 function evaluations in order to achieve convergence. 

• Downhill simplex exhibits fast convergence (up to 3.102 function 
evaluations), but the probability of getting the correct solution is even 
lower (45 cases out of 56). Often the algorithm is unable to make any 
improvement on the current position in the model space and the 
procedure stagnates. 

• DE convergence curves show a relatively uniform pattern (Fig. 7.26, 
lower left). The solution is found in all cases, but the computational 
effort is higher: we need to evaluate the forward problem around 5.103

times in order to decrease the misfit value to a satisfactory level ~10 4.

The same triplet of optimizers was then applied to the same physical 
problem but formulated differently (right part of Fig. 7.26). Now the arri-
vals of seismic waves are calculated approximately. This is useful in prac-
tice, because we do not speculate on the validity of the velocity model 
used. On the other hand, the dimension of the model space is now six (four 
for the hypocenter and two additional formal parameters for the velocity 
model approximation). It can be shown that the optimization is much 
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harder. Because forward and inverse modeling are now not exactly 
consistent, good solutions are indicated by final misfit values around 1. 
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Fig. 7.26. Convergence curves (dependence of the 2 value on the number of func-
tion evaluations) for two variants of forward modeling: a) consistent (exact) for-
ward modeling, b) approximate forward modeling. A label indicates the optimizer 
used. Approximate forward modeling is much harder, but does not require perfect 
knowledge of the velocity model. The stagnation of the optimization process is 
apparent if the 2 value is not reduced appropriately. 
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• As we can see from the upper right part of Fig. 7.26, Powell’s algorithm 
needs around 104 misfit function evaluations in order to achieve 
convergence. Nevertheless, there are two cases when the procedure fails 
completely and the solution is not found. The convergence is also rather 
irregular: from time to time the misfit value falls quickly and then stays 
at nearly the same level for a long time and for a great number of 
calculations.

• The downhill simplex procedure (Fig. 7.26, middle right) behaves worse 
than Powell’s method. The solution is found in 20 cases only; for the 
others the inversion stagnates. Convergence curves are even more 
irregular than in the case of Powell’s optimization. In a successful case, 
downhill simplex requires ~104 misfit function evaluations until 
convergence.

• DE yields quite another picture (Fig. 7.26, lower right). The 
optimization is regular, all curves are relatively smooth and they 
decrease very similarly to each other. The convergence is 100% reliable. 
The only disadvantage in comparison with the previous two optimizing 
algorithms (if any comparison is at all possible) is a higher number of 
function evaluations until convergence: the minimized function has to 
be called ~5.104 times (i.e., the computations may be up to five times 
slower).

Table 7.6. Probability of discovering the solution 

Method of forward modeling Optimizing 

algorithm Exact
calculations

Approximate 
calculations

Powell’s
algorithm 

82% 96% 

Downhill simplex 79% 64%

DE 100% 100% 

A summary of the reliability of obtaining good solutions for different 
kinds of optimization is given in Table 7.6. Further, we may discuss the 
accuracy in those lucky cases when a “satisfactory solution” is found. This 
accuracy may be quantified by the Euclidean distance between the 
determined hypocenter and the true hypocenter (which is known by 
solving the synthetic problem). This approach would be consistent if our 
model space contained parameters of the same physical units only. The 
actual model space has parameters of either two physical units (distance 
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and time in the case of exact forward modeling) or three physical units 
(distance, time and velocity in the case of approximate forward modeling). 
The concept of Euclidean distance is therefore rather problematic. 
However, an alternate and consistent measure of the precision is given by 
discussing the magnitude of the final 2 value. 
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Fig. 7.27. Final measures of the accuracy obtained for exact forward modeling 
(left) and approximate forward modeling (right). The display compares the accu-
racy reached by DE and the downhill simplex algorithm or by DE and Powell’s 
method. It can be clearly seen that DE is never worse than either of the two com-
peting optimizing methods. 

We have plotted 2 values for corresponding solutions obtained in a 
pair-wise manner by Powell’s method and DE or by downhill simplex and 
DE in Fig. 7.27. It can be seen in the figure that DE never yields worse 
results than either of the two competing methods. Especially when 
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approximate forward modeling is used, DE behaves excellently in finding 
very accurate solutions. 

7.5.5 Conclusions 

Inverse problems in geophysics are mostly hard problems to solve. They 
are nearly always nonlinear, non-unique, medium or high dimensional, and 
applied to noisy data. Calculation of the forward problem is time 
consuming and sometimes only approximate. Therefore good 
minimizing/optimizing algorithms are of great importance. 

The problem of earthquake hypocenter determination belongs to the 
relatively simple geophysical problems. Nevertheless, we can see that 
“classic” or “standard” optimizing algorithms sometimes give inaccurate 
or incorrect results. We have demonstrated that the DE algorithm 
introduces an attractive way to perform geophysical inversions. A set of 56 
synthetic location problems was submitted for solution by three different 
optimizing algorithms. The DE algorithm output correct results in all 
cases, while the competing algorithms often failed. Of course, there is a 
price for DE reliability: a greater computational effort is needed to achieve 
convergence. Nevertheless, continuous development of computing 
technologies makes this aspect of minor importance. Even if the problem 
solutions were found by all the tested optimizers, the DE solution would 
nearly always be characterized by the lowest 2 value and therefore by the 
best fit. 

DE has many pleasant and elegant features: it is simple, easy to use, 
does not insist on evaluations of derivatives, works with continuous 
parameters which need not be bound and their starting positions are not 
necessary. The only disadvantage of DE is the already-mentioned slightly 
higher number of misfit evaluations. We believe that DE will be broadly 
used in geophysics in the near future, especially when considering that DE 
itself will probably be further developed as well. 
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7.6 Parallel Differential Evolution: Application to 3-D 
Medical Image Registration 

Michel Salomon, Guy-René Perrin, Fabrice Heitz and J.-P. Armspach 

Abstract. A common framework for 3-D image registration consists in 
minimizing a cost (or energy) function that expresses the pixel or voxel 
similarity of the images to be aligned. Standard cost functions, based on 
voxel similarity measures, are highly nonlinear, non-convex, exhibit many 
local minima and thus yield hard optimization problems. Local, determi-
nistic optimization algorithms are known to be sensitive to local minima. 
Global optimization methods (like simulated annealing or evolutionary al-
gorithms) yield better solutions often close to the optimal ones, but are 
time consuming. In this section we consider the parallelization of a gen-
eral-purpose global optimization algorithm based on random sampling and 
evolutionary principles: the differential evolution algorithm. The inherent 
parallelism of evolutionary algorithms is used to devise a data-parallel im-
plementation of differential evolution. The performances of the parallel 
version are assessed on a 3-D medical image registration problem. Besides 
yielding accurate registrations, parallel differential evolution exhibits fast 
convergence and a speedup almost growing linearly with respect to the 
number of processors. 

7.6.1 Introduction 

Global optimization problems are encountered in many areas of science 
and engineering. In particular, many problems in 2-D and 3-D image proc-
essing and computer vision have been expressed as global optimization 
problems. The general issue is to find the global minimum of an objective 
function (also called cost or energy function) describing the interactions 
between the different variables modeling the image features in a given ap-
plication (Heitz et al. 1994). Image restoration (Geman and Geman 1984), 
image segmentation, image registration, image motion measurement, tex-
ture analysis as well as scene interpretation have for instance been recast 
into this framework. Due to the large volume of data, the large number of 
variables involved and the generalized use of nonlinear interaction models, 
the optimization problems under consideration are generally hard ones, in-
volving non-convex objective functions and many local minima.  
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A typical example is image registration. The purpose of image registra-
tion (also called image matching) is to geometrically align one image (the 
floating or source image) with another (the reference or target image) so 
that voxels (or pixels) representing the same underlying structure may be 
superimposed. A standard framework for image registration consists in 
minimizing a cost function or maximizing a “similarity measure” that ex-
presses the pixel or voxel similarity of the images to be aligned. During the 
last decade, image registration has become an important preliminary step 
in a wide range of image analysis and computer vision tasks. Due to its 
large variety of sensors, 3-D medical imaging is certainly one of the first 
application fields, as are remote sensing, military imaging or multi-sensor 
robot vision. Applications range from computer-assisted surgery to the 
analysis of sequences of functional images used for instance to follow the 
evolution of diseases. 

Standard cost functions, based on voxel similarity measures (Woods et 
al. 1993; Nikou et al. 1998), are highly nonlinear, non-convex and exhibit 
many local minima. Like NP-complete problems, they yield challenging 
optimization problems, with large and irregular search spaces, and thus re-
quire computationally demanding global optimization algorithms to com-
pute close to optimal solutions. Less CPU-intensive deterministic algo-
rithms may be used instead, but they are sensitive to local minima and 
require a good initial guess (Nikou et al. 1998). 

In this section we consider differential evolution as an appealing candi-
date for general-purpose global optimization (Storn and Price 1996; Storn 
1996). We show that differential evolution is particularly suited for the 
registration of medical images using similarity measures. To register 
medical images with computational times suited to clinical applications, 
we develop comprehensive parallelization schemes for this class of algo-
rithm. Standard parallelizations of evolutionary algorithms consist in dis-
tributing the population of candidate solutions maintained by the algo-
rithms, making it evolve in parallel. In our approach we have one potential 
solution per processor, thereby defining a novel, fully synchronous data-
parallel algorithm. The parallel algorithm has been applied successfully to 
register 3-D magnetic resonance images of the brain, exhibiting a nearly 
linear speedup.

The remainder of this section is organized as follows. After introducing 
the similarity-based registration model (Sect. 7.6.2), we briefly describe 
the particular differential evolution algorithm used here and show the re-
sults obtained with a sequential version of this algorithm (Sect. 7.6.3). In 
Sect. 7.6.4, comprehensive parallel solutions are proposed for evolutionary 
algorithms and the adopted parallelization scheme, relying on a data-
parallel programming model, is described. Section 7.6.5 is devoted to the 
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experimental assessment of the performances of the proposed parallel al-
gorithm, compared to the reference, sequential version. 

7.6.2 Medical Image Registration Using Similarity Measures 

A general review of image registration may be found in Brown (1992). 
Recent updates of the state of the art in this field, specifically devoted to 
medical image analysis, have been proposed in van den Elsen et al. (1993), 
Hill and Hawkes (2000) and Woods (2000b).  

To define a medical image registration algorithm, several points must be 
considered:

1. The imaging modalities involved. 
2. The feature space used to describe the image content. 
3. The similarity measure used. 
4. The nature and domain of transformation. 
5. The algorithm used to find the optimal transformation. 

The registration may concern images from the same modality (single 
modal image matching) or images stemming from different modalities 
(multi-modal image matching). To compare these images, many features 
(voxels, edges, surfaces, etc.) and similarity measures are now available. 
Besides, transformations range from rigid transformations, with a small 
number of parameters (see Fig. 7.32 below), to deformable image warps, 
depending on several thousands or millions of parameters (Christensen et 
al. 1996; Musse et al. 1999; Woods 2000a). 

Imaging Modalities and Feature Space 

Medical imaging modalities can be divided into two categories: anatomical 
and functional. The first category primarily depicts morphology, whereas 
the second one highlights metabolic information of the underlying anat-
omy. The classical medical imaging modalities include: 

• Anatomical modalities: X-ray, CT (Computerized Tomography), MRI 
(Magnetic Resonance Imaging). 

• Functional modalities: PET (Positron Emission Tomography), SPECT 
(Single-Photon Emission Computed Tomography), fMRI (functional 
Magnetic Resonance Imaging). 

A typical application of single modality image registration is the follow-
ing one on the evolution of lesions on temporal sequences (see Fig. 7.33 
below). On the other hand, multi-modal registration is generally used to in-
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tegrate anatomical and functional information. Obviously the registration 
problem is far more difficult when considering images from different mo-
dalities (which generally may not be compared on a voxel-by-voxel basis). 

The features used in image registration may be raw pixel/voxel intensi-
ties, characteristic points, edges or lines, surfaces or volumes, or even 
high-level image representations such as statistical models or graph-based 
representations. In this work, we consider the standard case of single mo-
dal image registration based on voxel similarity measures, which is now 
used routinely on a daily basis in many hospitals. 

Similarity Measures and Image Transformations 

Similarity measure-based approaches rely on the minimization of cost 
functions that express the pixel (2-D) or voxel (3-D) similarity of the im-
ages to be aligned. Similarity measures have been introduced for both sin-
gle and multi-modal image registration (for recent reviews see Hill and 
Hawkes 2000; Woods 2000b). Standard similarity metrics used in single 
modal image registration are related to least squares estimation or to the 
maximization of the correlation function. For multi-modal images, the 
definition of similarity generally relies on first- or second-order image sta-
tistics such as mean, variance, entropy or mutual information. 

Many transformations, from rigid transforms to elastic warps, may be 
considered in image registration (Woods 2000a). In this work the trans-
formation is assumed to be rigid, therefore the output of the registration 
process is a set of six independent parameters: three rotation parameters 
and three translation parameters (see Fig. 7.32 below). Rigid registration is 
routinely used in order to compensate for the difference of patient position 
between successive scans. Within this framework, voxel similarity metric-
based registration consists in estimating the parameter vector  of the rigid 
transformation T  minimizing a cost function C that expresses the similar-
ity between the single or multi-modal image pair: 

( )[ ](.))((.),minargmin Θ
Θ

=Θ TJIC  , (7.45)

where (for 3-D images) 

( )T,,,,, zyxzyx ttt θθθ=Θ (7.46)

is a vector containing the 3-D translation parameters (tx,ty,tz) with respect 
to the X, Y and Z axes and the Euler rotation angles ( x, y, z). I(.) repre-
sents the reference image and J(.) the floating image, to be registered on 
the reference image. A widely used similarity measure for the registration 
of single modal images is the quadratic similarity measure (Brown 1992). 



7.6 3-D Medical Image Registration      397 

This similarity measure assumes that the images to be matched differ only 
by an additive Gaussian noise, leading to the following cost function: 

( ) [ ]2
))(()((.))((.), ΘΘ −=

s

sTJsITJIC (7.47)

where s designates the voxel (or pixel) coordinates. More sophisticated 
similarity measures may be found in Nikou et al. (1998), Hill and Hawkes 
(2000) and Woods (2000b). 

Global Optimization Algorithm 

The similarity measure presented above is highly nonlinear, non-convex 
and has multiple local minima. In most image registration methods, local 
deterministic optimization algorithms, such as gradient descent or Newton 
optimization algorithms, are applied. They are known to be sensitive to lo-
cal minima, unless they are initialized close to the optimal solution. In 
Nikou et al. (1998), for example, a first step consists in a fast global search 
using simulated annealing, followed by a deterministic descent using a 
Gauss–Seidel-like algorithm. 

In this work we consider differential evolution as an appealing candidate 
for the global optimization of the objective functions involved in image 
processing. To reduce the computational burden, the optimization is con-
ducted on a multi-grid sequence of images of increasing resolution. In 
practice, the cost function is calculated by successively considering one 
voxel out of 81, 27, 9, 3 and finally every voxel in the 3-D MR images (for 
1283 images). Multi-grid algorithms are known to be less sensitive to local 
minima than single-resolution implementations, yielding fast convergence 
toward good solutions (Heitz et al. 1994). 

The choice of differential evolution results from a comparison of several 
global search algorithms: simulated annealing (Kirkpatrick et al. 1983), 
tabu search (Glover and Laguna 1993) and evolutionary algorithms (Bäck 
1996). A careful experimental assessment (Salomon 2001) has shown that 
evolutionary algorithms, particularly evolution strategies and differential 
evolution, are best suited here. This point is also emphasized by other 
work on image registration using evolutionary algorithms (Fischer et al. 
1999). In our experiments, differential evolution has significantly outper-
formed the other global optimization approaches: it is faster, yields better 
solutions, has fewer control parameters, and is easier to implement than 
evolution strategies. 
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7.6.3 Optimization by Differential Evolution 

It is assumed that the reader is already familiar with the differential evolu-
tion algorithm presented in Chap. 2 of this book. Therefore we will only 
describe the reproduction operator (the so-called crossover operator by 
Storn et al (Storn 1996), as it differs slightly from the original one. 

Reproduction Operator  

Among the different variants of differential evolution (DE), throughout 
this investigation we used the DE/rand-to-best/1 scheme. This scheme is 
briefly presented below, considering the medical image registration opti-
mization problem. We chose this scheme after preliminary experiments; in 
fact it outperformed the three other schemes that we considered: 
DE/rand/1, DE/best/1 and DE/best/2 (Storn 1996). 

For the problem of rigid 3-D registration, a new individual 

( ) { } ( ) )1()1()1(
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where (G)xmin represents the current minimum; popn is the number of individu-

als and parn  the number of parameters; S, T ∈ {1, …, npop} satisfying (S ≠
T) ≠ i denote two randomly chosen individuals; and 21,χχ are the two 
crossover points. The last variables are obtained in the following way: 

( ) ( ) 1mod)1(,1mod 21 +−+=+= parpar nLn χχχχ (7.49)

where  and L are two integers uniformly drawn from set {1, …, npar}, for 
each individual.  defines the first position of the crossover whereas L is 
the number of parameters to be exchanged. Integer L is chosen using the 
algorithm given in Storn and Price (1996), according to the crossover 
probability Cr given by the user. The control parameters  and F have the 
range [0.1,1.0]. 
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Sequential Differential Evolution Algorithm 

To evaluate the DE algorithm on a representative set of 3-D MRI/MRI reg-
istration problems of 1283 voxels, we generate a set of 20 randomly de-
fined registration problems. Each registration problem is obtained by ap-
plying a random rigid transformation on a reference MRI provided by the 
Institut de Physique Biologique (Strasbourg University Hospital, UMR 
CNRS 7004). The translation parameters are within the range 
[ 20.0,+20.0] voxels, whereas the rotation angles are within [ 20.0,+20.0] 
degrees. Let us emphasize that large rotations are usually difficult to han-
dle, leading to objective function landscapes with many local minima. Fur-
ther, many voxel interpolations are involved in the registration process: tri-
linear interpolation is adopted here, as a good compromise between 
reconstruction quality and computational cost. 

As stated in Sect. 7.6.2, the DE algorithm is applied on a sequence of 
multi-resolution grids, using a standard top-down approach, starting from 
the coarsest resolution level. We generate the same number of populations 
at all resolutions, except at the final one, in which case the fitness (cost) of 
each individual will be simply computed again, as is the case when for-
warding the population from a given resolution to a finer one. This step is 
necessary because the cost of an individual changes with resolution. A 
suitable value for λ and F has been found in some preliminary experi-
ments, whereas the termination criterion, i.e., the maximum number of 
generated populations, was chosen in order to evaluate about 900 individu-
als. The total number of populations to be evaluated is thus Gmax + 5. 

Figure 7.28 presents the average evolution of the minimum cost for the 
20 registration problems, during the optimization process. In Fig. 7.28 the 
influence of the population size according to the crossover probability 
(Fig. 7.28a: Cr = 0.3, Fig. 7.28b: Cr = 0.8) is shown. It appears that a small 
population is sufficient to get a good convergence: 8 individuals for a 
small crossover probability, 16 individuals for a large crossover probabil-
ity. We also notice that these population sizes induce convergence curves 
that are almost similar. 

To evaluate the ability of the DE algorithm to achieve accurate registra-
tions (errors less than 1 voxel in translation and 1 in rotation), we compute 
various error statistics on the estimated parameters, as well as the root 
mean square (RMS) error. RMS corresponds to the average mis-
registration between voxels in the proposed solution and the optimal one. 
It can be seen from the statistics collected from the set of 20 images (Table 
7.7) that the algorithm achieves good accuracy. Considering a sampling of 
voxels, we obtain an RMS error of 0.35 voxels, showing subvoxel accu-
racy. 
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The CPU time obtained on an MIPS R12000 processor (300 MHz) is 
approximately 11 minutes. Compared to other approaches, the registration 
of medical images using DE is fairly competitive. 
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Fig. 7.28. Average evolution of the minimum cost considering different popula-
tion sizes (a Cr = 0.3 and b Cr = 0.8; λ = F = 0.525).
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Table 7.7. Single modal (MRI/MRI) registration (3-D) {λ = F = 0.525}: error sta-
tistics (mean ± standard deviation) 

npop = 8; Cr = 0.3 and Gmax = 108 npop = 16; Cr = 0.8 and Gmax = 52 
∆tx 0.19 ± 0.15 ∆tx 0.20 ± 0.15 
∆ty 0.14 ± 0.10 ∆ty 0.15 ± 0.10 
∆tz 0.16 ± 0.09 ∆tz 0.16 ± 0.09 
∆ x 0.005 ± 0.004 ∆ x 0.030 ± 0.040 
∆ y 0.004 ± 0.003 ∆ y 0.020 ± 0.030 
∆ z 0.009 ± 0.006 ∆ z 0.040 ± 0.080 

Note: The translation errors are given in voxels and the rotation errors in degrees. 

7.6.4 Parallelization of Differential Evolution 

Parallelizing an algorithm can be motivated by several reasons. The main 
ones are: reducing the computation time by equally dividing the computa-
tion cost over all the processors; the ability to solve larger problems than 
possible in sequence; last but not least, designing new optimization strate-
gies based on sequential methods. Let us notice that the computation time 
needed to solve an optimization problem is mainly related to the number of 
parameters to be optimized and the smoothness of the cost function land-
scape.

How To Parallelize an Evolutionary Algorithm 

Evolutionary algorithms are intrinsically parallel, since, as in nature, indi-
viduals evolve simultaneously. There are three levels of parallelization that 
can be considered for an evolutionary algorithm (Tomassini 1999): the fit-
ness evaluation level, the population level and the individual level. The 
first level will not be discussed, as it is a problem-dependent paralleliza-
tion, whereas the two other levels are general parallelization. 

Population-based parallelization consists in dividing the population into 
as many subpopulations as processors, each processor running the evolu-
tionary algorithm on its own subpopulation. This kind of parallelization is 
said to be coarse-grained. The subpopulations are usually called “islands” 
(or demes). They can be connected following a defined neighborhood ena-
bling the migration of individuals from a subpopulation to another one, re-
placing the worst individuals in the target subpopulation: usually it is the 
individual having the best fitness that migrates. The interacting scheme is 
called the “connected island model”. The background idea for allowing 
migration of individuals is to ensure diversity over the subpopulations. In 
the scheme without interactions, the only communications take place at the 
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end in order to select the best individual among all subpopulations. Unfor-
tunately, the lack of communications can result in a subpopulation explor-
ing a bad region of the search space, ignoring more promising regions ex-
plored by other processors. 

Introducing the parallelization at the individual level consists in distrib-
uting the population so that each individual is assigned to one virtual proc-
essor, resulting in a data-parallel implementation with a finer granularity. 
In this scheme, the processor’s network topology is very important, since it 
induces the isolation degree across the population and in this way the di-
versity of the whole population. The diffusion of individuals is done by se-
lection and reproduction operators locally on each processor, considering a 
neighborhood structure. Consequently the neighborhood is the major com-
ponent in this parallel algorithm: the four or eight nearest neighbors of an 
individual form the most typical neighborhoods used. Local interactions 
between neighboring processors prevent premature convergence, since the 
diffusion of the individuals across the population is very slow, reducing 
the probability of seeing a superindividual emerge. 

Parallelization of evolutionary algorithms has been mainly studied on 
genetic algorithms, since they are the most popular evolutionary algo-
rithms and the ones having the widest range of applications. Our contribu-
tion is to study the parallelization of DE. 

Parallelizing Differential Evolution: A Data-Parallel 
Implementation

In this work, we propose an individual-based parallelization for the DE al-
gorithm. In fact, as shown by the study of the sequential algorithm (Sect. 
7.6.3), a population with a small size (less than 20 individuals) was enough 
to give good results. Therefore a coarse-grained parallelization is irrele-
vant: the subpopulations would have been too small. 

Consider a population of 16 individuals and a grid of virtual processors 
(a real processor usually simulates several virtual ones), having a size 4 ×
4. We distribute the population on this grid in order to have one individual 
per virtual processor. Thus parallelizing DE consists in parallelizing the 
different steps of the algorithm, namely: initialization, evaluation, repro-
duction and selection. 

Clearly initialization and evaluation can be simply done in parallel. For 
example, the first individual on each processor results from a random sam-
pling in the search space. Furthermore, each individual )(G

ix′ , i ∈{1, …, 

npop}, where npop = 4 × 4, resulting from reproduction will be located on the 
same virtual processor as )(G

ix . Consequently, as the selection operator 
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consists in a comparison of these two individuals for each value of i, the 
parallelization is communication free. Finally we have to parallelize the 
reproduction operator. Equation 7.48 shows that generating a new individ-
ual )(G

ix′  requires three other individuals, apart from )(G
ix :

• the individual of minimum cost in the current population, denoted )(
min
Gx ;

• two individuals )(G
Sx  and )(G

Tx  randomly chosen in the population, mutu-

ally different and also different from )(G
ix  ((S ≠ T) ≠ i ). 

xS

xT

x
x’i
i

Fig. 7.29. Transmission of Sx  and Tx  (the neighborhood is in gray). 

The broadcasting of the current minimum across the grid results in ir-
regular communications, but its real cost depends on the architecture of the 
parallel machine. In fact the compiler should optimize broadcast, since it is 
a basic operation in data-parallelism. To draw the two individuals )(G

Sx  and 
)(G

Tx  in parallel, we define around each virtual processor a neighborhood 
corresponding to the eight-nearest neighbors of the considered processor. 

)(G
Sx  and )(G

Tx  are then randomly chosen in this neighborhood and communi-
cated to the processor where the corresponding )(G

ix  is located, as presented 
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in Fig. 7.29. The choice of the two individuals is done in the same way by 
all the processors, yielding a regular communication pattern. Obviously, 
introducing a neighborhood to choose )(G

Sx  and )(G
Tx  gives a parallel algo-

rithm semantically different from the sequential one.  
The main question can be stated in the following words: “Has the se-

mantic modification introduced in the parallel algorithm any effect on its 
results?” The next section will answer this, showing clearly the relevance 
of our approach. 

7.6.5 Experimental Results 

Experimentation Framework 

Following the same approach as for the sequential algorithm, the data-
parallel algorithm is associated with a multi-grid optimization of the simi-
larity measure. The data-parallel algorithm has been implemented on an 
SGI Origin 2000 available at Strasbourg I University (32 R10000 proces-
sors, 195 MHz and 20 R12000 processors, 20 gigabyte memory), using the 
data-parallel language High Performance Fortran (HPF). The Origin 2000 
is a virtual shared memory computer, but physically it is a distributed 
memory computer. Moreover the nodes are connected with a hypercube 
topology network. 

Performance of the Approach 

In order to use as many processors as possible, we set the population to 16 
individuals; hence the DE parameters have the following values: Cr = 0.8, 
Gmax = 52 and λ = F = 0.525. 

Quality of the Registration. Figure 7.30 presents the average evolution of 
the minimum cost, for the 20 registration problems. The solid curve corre-
sponds to the parallel algorithm executed on eight physical processors; the 
dashed line depicts the sequential version. Clearly, the sequential and the 
parallel algorithms have the same average behavior, resulting in a final pa-
rameter vector with similar cost. In practice, the semantic modification in-
troduced by the data-parallel approach is without any effect. Consequently, 
as highlighted by Table 7.8, the parallel algorithm is also able to achieve 
registrations with subvoxel accuracy. 

The good results of the data-parallel implementation may be explained 
by the choice made for the neighborhood during the reproduction step, 
since it is this operator that differentiates the parallel version from the se-
quential one. For the sequential version, a population of nine individuals is 
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sufficient to enable convergence toward a final parameter vector corre-
sponding to an accurate registration (in fact, as we have seen in Sect. 7.6.3, 
eight individuals are enough). As we choose the eight nearest neighbors to 
form the neighborhood, we see that in the parallel version during the re-
production on a virtual processor a subpopulation of nine individuals is 
considered. Thus the “parallel” reproduction is locally (on each virtual 
processor) almost equivalent to the sequential version with a population of 
nine individuals, and, as noted above, this one yields very good results. 
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Fig. 7.30. Average evolution of the minimum cost 

Table 7.8. Single modal (MRI/MRI) registration (3-D): Average and standard de-
viation of the registration errors 

npop = 16; Cr = 0.8 and Gmax = 52 
∆tx 0.20 ± 0.14 
∆ty 0.14 ± 0.10 
∆tz 0.16 ± 0.09 
∆ x 0.020 ± 0.020 
∆ y 0.030 ± 0.040 
∆ z 0.040 ± 0.030 

Performance. The parallel algorithm has been executed on 2, 4, 8, 16 and 
32 physical processors with different population sizes. Indeed, as can be 
seen from Fig. 7.28b, a population size of 32 individuals is competitive 
when the crossover probability is close to one. Note that for the population 
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of 16 individuals, the experiments were made on the R12000, whereas for 
the 32 size population, they were done on the R10000. As a reference, we 
present the sequential execution time for one processor. 

Table 7.9. Single modal 3-D (MRI/MRI) registration: average run-times (seconds) 
and corresponding speedup values 

R12000 1 2 4 8 16  

npop = 16 Gmax = 52 700.80 349.01 184.47 95.54 52.16  

Speedup  2.01 3.80 7.34 13.44  

R10000 1 2 4 8 16 32 

npop = 32 Gmax = 24 1207.57 609.27 324.91 166.06 88.47 49.02 

Speedup  1.98 3.72 7.27 13.65 24.63 

Table 7.9 shows the decrease of the execution time when going from the 
sequential version to the parallel versions. It appears that increasing the 
number of physical processors enables a significant reduction in computa-
tion time. For a population of 16 individuals and MR images of 1283 vox-
els, the sequential version takes approximately 11 minutes 40 seconds, 
whereas the parallel execution decreases regularly, taking on the 16-
processor R12000 about 52 seconds. On increasing the MR image resolu-
tion to 2563 voxels (Gmax = 40), these execution times are respectively 
equal to 1 hour 51 minutes and 8 minutes 32 seconds, which are compati-
ble with clinical routines. 

The good performances are also highlighted by the speedup curves 
(Figs. 7.31a and 7.31b), showing a slow decrease in performance when in-
creasing the number of processors: for two processors the speedup is al-
most linear; for more processors the curves only moderately move away 
from the ideal speedup (see the dashed line). For instance, on 16 proces-
sors the speedup is about 13.44 for 16 individuals and 24.63 for 32 
32 individuals (32 processors). 

The small loss in performance observed when increasing the number of 
processors originates in the increasing number of irregular communica-
tions between physical processors needed to broadcast the current mini-
mum, even if the compiler optimizes this operation. This problem could 
become cumbersome for applications requiring larger populations than the 
ones considered here and that could be executed on more processors. We 
think that there is certainly an upper bound on the population size, beyond 
which an island-based parallelization should be preferred, and vice versa. 
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Fig. 7.31. Speedup for parallel DE. Population size of a 16 individuals (R12000 
processors) and b 32 individuals (R10000 processors). 

Another potential problem is the fact that the crossover length L is cho-
sen randomly by each virtual processor. Therefore the crossover does not 
have the same cost across the processor grid, so when the individuals con-
tain many parameters, a load balancing problem may appear. However, for 
the single modal registration application considered in this section, we 
were not faced with this problem. 
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7.6.6 Conclusions 

Image registration has become a standard issue in many application areas 
of computer vision, particularly in the field of medical imaging. A widely 
used framework consists in measuring the quality of the registration with a 
predefined cost function, called the similarity measure. The registration 
problem may thus be stated as the global optimization of a nonlinear cost 
function involving many local minima.  

We have shown in this section that differential evolution may be con-
sidered as an appealing candidate for fast and high-quality 3-D image reg-
istrations. We have outlined a data-parallel implementation for differential 
evolution that produces subvoxel registrations with a quasi-linear speedup. 
The experiments show clearly that the semantic modification induced by 
the parallelization scheme has no effect on the behavior of the algorithm 
when compared to the sequential version. Furthermore, differential evolu-
tion is very flexible and may easily be adapted to any standard cost func-
tion used in image registration. This feature is particularly useful when 
dealing with cost functions like the ones used in multi-modal image regis-
tration, for which the computation of derivatives remains tricky. 
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Fig. 7.32. Rigid transformation between two 3-D MR images, with segmented 
brain structures. Rigid registration is used to compensate for the difference of pa-
tient position between successive scans. The goal of the registration procedure is 
to estimate the six independent parameters of the rigid spatial transformation 
model, in order to obtain an accurate alignment of anatomical and functional in-
formation. 
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Fig. 7.33. The automatic analysis of changes between MRI scans is an important 
tool for assessing the evolution of lesions. Most systems use registration as a pre-
liminary step to obtain accurate geometrical alignment of the images before image 
comparison (sequence of two 3-D MRI scans of a patient suffering from relapsing 
remitting multiple sclerosis, after registration; the evolution of a lesion is visible at 
the cross-hairs). 



7.7 Design of Efficient Erasure Codes with Differential 
Evolution

Amin Shokrollahi and Rainer Storn 

Abstract. The design of practical and highly powerful codes for protection 
against erasures in digital communication can be reduced to optimizing so-
lutions of a highly nonlinear constraint satisfaction problem (Luby et al. 
1997). In this section we will attack this problem using the differential 
evolution approach (Storn and Price 1997) and significantly improve re-
sults previously obtained using classical optimization procedures. 

7.7.1 Introduction 

The communication revolution initiated by the phenomenal explosion of 
the Internet and wireless communication has led to an increased use of er-
ror correcting codes as a means of protecting information against commu-
nication errors. Nowadays, codes are being used in many diverse commu-
nication media such as wireless phones, satellites, hard disks, CDs, 
modems and the Internet, to name a few. 

The general idea of coding theory is to partition the data into blocks and 
augment the blocks with redundant information so that an error recovery is 
possible if some part of the information is lost. The aim is to add as little 
redundancy as possible, and, at the same time, to protect against as many 
errors as possible. These two requirements are obviously conflicting, and 
this makes the design of good codes a challenging task. 

Most of the common communication channels lead to corruption of 
data: a random magnetization of a hard disk, atmospheric electric dis-
charges during a satellite digital broadcast, or interference of signals of dif-
ferent cellular phones can flip bits in random positions. The task of decod-
ing becomes a hard problem, since the receiver does not know the 
positions of the errors. There are, however, other communication channels 
in which data is “erased” and the receiver knows the position of the erased 
data. One of the prime examples of such a channel is the Internet. Data 
sent over the Internet is partitioned into so-called packets. Each such 
packet has a header which identifies the entity which the packet belongs to, 
as well as the position of the packet inside that entity. Packets are then 
routed through the network to a designated receiver. Typically some pack-
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ets are lost during the transmission, while others may be corrupted once 
they arrive at their destination. There are usually so-called checksums as-
sociated with each packet which are used to detect corrupted packets. Once 
a packet has been identified as corrupted, it is declared missing. So, one 
can concentrate on erased packets only. 

A standard solution to packet loss is retransmission of data that is not 
received. When some of this retransmission is lost, another request is 
made, and so on. In some applications, this introduces technical difficul-
ties. For real-time transmission this solution can lead to unacceptable de-
lays caused by several rounds of communication between sender and re-
ceiver. For a multicast protocol with one sender and many receivers, 
different sets of receivers can lose different sets of packets, and this solu-
tion can add significant overhead to the protocol. 

An alternative solution based on using codes is sometimes desirable. It 
is a challenge to design fast enough encoding and decoding algorithms to 
make coding solutions feasible in real time for high-bandwidth applica-
tions. Practical codes with these properties were first introduced in Luby et 
al. (1997). Those codes can be encoded and decoded in linear time while 
providing near-optimal loss protection. 

Based on the theoretical results proved in Luby et al. (1997), we will in 
this section attack a nonlinear constrained satisfaction problem the solu-
tions of which correspond to highly efficient codes. The optimization prob-
lem involved will be attacked by differential evolution, a robust optimizer 
which has proved quite effective for similar types of problems (Storn 
1996a).

The section is organized as follows. In the next subsection we will recall 
the basic construction of the codes in Luby et al. (1997). In Sect. 7.7.3 we 
will introduce the optimization problem related to these codes and describe 
different choices for the cost function of that problem. Afterwards, we re-
call basic properties of differential evolution. Finally, in Sect. 7.7.5 we will 
present our optimization results.  

7.7.2 Codes from Bipartite Graphs 

Construction of the Codes 

The codes from Luby et al. (1997) are built from sparse bipartite graphs 
and generalize a classic construction of Gallager (1963). A bipartite graph 
is a graph whose set of nodes is a disjoint union of a set of left nodes and a 
set of right nodes.

Suppose that the graph B has n nodes on the left and r nodes on the 
right. We enumerate the left nodes of G by the numbers 1, …, n. The code 
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associated to G is defined as follows: it consists of all binary n-tuples c =
(c1, …, cn) such that for any right node of G, the sum modulo 2 of the co-
ordinates of c that are connected to that node equals zero. An example is 
given in Fig. 7.34. In that example, a binary vector (x1, …, x7) belongs to 
the code iff the sums x1 + x4 + x5 + x7, x2 + x4 + x6 + x7 and x3 + x5 + x6 + x7

are zero modulo 2. Hence, for instance, the binary vector (1, 1, 0, 0, 1, 1, 
0) belongs to the code, while (1, 1, 0, 0, 1, 0, 1) does not. 

1x

2x

3x

4x

5x

6x

7x

0xxxx
!

7541 =+++

0xxxx
!

7653 =+++

0xxxx
!

7642 =+++

Fig. 7.34. Example of a code from a graph. The equality sign with exclamation 
mark denotes that equality is a requirement. 

It is easy to see that any codeword has at least k = n − r “free” bits of in-
formation: since we are imposing r linear conditions on the coordinates, 
the code is the intersection of r hyperplanes and hence has dimension at 
least n − r. We call the quantity ℜ = k/n the rate of the code. In practice, 
the rate of the code is dictated by the specific application. For instance, if a 
particular computer network has a peak loss rate of 60%, the rate of the 
code has to be at most 0.4. This is because one cannot recover from a frac-
tion of bits which is less than the rate, i.e., one cannot recover from a loss 
fraction larger than one minus the rate.  

The main contribution of Luby et al. (1997) is the design and analysis of 
the bipartite graph G so that the following simplistic decoding operation 
recovers all the missing bits.  

Algorithm 1 [Loss recovery]. We assume that a word (c1, …, cn) is re-

ceived where each ci is either 0/1, or is erased. The algorithm works with 

two sets of registers, one for the left nodes and one for the right nodes in 

the graph. We will identify these registers with the corresponding nodes:  
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(1) Initialize the contents of the right-hand nodes of the graph with zero.  

(2) Collect all the non-erased coordinate positions, add their value to the 

current value of their right neighbors, and delete the corresponding 

left node and all edges emanating from it. 

(3) Repeat the following step:  

(3.1) Look for a right node in the graph of degree 1, i.e., a node that 

has only one edge coming out of it. If no such node is found, 

then stop and report FAILURE.

(3.2) Transport the value of that node to its unique left neighbor l 

thereby recovering cl.

(3.3) Add cl to the current value of all the right neighbors of l and 

delete l and all the edges emanating from it. If there are no left 

nodes remaining in the graph, stop and report SUCCESS. 

See Fig. 7.35 for an example of a successful recovery. Obviously, the 
success of the above algorithm depends on the graph and on the specific 
set of erasures. 

The Fundamental Inequality 

The problem with Algorithm 1 is that it might report a failure if it cannot 
find any node of degree 1 on the right at Step (3.1). In Luby et al. (1997) it 
is proved that, under the assumption that losses occur at random locations, 
it is only the structure of the graph that decides on the success or the fail-
ure of the decoding. To express the result, we need one last piece of nota-
tion. An edge in the graph is called an edge of left degree i if it is con-
nected to a left node of degree i, and it is called of right degree i if it is 
connected to a right node of degree i. Let λi denote the fraction of edges of 
left degree i, and let ρi denote the fraction of edges of right degree i. Con-
sider the generating functions λ(x) := i λix

i−1 and ρ(x) := k ρkx
k−1. Note 

that λ(x) and ρ(x) are polynomials depending only on the graph. We call 
them the edge degree distributions of the graph. 

The following theorem is essentially from Luby et al. (1997). The for-
mulation given here has been taken from Luby et al. (1998). 

Theorem 1. The above loss recovery algorithm recovers a δ-fraction of 

erased nodes with high probability if and only if the graph has a degree 

distribution given by λ(x) and ρ(x) such that 

( )( ) xx <−− 11 ρδλ (7.50)

holds true on the interval (0,δ].  
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Complete
Recovery

(a) (b) (c)

(d) (e) (f)

Fig. 7.35. Recovery from erasures; the arrow at a right node indicates that that 
node is used in Step (3.1). 

The task at hand is now to find appropriate polynomials λ and ρ with 
non-negative coefficients that give rise to a code of a given rate such that 
the fundamental inequality (Eq. 7.50) is satisfied for a large value of δ.

For future reference, we record the following formula which relates the 
rate of the code with the degree distributions (Luby et al. 1997). In this 
formula, and in the sequel, we denote by β the quantity 1 − ℜ.
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λβρ
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(7.51)

7.7.3 Code Design 

For the rest of the section we assume that L and R are two fixed integers 
and that β is a positive real number less than one. Further, we assume that 
the degree distributions λ(x) and ρ(x) satisfy λ1 = ρ1 = 0. This means that 
the corresponding graph does not have nodes of degree 1 on either of its 
sides. These are reasonable assumptions from a coding-theoretic point of 
view: a node of degree 1 on the right forces the coordinate position of its 
left neighbor to be zero; and a node of degree 1 on the left does not lead to 
the perpetuation of the erasure recovery algorithm.  

In the following we will describe strategies for computing degree distri-
butions
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that give rise to a code of rate 1 − β and satisfy the fundamental inequality 
(Eq. 7.50) for a large value of δ.

Removing Dependencies 

The facts that λi and ρk define distributions on the edge degrees and that 
they give rise to a code of rate 1 − β lead to dependencies among these pa-
rameters. First, we have 
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(7.52)

Next, the condition in Eq. 7.51 defines a further relation among these 
parameters. Solving for λL and using Eqs. 7.52 gives 
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(7.53)

The next simplification of the problem consists of discretizing the inter-
val (0,δ] into N equidistant points δj/N, j = 1, …, N. Condition 7.50 is then 
transformed into 
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( )( ) .,...,1,,11 Nj
N

j
xxx jjj =⋅=<−− δρδλ

(7.54)

By choosing N moderately large and slightly decreasing the value of 
δ obtained from solving the above inequality (if necessary), we can find a 
δ′ that satisfies condition 7.50. For this reason, we will concentrate on the 
above set of inequalities. The results we will present later will all satisfy 
inequality 7.50, however. 

Condition (Eq. 7.54) can be compactly written as 

( ) ( )( ) 011:,,, <−−−= jjjki xxxf ρδλδρλ (7.55)

for j = 1, …, N, where we have suppressed the implicit dependency of f on 
β to save a notational explosion. After going through some algebra and us-
ing Eq. 7.52, the function f can be rewritten as 

( ) ( ) ( ) xxf
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(7.56)

where

( ) ( )( )
=

− +−−−=
R

k

k
k xxx

3

111ρα
(7.57)

and λL has the value defined in Eq. 7.53. 

The Linear Programming Approach 

Suppose that α, the value of δ and the point x are fixed. Then the function 
f(λi, ρk, δ; x) is a linear form in the variables λ3, …, λL 1. This leads to the 
following approach for computing a good value of δ. Fix δ and the ρk, k =
3, ..., R, and set up a linear program given by the inequalities 7.55 and λ3

,…, λL 1 ≥ 0. If there exists a feasible solution, then increase the value of δ,
otherwise decrease that value. The optimal δ is that found by binary 
search. This value corresponds to the optimal δ for the specifically chosen 

ρ(x). This approach was suggested in Luby et al. (1997). The disadvantage 
of this idea is that one has to know a good choice for ρ(x) to start with. 
This problem was partly solved in Luby et al. (1998) which derived a con-
dition equivalent and similar to Eq. 7.50, but with the nesting of λ(x) and 
ρ(x) reserved. The idea is to start with a fixed ρ(x) and optimize λ(x) by 
linear programming as described above. Holding this λ(x) constant allows 
linear programming to be applied to a similar equation, but this time with 
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the ρk as parameters. Using linear programming back and forth this way 
will ultimately lead to a good value of δ.

Table 7.10. Degree distributions for rate 1/2 codes with the linear programming 
approach

δ λ(x) and ρ(x) ∧
δ

∧
δδ /

0.4845 λ(x) = 0.25594x + 0.37910x2 + 0.127423x10 + 
0.237538x11

ρ(x) = x6 

0.4959 0.9770 

0.4834 λ(x) = 0.25800x + 0.32950x2 + 0.01056x4 + 0.07637x7

+ 0.32557x8

ρ(x) = 0.47013x5 + 0.41733x6 + 0.11253x20 

0.4958 0.9749 

0.4886 λ(x) = 0.11286x + 0.06153x2 + 0.12936x3 + 
0.25559x7 + 0.24226x8 + 0.02550x24 + 
0.17290x25

ρ(x) = 0.17263x5 + 0.28658x6 + 0.14805x28 + 
0.39274x29 

0.4998 0.9775 

0.4946 λ(x) = 0.038029x + 0.195063x3 + 0.140799x4 +
0.160451x11 + 0.037743x12 + 0.172622x20 + 
0.206781x57 + 0.048513x58

ρ(x) = 0.180714x6 + 0.122209x7 + 0.329968x18 + 
0.104520x49 + 0.043951x70 + 0.218638x175 

0.4999 0.9892 

0.4943 λ(x) = 0.196050x + 0.257821x2 + 0.191453x8 + 
0.046831x9 + 0.063126x23 + 0.059209x24 + 
0.060652x62 + 0.124858x63

ρ(x) = 0.820342x8 + 0.177571x9 + 0.002087x199 

0.4992 0.9903 

However, even this scheme has a major disadvantage: one has to start 
with a fixed initial distribution and it is absolutely not clear which distribu-
tion leads to an optimal value of δ . Furthermore, fixing the initial distribu-
tion fixes the average degrees of the distributions involved for the course 
of the entire optimization. Hence, many potentially good degree distribu-
tions are not at all visited by the procedure. For this reason, this approach 
does not have good chances of producing extraordinarily good degree dis-
tributions. Nevertheless, we have included some results of this approach 
for purposes of comparison with the method described in the next section, 
see Table 7.10. In that table, the last two columns correspond to a theoreti-

cal upper bound δ̂  on δ  given in Eq. 7.63. 
The δ values obtained from the linear programming approach above are 

close to their optimal values. However, as one can see from the last two 
examples in that table, very good values for δ would require an increase in 
the degrees of the nodes on the left- and right-hand sides of the graph. This 
prevents their realization for constructing short codes. To obtain excellent 
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values of δ  while preserving small node degrees, a different optimization 
procedure has to be applied. This will be the topic of the remainder of this 
section.

Code Design by Cost Function Minimization 

Cost functions like the function f where the goal to be reached is explicitly 
known belong to the class of so-called constraint satisfaction problems. A 
beneficial property of this problem class is that the stopping criterion for 
any optimization algorithm is unambiguous. Let D := L + R 5 denote the 
number of free parameters among the λi and ρk. We can define a D-
dimensional parameter vector p = (p0, p1, …, pD 1)

T with the mapping pi = 
λ3+i for i = 0, …, L  4 and pk = ρk L+6 for k = L  3, …, L + R  6. The 
goal is to optimally choose the elements of this parameter vector in order 
to satisfy condition 7.55 with a large value of δ.

This problem can be phrased in terms of minimizing a cost function. We 
chose two approaches to this problem. These methods differed in the 
choice of the cost function. 

Approach A. In this approach we consider for a fixed δ the largest value 
among f(λi, ρk, δ; xj). The aim of the optimization is to find a setting of the 
parameters that make this value non-positive. 

Approach B. In this approach the cost function is given by the largest 
value of δ such that f(λi, ρk, δ; xj) < 0 for j = 1, …, N. The aim of the opti-
mization is to find a setting of the parameters that made the value of δ as 
large as possible. We solved these problems using differential evolution, a 
robust optimizer which is described in the next section. 

7.7.4 Differential Evolution 

The code design problem as described above is a nonlinear constraint satis-
faction problem with continuous space parameters, a problem class where 
differential evolution (DE) (Storn and Price 1997) has proven to be very 
effective (Storn 1996a, 1996b). The main properties of DE are repeated 
here for convenience. 

a) Initialization. DE is an evolution strategy that uses NP D-dimensional
parameter vectors 

1,,2,1,0;, −= NPiP Gi (7.58)
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in a generation G, with NP being constant over the entire design process. 
Hence DE is similar to a (µ, λ) evolution strategy (ES) (Bäck et al. 1997) 
where µ = λ = NP. We will see later, however, that there are several im-
portant differences from a standard ES approach. At the start of the proce-
dure, i.e., generation G = 0, the population of vectors is usually chosen 
randomly. As a rule, we will assume a uniform probability distribution for 
all random decisions unless otherwise stated.  

b) Mutation. The classical variant of DE (Storn and Price 1997) uses the 
following vector generation scheme: for the following generation G + 1, 
new vectors vi,G+1 are generated according to the following mutation 
scheme:

.1,,2,1,0

for

)( ,,,1, 21

−=

−⋅+=+

NPi

F GrGrGiGi pppv (7.59)

The integers r1 and r
2
 are chosen randomly over [0,NP  1] and should 

be mutually different as well as different from the running index i. F is a 
real constant factor which controls the amplification of the differential 
variation )( ,, 21 GrGr pp −  and is usually taken from the range [0.1,1].  

For the problem described here, however, it has been found that another 
variant of DE yielded better results with less computational expense. This 
variant follows the mutation scheme 

).(5.0 ,,,,,1, 4321 GrGrGrGrGbestGi pppppv −+−⋅+=+
(7.60)

The vector Gbest,p corresponds to the vector which has the lowest cost 

function in generation G. The usage of two vector differentials instead of 
one shifts the probability distribution of the perturbation used to mutate 

Gbest,p  more into the Gaussian. Therefore the variance of the perturbation 

is increased, which helps to prevent the algorithm from getting stuck in a 
local minimum. A notable difference of DE to known ESs, however, is the 
fact that mutation is not done via some separately defined probability den-
sity function (PDF). Instead the mutation is solely derived from positional 
information of the current population. This scheme provides for automatic 
self-adaptation and eliminates the need to adapt standard deviations of a 
PDF.

c) Recombination. In order to increase the diversity of the new parameter 
vectors, discrete recombination is introduced, a common ingredient in ESs. 
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There exist many variants of recombination mechanisms (Bäck et al. 
1997). The one used here is to form the vector 

T
1,)1(1,11,01, ),...,,( +−+++ = GiDGiGiGi uuuu (7.61)

with

( )

.1,...,1,0

otherwise

)(or)(

,

1,

1,

−=

=≤
=

+
+

Dj

p

irnbrjCRjrandbifv
u

Gji

Gji

Gji

(7.62)

Here, randb(j) ∈ [0,1] is the jth evaluation of a uniform random number 
generator. CR is the crossover constant ∈ [0,1], which was always chosen 
to be equal to 1 in our examples. The value rnbr(i) is a randomly chosen 
index in {0, 1, ..., D  1} which ensures that 1, +Giu  gets at least one pa-

rameter from 1, +Giv .

d) Selection. The selection scheme in DE is deterministic but still different 
from the methods that are generally employed in standard ESs. DE’s selec-
tion scheme is based on local competition only, i.e., a child u

i,G+1
 will 

compete against one population member p
i,G

 and the survivor will enter the 

new population. Explicitly, if u
i,G+1

 yields a smaller cost function value 

than p
i,G

, then p
i,G+1

 will be set to u
i,G+1

. Otherwise the old value p
i,G

 is re-

tained. In other words, DE can be regarded as a (µ, λ) ES with µ = NP and 
λ = NP, local competition, and a differential-based mutation scheme.  

e) Stopping criterion. The stopping criterion for DE depends on the type 
of problem. If, as in our case, the goal is to find just one parameter set 
which meets the constraint of the cost function, the design procedure can 
be stopped as soon as one member of the vector population meets the re-
quirements.

7.7.5 Results 

Results for Approach A 

Our approach for finding good solutions to condition 7.54 consisted of first 
starting with values δ, β, L and R where results found with linear pro-
gramming methods are available. This way we could test whether DE was 
capable of reproducing these results. After having achieved this we gradu-
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ally increased δ and tested whether new solutions were still possible. Once 
this seemed highly improbable we slightly increased L and R. Since an in-
crease in L and R means an increase in the number of parameters D, we 
also increased NP. As described above, the DE variant defined by Eqs. 
7.60–7.62 turned out to be the most effective one. In all our examples, CR

was always set to 1. That way, the only control variable used in DE was 
the population size NP which was varied in the range 10D, …, 20D.

In all our calculations we worked with the value β = 0.5, i.e., with codes 
of rate 0.5. This resulted in a fair comparison of our results and those 
available in the literature. As stated before, we wanted to find solutions to 
Eq. 7.54 with δ as large as possible. At the same time it was desired that L
and R be as small as possible, so as to facilitate construction of short 
codes. This is due to the results of Luby et al. (1998) which suggest that 
the performance of a short code is better, the smaller the degrees involved 
in the graph. Finding good solutions required some experimentation but 
the crucial point here is that it was possible to find good solutions at all. 
Evaluating the quality of the solutions can be done either by comparing the 
solution to ones existing in the literature, or by comparing the optimal 

value of δ with a theoretical upper bound δ̂ derived in Shokrollahi (1999). 

For the convenience of the reader we briefly recall this upper bound: δ̂  is 
the unique real number in the interval (0,1) such that 

.

)(

1
,1,

1

0

=−=≤
∧∧∧

dxxρ
γδβδδδ

γ (7.63)

Our best results were obtained after 1,897,145 cost function evaluations 
with a population size of 700, and the constants R = L = (D + 5)/2 = 20, 
δ = 0.494. The initial values for the parameters were randomly drawn from 
the interval [ 0.1,0.1]. The cost function used in approach A can best be 
described by the C-style pseudo-code shown in Fig. 7.36. 

It describes a minimax formulation of the cost function with simple 
penalty terms. The penalty terms help to ensure that the parameters stay 
positive. Although this cost function is very straightforward, very good re-
sults, i.e., large values of δ, could be achieved. For instance, we found de-
gree distributions λ(x) and ρ(x) having degrees less than 20 on both sides 
with a maximal δ value of 0.494. All the good degree distributions we 
found had the property of having negligible λi and ρk for most values of i,
k. Therefore, we experimented in approach B with degree distributions for 
which certain node degrees were forced to zero; this considerably reduced 
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the dimension of the problem and the running time of the algorithm. These 
results and other strategies are described in the next subsection. 

cost = 0; 
for ( i=2; i <= L; i++ ) 
{
   if (λ

i
 < 0) cost:= cost + 100 - 10* λ

i

// penalty for negativity 
}
for (i=2; i<=R; i++) 
{
   if (ρ

i
 < 0) cost:= cost + 100 - 10* ρ

i

// penalty for negativity 
}
if (cost == 0) cost =max(f(λ

i
 , ρ

k
 , δ , x

j
 ),j=1,…,N); 

Fig. 7.36. Cost function used in approach A 

Results for Approach B 

This approach differs from the previous one in the choice of the objective 
function as described in Sect. 7.7.3. Also, we incorporated some modifica-
tions to the phase of the DE which computes the initial population: note 
that the conditions relating the coefficients of λ(x) and ρ(x) force the free 
coefficients of these polynomials to lie in a finite polytope. Choosing the 
free parameters randomly does not necessarily result in choosing a random 
point from the polytope. In order to achieve the latter task, we imple-
mented a different strategy, known as the “Queen’s move”. We started 
with some point inside the polytope constructed deterministically, and re-
peated the following procedure between 50 and 100 times: we randomly 
selected a line through the point, and randomly selected a point on that line 
inside the polytope. This gave us one population member. For the next 
members, we repeated the whole procedure again, until all the population 
members were generated. 

Another modification with respect to approach A was that we did not let 
the node degrees on the left and the right take on all possible node degrees 
below L and R. As stated before, a closer inspection of the results of ap-
proach A reveals that many of the node distributions are close to zero or at 
least very small. In fact only the larger values for the node distributions are 
of practical interest for the construction of codes. As a further refinement 
of approach A, we experimented in approach B with the idea of forcing to 
zero those λi and ρk which have small values and not to treat them as free 
parameters subject to optimization. This idea yielded further improvements 
in the codes being constructible as well as in running times of the DE op-
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timization, since it resulted in a major reduction in the dimension of the 
problem, and hence a decrease in the population size. Typically, we chose 
the node degrees in the following way: on the left-hand side, we chose the 
degrees 2, 3, a highest degree (between 20 and 30) and one degree in be-
tween. On the right-hand side, we chose two consecutive degrees, either 7 
and 8, or 8 and 9. This sort of choice was suggested by the results we ob-
tained from approach A. We find it very remarkable that the δ values ob-
tained here are extremely close to their above-mentioned upper bound (Eq. 
7.63). Some results and comparisons are given in Table 7.11. The columns 
NP and NFE in that table correspond to the population size and the number 
of function evaluations, respectively. 

Table 7.11. Some good degree distributions for codes of rate 1/2 obtained with 
DE

δ λ(x) and ρ(x) NP NFE D
∧
δ

∧
δδ /

0.4939 λ(x) = 0.29730x + 0.17495x2 + 
0.24419x5 + 0.28353x19

ρ(x) = 0.33181x6 + 0.66818x7

50 640 3 0.4974 0.9929 

0.4948 λ(x) = 0.27692x + 0.20256x2 + 
0.26207x6 + 0.25843x24

ρ(x) = 0.89468x7 + 0.10531x6

100 1400 3 0.4979 0.9939 

0.4955 λ(x) = 0.26328x + 0.18020x2 + 
0.27000x6 + 0.28649x29

ρ(x) = 0.63407x7 + 0.36593x8

100 1400 3 0.4985 0.9941 
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7.8 FIWIZ – A Versatile Program for the Design of Digital 
Filters Using Differential Evolution  

Rainer Storn 

Abstract. FIWIZ is a constraint-based design program for recursive (IIR) 
as well as transversal (FIR) digital filters which is geared toward features 
which are difficult, if at all, to find in other filter design programs. The 
main design tasks are elaborated, and the approach via differential evolu-
tion (DE) with emphasis on objective function design and achieving com-
putational efficiency is explained. Some design examples are presented to 
show results that have been achieved with the current implementation of 
FIWIZ.

7.8.1 Introduction 

Digital filters are ubiquitous in signal processing circuitry and in general 
have the task to shape signals in a certain desired way or remove unwanted 
components. These filters come in two flavors: there are recursive filters 
that have an infinite impulse response when excited with a single impulse 
(IIR filters) and purely transversal filters that have a finite impulse re-
sponse (FIR filters). A more detailed introduction into digital filtering can 
be found, for example, in Rabiner and Gold (1975), Antoniou (1993), Mi-
tra and Kaiser (1993) and Corne et al. (1999). In this section the back-
ground and application of digital filters will be of less concern; the focus 
will be more on the mathematical intricacies of filter design and the ensu-
ing optimization task. To lay the foundation for this endeavor the mathe-
matical structure of digital filters will be described in the following. 

The transfer function, H(z), of an IIR filter in its most general form is 
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with
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1),2sin()2cos(2 −=Ω⋅+Ω== Ω ιπιππιez
(7.65)

and

sf

f=Ω
(7.66)

with Ω  stemming from the interval [0,0.5]. The variables f and fs denote 
the natural frequency and the sampling frequency respectively (Rabiner 
and Gold 1975). The degree of H(z) is defined as max(N,M).

The parameters an and bn are called the coefficients of the filter while 
z0,n and zp,m denote the zeros and poles of the filter respectively. In the ma-
jority of cases the coefficients an and bn are real valued, for which the poles 
and zeros show up in complex conjugate pairs. This property is always as-
sumed in FIWIZ. For stability reasons  

1,...,1,0;1, −=< Mmz mp

(7.67)

must always hold. Note that FIR filters are a special case of Eq. 7.64 where 
M = 0, i.e., the denominator is 1. Since there are only poles at z = 0 in FIR 
filters, these filters are always stable. 

In digital filter design the magnitude A(Ω) which is computed via 

( ) ( ) ( )( ) ( )( )22222 ImRe Ω⋅Ω⋅Ω⋅ +==Ω πιπιπι eHeHeHA
(7.68)

is usually subject to constraints. A simple example for a low-pass filter is 
provided in Fig. 7.37 which shows the set of constraints, the tolerance 
scheme, which has to be met by A(Ω) in the logarithmic domain. It can be 
seen that for some interval in Ω the values of A(Ω) are fairly high. This re-
gion is commonly called the pass-band. In some other region the values of 
A(Ω) are low with respect to the pass-band which is why this region is 
called the stop-band. In between the pass-band and the stop-band is the 
transition-band. Since the pass-band in Fig. 7.37 is located in the lower re-
gion of Ω, A(Ω) is said to have a low-pass characteristic. 

Other quantities that are derived from H(z) and which sometimes are 
subject to constraints are the phase 

( ) ( )( )
( )( ) ( )( )

)()(

22

2

Ω−Ω=
−=

=Ω
Ω⋅Ω⋅

Ω⋅

du

eDarceUarc

eHarc

ϕϕ

ϕ
πιπι

πι
(7.69)

where
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or the group delay 
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Ω

20∗log10(A(Ω ))

stop-band
pass-
band

transition-band

Fig. 7.37. Example of a tolerance scheme for a low-pass digital filter 

Most digital filter design tasks can be described as constraint satisfac-
tion problems where one or more function graphs have to fit into a toler-
ance scheme. Also FIWIZ regards all design tasks exclusively as constraint 
satisfaction problems. 

There is a vast body of literature (e.g., Rabiner and Gold 1975; Cappel-
lini et al. 1978; Antoniou 1993; Mitra and Kaiser 1993; Rorabaugh 1993) 
and many freely or commercially available programs (QED-2000TM,
ScopeFIRTM, FilterExpressTM, SPTool for MATLABTM, etc.) dealing with 
standard filter design problems like low-pass, high-pass, bandstop and 
bandpass filters. While FIWIZ can also design these filter types, it was set 
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up to tackle unconventional problems that are difficult, if at all, to find in 
available software. 

7.8.2 Unconventional Design Tasks 

Conventional filter design mostly deals with tolerance schemes that are 
piecewise constant and exhibit only one pass-band (Mitra and Kaiser 
1993). There are, however, designs which do not fit into this simple 
scheme as will be shown by example. Among the more common but still 
unconventional design problems are: 

• Arbitrary magnitude constraints. These include multi-band filters 
with multiple pass-bands, differentiators which exhibit sawtooth-like 
shapes of A(Ω) for linear magnitude scaling, Hilbert filters which are 
supposed to apply a phase shift of 90° to all frequencies, sinc compen-
sated filters which compensate for the magnitude roll-off of digital-to-
analog converters, and others. Pictures of two examples of unconven-
tional magnitude requirements are provided in Fig. 7.38. 

a) b)

Fig. 7.38. Differentiator a and multi-band filter b

• Additional group delay constraints. Applications are mainly classical 
low-pass, high-pass, bandpass and bandstop filters which should exhibit 
approximately linear phase in the pass-band but not necessarily in the 
stop-band. The filter degree can often be reduced considerably com-
pared to exactly linear phase FIR filters. An example for an IIR filter 
with constrained group delay is shown in Fig. 7.39. 
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Fig. 7.39. Example for constraints in the magnitude as well as the group delay 

• Minimum phase filters. Some applications, e.g., in speech processing, 
require minimum delay, which can be achieved by using minimum 
phase filters. Minimum phase filters (Hess 1988) have the property 

1,0 ≤nz  and can generally be constructed by reflecting all zeros of a 

given filter which are outside the unit circle |z| = 1 to its inside. In order 
to do this, however, the zeros must be known explicitly. 

• Filter design with quantized coefficients. In real-world applications 
the coefficients an and bn are represented with finite precision. In FIWIZ 
the quantization can be incorporated into the design as opposed to quan-
tizing the coefficients after the filter has been designed with high-
precision coefficients (Table 7.12). The filter structures currently sup-
ported are the direct forms 1 and 2, as well as second-order sections 
(Mitra and Kaiser 1993). 

• Definition of a pre-filter with constant coefficients. Defining a pre-
filter has many applications, like presetting specific zeros to suppress a 
constant voltage bias or the 50/60Hz power line frequency, accommo-
dating filters which are already in a given design and cannot be re-
moved, or setting a frequency response for equalization. A well-known 
example of the last is sinc compensation needed for digital-to-analog 
conversion. An equalizer example is shown in Fig. 7.40 and Fig. 7.41. 

• All-pass filters. For existing IIR filters sometimes the phase must be 
linearized using all-pass filters (Hess 1988; Mitra and Kaiser 1993). All-
pass filters have a magnitude response A(Ω) = const., which is guaran-
teed by having N = M and z0,n = 1/zp,n. Figures 7.42 and Fig. 7.43 show 
an example for a pre-filter already exhibiting the desired magnitude re-
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sponse but not yet the desired group delay response. The group delay 
tolerance scheme is allowed to float here. 

21

1

prefi
z4.0z75.01

z1
)z(H −−

−

++
+=

Fig. 7.40. Magnitude response which has to be equalized 

Fig. 7.41. Characteristics for the filter which equalizes the filter specified in Fig. 
7.40 with an error of ±0.2 dB. 

Table 7.12. Coefficients of an IIR filter which meets prescribed magnitude con-
straints but fails on the group delay constraints 

i ai bi

0 0.19881558418273926 1.0 
1 0.6713742017745972 0.5888696908950806 
2 0.956078052520752 1.0049885511398315 
3 0.7260297536849976 0.14867675304412842 
4 0.29759085178375244 0.18157732486724854 
5 0.0613178014755249 0.014554023742675781 



7.8 FIWIZ – A Versatile Program for the Design of Digital Filters      435 

Fig. 7.42. Specification of the IIR filter the group delay of which has to be lin-
earized

a) b)

Fig. 7.43. Pole–zero plot of the all-pass filter a and resulting group delay for the 
entire filter b. The poles are indicated by plus signs while the zeros are indicated 
by small circles.  

7.8.3 Approach 

Requirements 

Filter design generally requires quite a bit of experimentation since the 
specifications themselves, i.e., the tolerance schemes, are often not carved 
in stone but instead need to be determined in order to optimize various as-
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pects of overall system performance. As several filter designs might have 
to be tried, a filter design program that is useful should exhibit reasonable 
design times. Hence convergence speed was of primary concern when de-
veloping FIWIZ. Of course, this design for speed should not compromise 
convergence safety. Otherwise the user will not know whether the design 
is infeasible or whether FIWIZ just happens to mis-converge. In case a so-
lution does not exist, at least a best match should result. Last but not least, 
the computer code should be flexible and extensible in order to accommo-
date additional design tasks that are currently not built in. As DE is a very 
general optimizer it is well suited to serve as a platform for a wide variety 
of design tasks. 

Algorithmic Details

Sampling the Frequency Axis. An important choice within FIWIZ con-
cerns the way the frequency axis Ω is sampled. It has been observed that 
the optimization task is most critical when it comes to satisfying the toler-
ance schemes at the boundaries between the bands. Since the edges obvi-
ously require stronger weighting than the constraints within a band, raised 
cosine sampling as shown in Fig. 7.44 was chosen.

( )( )xcos15.0y ⋅π+⋅=
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Fig. 7.44. Illustration of raised cosine sampling 
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Raised cosine sampling strikes a good balance between emphasis of the 
edges and prevention of “sampling holes” within the band. FIWIZ cur-
rently provides the choice of coarse (10 samples), medium (28 samples) 
and fine (64 samples) sampling granularity of a segment on the frequency 
axis.

If the filter design of FIWIZ converges, i.e., the cost function goes down 
to zero, but the resulting filter still violates the constraints set forth in the 
magnitude and/or group delay screens, the sampling density in the design 
control screen has been chosen too low. The user can pursue two basic 
strategies. In the first strategy the sampling density is increased, e.g., from 
coarse to medium or fine. In the second strategy the constraints are divided 
into more segments. Figure 7.45 provides an example where a constant 
magnitude constraint of x dB between the normalized frequencies Ω1 and 
Ω2 is changed into a sequence of two constraints of x dB between the fre-
quencies Ω1 and Ω3 as well as Ω3 and Ω2 respectively. As FIWIZ applies 
its sampling density to each segment individually, this procedure also in-
creases the overall sampling density. 

This second strategy has also proven to be very valuable. 

Ω1 Ω2

Ω1 Ω2Ω3

increase
number of
segments

x dB

x dB

Fig. 7.45. Example for increasing the number of constraint segments 

Choice of Parameters. When looking at Eq. 7.64 it is evident that the po-
tential parameters that can be varied in the optimization are either the coef-
ficients an and bn, or the zeros and poles z0,n and zp,m. Using the coefficients 
appears to be attractive at first because the coefficients are the values fi-
nally wanted, and if the coefficients are quantized the quantization can be 
readily applied. A great disadvantage, however, is that the stability crite-
rion of Eq. 7.67 is computationally intensive to check (Antoniou 1993). 
Using the zeros and poles as parameters makes the stability check almost 
trivial. Zeros and poles have another advantage: their positioning with re-
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spect to the unit circle |z| = 1 is directly related to pass-bands and stop-
bands. Zeros gather around stop-bands and poles gather around pass-
bands, which is why these parameters exhibit a direct relationship to the 
magnitude constraints being set forth. Coefficient quantization can still be 
applied easily when it comes to the computation of the objective function 
which is done via H(z). The coefficients an and bn are easily calculated 
from z0,n and zp,m while the reverse is not true. For FIWIZ it was chosen to 
use zero and pole radii |z0,n| and |zp,m|, the zero and pole angles arc(z0,n) and 
arc(zp,m), as well as the gain A0 (see Eq. 7.64) as parameters. 

The Cost Function. The cost function is made up of two components, the 
constraint-based part and the penalty part. The constraint-based part is 
simply made up of a magnitude and a group delay component according to 

( ) ( ) ( )xxx gdm fff += (7.72)

where the magnitude component is 
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(7.75)

The equations above simply state that the magnitude A(Ω) is sampled in 
the frequency domain, and wherever a sample violates the tolerance 
scheme the difference from the tolerance scheme is squared and added to 
an error term. The functions Cm,upper() and Cm,lower() denote the upper and 
lower magnitude constraints of the tolerance scheme respectively. ∆i,upper

and ∆j,lower are computed in the logarithmic domain so that pass-band and 
stop-band have comparable weight. The group delay component fgd(x) is 
computed using the same principles as fm(x). The deviations to the group 
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delay tolerance scheme, however, are not computed in the logarithmic do-
main but are provided in normalized time 

s
s

ft
t

t
T ⋅== .

(7.76)

Also in contrast to magnitude constraints the group delay constraints 
will be floating, i.e., an arbitrary but constant group delay T0 might be 
added to the given constraints by the filter design procedure as indicated in 
Fig. 7.46. Floating is simply done by first computing the maximum group 
delay which may occur at frequency Ωgd_max. Then the tolerance scheme is 
shifted such that the upper constraint curve touches the group delay graph 
at Ωgd_max.

Group Delay

Ω

Τ0

Upper constraints

Lower constraints

shifted upper constraints

shifted lower constraints

Fig. 7.46. The filter design procedure has the freedom to shift the group delay tol-
erance scheme along the ordinate. 

Coefficient quantization is incorporated into the cost function simply by 
quantizing A(Ω) and G(Ω) appropriately. One choice is to quantize the pa-
rameters an and bn in Eq. 7.64, which will lead to a “direct form” represen-
tation of the filter (Mitra and Kaiser 1993). Another choice is to build the 
filter from a concatenation of first- and second-order filter sections. Each 
second-order section consists of a complex conjugate pole–zero pair, and 
each first-order section must have its pole and zero on the real axis. The 
coefficients of these sections can also be quantized for the computation of 
A(Ω) and G(Ω).



440      7 Applications 

Constraints. FIWIZ tries to prevent unstable filter solutions, i.e., the poles 
must always lie within the unit circle of the z domain. In earlier versions 
this was obtained by applying a penalty for each pole that had a radius 
greater than one. The penalty was applied such that the value of the cost 
function f(x) was amplified for each pole radius that exceeded the unit cir-
cle. This amplification is the stronger the more a pole radius exceeds the 
unit circle and the more the pole radii are violating the stability constraint. 
The final cost function fM 1(x) was recursively computed via  

( ) ( ) ( ) ( )( ) pmmpmmm zfzsff ⋅+⋅⋅−+=+ 400411 xxx (7.77)

where f0(x )= f(x). It can be seen that each time a pole radius is greater than 
one the step function s(|zpm|  1) becomes unity and hence adds some pen-
alty that is at least four times the preceding cost value + 400. In practice 
this escalation of cost has proven to be quite effective. 

Future versions of FIWIZ will dispense with this strategy and use 
bounce-back (see Chap. 4 in this book). The advantage of not having to 
evaluate unstable and therefore invalid pole–zero configurations should 
help to increase convergence speed. Bounce-back also should prove very 
effective when the poles need to be close to the unit circle. Once the opti-
mization is almost converged, further parameter vectors can stay in the vi-
cinity of the converged solution as opposed to much more randomized vec-
tors that can emerge when the random reinitialization strategy for bounds 
constraints (see Chap. 4 in this book) is used. 

DE Strategy. As mentioned before, a filter design program needs to be 
reasonably fast to be useful in daily engineering work. To this end the goal 
was to use a fast-converging DE variant which works with a small number 
of population members. Eventually the following mutation method proved 
to be the best performer for the particular class of problems occurring in 
digital filter design: 

for (i=0; i<dim; i++)
{

xtrial[i] = pop_old_best[i] +
   ((0.001*rnd()+0.85)-Np*0.0005) *
   (pop_old[r1][i] - pop_old[r2][i]);
}
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One can see that it is basically the strategy DE/best/1 with jitter to pre-
vent stagnation. Also the weighting factor of the vector difference becomes 
smaller the larger NP gets. There is no special crossover treatment, i.e., CR

= 1 all the time, and the selection method is DE’s standard selection where 
the trial vector has to compete against the target vector. Two populations 
are used and each member of the current population has to serve once as 
the target vector. The winner of target vector and trial vector goes into the 
new population. In order to speed up convergence the parameters are not 
quantized until the cost function belonging to the best-so-far vector is be-
low or equal to 1.E-6. If this cost value is reached then the quantization is 
applied (if quantization has been chosen) which can temporarily increase 
the cost function value again. For this refinement phase a number of popu-
lation members may be selected. The increase in population size is simply 
done by starting from the current population and generating the additional 
vectors by applying the above DE strategy. Once the additional vectors 
have been produced, DE proceeds as usual. 

Computational Issues. FIWIZ contains several numerical evaluations that 
need to be computed not only with sufficient precision but also with the 
best possible efficiency in order to facilitate a speedy convergence.  

a) Coefficients an and bm. Since FIWIZ employs zeros and poles as pa-
rameters for DE but coefficient quantization must be possible to be in-
cluded, the coefficients an and bm have to be computed first before magni-
tude A(Ω) and group delay G(Ω) can be evaluated. Since only filters with 
real-valued coefficients (as opposed to complex-valued) are computed, ze-
ros and poles must appear in complex conjugate pairs or otherwise be on 
the real axis. For a complex conjugate zero pair the relationship  

( ) ( ) ( )( ) 2
,0,0,0

2*
,0,0 cos2 nnnnn zzarczzzzzzz +⋅⋅−=−⋅− (7.78)

is used, where the superscripted asterisk denotes complex conjugation. 
This procedure already yields the real-valued subcoefficients

( )( ) 2
,0,0,0 ,cos2,1 nnn zzarcz ⋅

which either can be used directly for second-order section realization of 
the filter, or are further used in polynomial multiplications to obtain the di-
rect form coefficients an. The treatment of the poles happens in just the 
same way. 

b) Magnitude. Magnitude computation at the discrete points Ωk as defined 
by the sampling described in Sect. 7.8.1 happens via Eq. 7.64 according to 
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The evaluation of the trigonometric sums is obviously computationally 
expensive so it must be made as efficient as possible. An attractive method 
seemed to be Horner’s method (Hildebrand 1987) which computes a poly-
nomial  
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and the magnitude operation is done at the end of the complex-valued 
polynomial computation then the costly trigonometric evaluations are kept 
at a minimum. Unfortunately the numerical properties are not satisfactory 
due to error propagation, especially when N and M become large, which is 
why the trigonometric sums of Eq. 7.79 have to be computed directly. The 
direct way of computing A(Ωk) corresponds to an evaluation method called 
the discrete Fourier transform (DFT) (Mitra and Kaiser 1993).  

For plotting A(Ω) the sampling points are not tied to the sampling grid 
as defined in Sect. 7.8.1 but can be chosen to be at equidistant points. This 
fact is utilized to be able to employ a fast version of the DFT computation 
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called the radix-2 fast Fourier transform (FFT) (Mitra and Kaiser 1993). 
To this end the series of polynomial coefficients must be zero padded ac-
cording to 
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The FFT can be applied separately to the numerator and denominator of 
H(Ωk) yielding K  1 complex points for both. K is chosen to be a power of 
2. Complex division of the numerator and denominator values correspond-
ing to the same frequency yields the complex result H(Ωk), the magnitude 
of which can be computed by  

( ) ( )( ) ( )( ) .ImRe 22
kkk HHA Ω+Ω=Ω

c) Group Delay. The group delay computation starts from Eq. 7.69 through 
Eq. 7.71 and uses the shorthand notation 

( )( ) ( )( )Ω⋅Ω⋅ == πιπι 22 Re;Im eUReUI uu

(7.82)

to yield 
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By evaluating Eq. 7.83 explicitly it follows that 
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and naturally an equivalent formula for the derivative of ( )Ωdϕ  can be 
written. A close look at Eq. 7.84 reveals that for the evaluation of the de-
nominator, results from the magnitude computation in Eq. 7.79 might be 
reused. Yet this can only be done if the sampling points of the frequency 
grid are the same in the magnitude and group delay domain. 

Table 7.13. Filter design examples run on a Pentium III 650 MHz PC with the 
Java interpreter from JDK 1.1.8. Bounds constraints were treated with the penalty-
based approach. 

Filter No. of
zeros

No. of 
poles

No. of 
para-
meters 

NP1 NP2 No. of 
function 
evalua-
tions

Running 
time 

Low-pass
(Fig. 7.37) 

4 4 9 30 
(medium) 

100
(12 bit) 

5760 10 s 

Differentiator
(Fig. 7.38) 

3 4 8 30 
(coarse)

60
(16 bit) 

4800 28 s 

Multi-band filter 
(Fig. 7.38) 

12 12 25 100 
(coarse)

100
(12 bit) 

64,100 7 min 
30 s 

Graphics codec 
(Fig. 7.39) 

18 8 27 30 
(fine) 

60
(24 bit) 

197,1001) 27 min 

Graphics codec 
(Fig. 7.39 but 
linear-phase FIR) 

60 0 61 30 
(fine) 

60
(32 bit) 

333,900 112 min 
20 s 

Equalizer
(Figs. 7.40 and 
7.41)

14 6 21 30 
(fine) 

– 1830 5 s 

All-pass filter 
(Figs. 7.42 and 
7.43)

12 12 25 50 
(medium) 

– 18,0501) 2 min 
11 s 

1) Took several runs to converge. 

7.8.4 Examples 

In Table 7.13 several examples are provided which give an impression of 
the running times of typical filter design tasks undertaken with FIWIZ 
which has been implemented in the Java® (Chan and Lee 1997; Coad and 
Mayfield 1997) language. 
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7.8.5 Conclusion 

FIWIZ has proven to be a versatile tool for the design of digital filters, es-
pecially if unconventional designs are encountered. The usage of DE al-
lows FIWIZ to be very flexible so that a wide variety of design tasks can 
be tackled. If a filter design is not feasible at least a best approximation in 
the least squares sense will be provided. The toughest problems so far pose 
filters that have restrictions in both the magnitude and the group delay. 
These types of problems will be the topic of future research in order to in-
crease convergence safety. 
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7.9 Optimization of Radial Active Magnetic Bearings by 
Using Differential Evolution and the Finite Element 
Method

Gorazd Štumberger, Drago Dolinar and Kay Hameyer 

Abstract. Magnetic bearings are a system of electromagnets, which makes 
possible contact-less suspension of a rigid body. The work presented here 
deals with the optimization of radial active magnetic bearings for a spindle 
drive. The bearings are optimized by differential evolution. The optimiza-
tion aim is to achieve a maximum force at a minimum mass of the entire 
construction. Predefined design parameters are the bearing outer diameter, 
the shaft diameter, the air gap and the minimal generated force. The de-
pendency of the objective function on the design parameters is not known 
in analytical form due to the magnetically nonlinear properties of the iron 
core. Therefore, the objective function of each individual parameter set in 
the population of the optimization algorithm is evaluated by the finite ele-
ment method. 

7.9.1 Introduction 

An actively controlled magnetic bearing system is an indispensable ele-
ment when we have to satisfy the machine-tool industry’s demand for 
high-speed and high-precision machining. A typical system of active mag-
netic bearings (AMBs) (Schweitzer et al. 1994) consists of controlled elec-
tromagnets which control five degrees of freedom (DOFs). A driving mo-
tor controls the sixth DOF. Two pairs of radial bearings, which control 
four DOFs, are placed at the end of each rotor. The fifth DOF is controlled 
by a pair of axial bearings. 

Two electromagnets on opposite sides of the ferromagnetic rotor pull 
the rotor in opposite directions. The total force acting on the rotor is equal 
to the vector sum of forces of all electromagnets. Such a system of elec-
tromagnets together with a ferromagnetic rotor is unstable in open-loop 
operation. It can be stabilized by an appropriate current and position con-
trol assuring the contact-less suspension of the rotor.

The total force of two electromagnets is a nonlinear function of the cur-
rent, the rotor position and the point of saturation of the ferromagnetic iron 
(Antila et al. 1998). The nonlinear current–force dependency is efficiently 
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linearized by the bias and control current, while the position–force de-
pendency and iron magnetization remain nonlinear. The design of the con-
trol is usually based on a linearized dynamic model. 

The design of AMBs is expected to satisfy the static and dynamic re-
quirements in the best possible way. This can be done either by experience 
and trials or, as done here, by applying numerical optimization methods. 
AMBs are nonlinear systems. The dependency of the objective function 
and its gradients on the design parameters is unknown. For the optimiza-
tion of such constrained, nonlinear electromagnetic problems, the use of 
stochastic search methods in combination with an analysis based on the fi-
nite element method (FEM) is recommended (Hameyer 1994). 

In this work the numerical optimization of radial AMBs using differen-
tial evolution (DE) (Storn and Price 1996; Štumberger et al. 2000) is pre-
sented. The objective of the optimization is to achieve a maximum force at 
a minimum mass of the entire construction. The objective function is 
evaluated by FEM-based two-dimensional computations. This includes the 
determination of the nonlinear solution of the magnetic vector potential 
and the determination of forces by Maxwell’s stress tensor method. 

7.9.2 Radial Active Magnetic Bearings 

AMBs are a system of controlled electromagnets acting on a single rigid 
body, in this case a rotor. An eight-pole radial AMB (RAMB) is schemati-
cally shown in Fig. 7.47a. It is constructed from the shaft, the ferromag-
netic rotor, the ferromagnetic stator and the stator winding. The coils are 
wound around the stator poles. The magnetic field, excited by the currents 
in the stator coils, crosses the air gap between stator and rotor, and gener-
ates forces which act on the ferromagnetic rotor. To achieve a stable con-
tact-less suspension of the rotor, the force acting on the rotor must be con-
trolled. This can be realized by closed-loop control of the stator currents. 

The stator coils wound around adjacent poles are commonly arranged in 
pairs in order to generate four (almost) independent magnetic loops as 
shown in Fig. 7.47b. A pair of coils connected in series produce the mag-
neto motive force (mmf) iN2 , where N is the number of turns of an in-

dividual coil and i  is the coil current. The mmf “forces” the flux φ
through the magnetic circuit. The coil connections, the directions of cur-
rents in the coil pairs and the directions of the corresponding fluxes can be 
taken from Fig. 7.47b. 
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a)

b)

Fig. 7.47. An eight-pole radial active magnetic bearing a and its coils connections, 
currents and flux patterns b.

In the first approximation, each of the four magnetic loops shown in Fig. 
7.47b can be treated as an independent electromagnet shown in Fig. 7.48a. 
The voltage balance in the coil of an electromagnet is described by Eq. 
7.85:

td

xd
k

td

id
LiRu u++= 11

(7.85)

where 1u  is the voltage, 1i  is the current, R  is the resistance, L  is the in-

ductance, uk  is the coefficient of induced voltage and tdxd /  is the de-

rivative of the rotor displacement along the x  axis. 
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a)

b)

Fig. 7.48. A single electromagnet a and a pair of electromagnets b

An electromagnet can only produce an attractive force F , which is 
generated at the boundaries of materials with different permeability µ . To 

derive the force equation, let us first determine the energy W  stored in the 
air gap shown in Fig. 7.49. The air gap is a part of the magnetic loop and is 
enclosed by the high permeability of the ferromagnetic iron core. The vol-
ume V  of the air gap is given by the air gap length g  and the air gap 

cross-sectional area A . If the magnetic field in the air gap is homogeneous 
then the energy stored in the air gap is given by Eq. 7.86: 

gAHBVHBW gg 2
1

2
1 == (7.86)
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where H is the magnetic field strength and B  is the flux density in the air 
gap. It can be assumed that for small displacements dg  the flux AB=φ
remains constant. To increase the air gap g  by dg , the attractive force F

acting on the ferromagnetic body has to be applied. Simultaneously, in the 
system without any loss of energy, the energy stored in the air gap in-
creases by dW  due to the increasing volume of the air gap, which yields: 

AHB
dg

dW
F g2

1== (7.87)

Fig. 7.49. Air gap enclosed by ferromagnetic material 

In the case of the electromagnet in Figs. 7.48a and 7.50a, the force 1xF

(Eq. 7.88) acting in the direction of x can be calculated by Eq. 7.87, con-
sidering that both poles are displaced by the angle ϕ  referring to the x

axis. The angleϕ  for an eight-pole radial bearing is 8
πϕ = , while 

)cos( 8
π=k .

AHBkAHBFF ggx === )cos()cos(21 ϕϕ (7.88)

Let the cross-section A  be uniform everywhere in the magnetic circuit 
shown in Fig. 7.50b and let the flux φ  run entirely within the magnetic 

loop with uniform cross-section A . In this case the flux φ  and the flux 

density AB φ=  are constant everywhere in the magnetic loop. If the mag-
netic field within the magnetic loop shown in Fig. 7.50b is supposed to be 
homogeneous in the ferromagnetic iron core and in the air gap then the 
general equation, Eq. 7.89, describing magnetic conditions along the inte-
gration path l can be simplified to Eq. 7.90: 
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= iNdlH

l

(7.89)

NiHgHl gFeFe 1222 =+ (7.90)

where iN  are the ampere turns enclosed by the closed integration path 

l , H is the magnetic field strength, Fel  is the mean length of the magnetic 

path in the ferromagnetic iron core, g  is the air gap length, Ni12  is the 
mmf generated by the both coils shown in Fig. 7.50b, and FeH  and gH  are 

the magnetic field strengths in the ferromagnetic iron core and in the air 
gap, respectively. Since the flux densities in the air gap and the iron core 
are identical, the field strengths FeH  and gH can be replaced by Eq. 7.91: 

0µµ r
Fe

B
H =     and

0µ
B

H g = (7.91)

where 7
0 104 −×= πµ  V s/(A m) is the permeability of vacuum, while 

rµ  is the relative permeability. Inserting Eq. 7.91 into Eq. 7.90 yields Eq. 
7.92 and further Eq. 7.93: 
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B
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Fe 1
00

=+
µµµ

(7.92)
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rFe +
=

µ
µ (7.93)

Since in the iron core the relative permeability 1>>rµ , the magnetiza-
tion of the iron core is often neglected and Eq. 7.93 is simplified to Eq. 
7.94:

.1
0

g

Ni
B µ= (7.94)

Inserting Eqs. 7.91 and 7.94 into Eq. 7.88 yields the force equation 
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a)

b)

Fig. 7.50. Electromagnet pole displacement by the angle ϕ  referring to the x

axis a and the magnetic circuit of an electromagnetic pole pair b

In the RAMB pairs of electromagnets are normally used. A pair of elec-
tromagnets is shown in Fig. 7.48b. Each electromagnet can generate only 
an attractive force acting on the ferromagnetic rotor. Therefore, two elec-
tromagnets on the same bearing axis pull the rotor in opposite directions. 
Neglecting the nonlinearity of the iron core, the force xF  generated by a 

pair of electromagnets on the bearing axis x  is given by Eq. 7.96 as the 
difference of two expressions, Eq. 7.95: 
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(7.96)

where x is the rotor displacement, and B1 and B2 are the flux densities in 
the air gaps of both electromagnets excited by the currents i1 and i2, respec-
tively. Let us introduce the bias current ib and the control current ip. The 
same bias current ib is supplied to the coils of both electromagnets. Force 
control is done by superposing a control current ip on the bias current in the 
coils of one electromagnet and subtracting it from the bias current in the 
coils of the other one (Eq. 7.97): 
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pb iii +=1     and    pb iii −=2     where    bp ii ≤ . (7.97)

The linear relation between the control current ip and the resultant force 
Fx is obtained by inserting the expressions from Eq. 7.97 into Eq. 7.96 at 
the rotor displacement 0=x :
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The motion of the mass point with mass m  between two electromagnets 
located on the x  axis of an AMB is described by Eq. 7.99: 

2

2

td

xd
mFx = .

(7.99)

One axis of the RAMB is mathematically described by a pair of voltage 
equations (Eq. 7.85), the force equation (Eq. 7.96) and the equation of mo-
tion (Eq. 7.99). The complete RAMB model contains two pairs of electro-
magnets which are placed on the x  and y  axes. However, the described 
model given by Eqs. 7.85, 7.96 and 7.99 can be simplified: the magnetic 
field distribution is considered to be homogeneous, the cross-sectional ar-
eas of the magnetic loops are uniform, the coupled magnetic circuits 
shown in Fig. 7.47b are considered to be independent, the leakage flux and 
the magnetization of the iron core are neglected, and the magnetically 
nonlinear properties of the iron core are considered to be linear. This sim-
plified model can be used to study the operational principles of the RAMB. 
It is appropriate for control synthesis and the initial bearing design, but it is 
not accurate enough to be used for optimization of the RAMB design. 

7.9.3 Magnetic Field Distribution and Force Computed by the 
Two-Dimensional FEM  

The simplified model presented in the previous subsection can be used to 
determine the initial RAMB design. The magnetic field distribution in the 
real RAMB is quite different from the one supposed in the simplified 
model. To optimize the RAMB geometry a realistic magnetic field distri-
bution is required. The two-dimensional magnetic field distribution is 
close to the realistic one and can be computed using the FEM by solving 
Poisson’s equation (Eq. 7.100) numerically: 
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J−=∇•∇ )( A (7.100)

where ∇ is the Laplace operator, •  denotes the dot product, is the mag-
netic reluctivity, A  is the magnetic vector potential and J  is the applied 
current density. The nonlinear solution of the magnetic vector potential is 
required for computation of the force. The force F  acting on the ferro-
magnetic rotor can be computed by Maxwell’s stress tensor method: 

[ ]dSdS

SS

−•== nBBnBF 2
2

11
00

)( µµ
(7.101)

where  is Maxwell’s stress tensor, n  is the unit vector normal to the in-
tegration surface S and B  is the magnetic flux density. In the case of two-
dimensional computations, the closed integration path is a contour placed 
in the air gap, which encloses the ferromagnetic rotor. 

Experienced designers can improve the RAMB design by employing 
their own intuition and experience in combination with FEM computa-
tions.

7.9.4 RAMB Design Optimized by DE and the FEM 

The task is to design an RAMB for a spindle drive. The simplified RAMB 
model is used to find the initial bearing design. The design is improved by 
FEM computations using “trial and error” in order to achieve maximum 
force at minimum mass of the entire construction. For any further im-
provement in the bearing design a numerical magnetic field computation in 
combination with an optimization method is applied.  

In the authors’ opinion, DE in combination with the FEM is at present 
one of the most suitable and powerful tools for the optimization of elec-
tromagnetic devices, which are usually nonlinear and entail constrained 
optimization problems. Commonly, for such a problem class, the depend-
ency of the objective function on the design parameters is unknown. Ac-
cording to Pahner (1998), for optimization of electromagnetic devices in 
combination with the FEM, DE is superior to other stochastic direct search 
algorithms such as simulated annealing and self-adaptive evolution strate-
gies. DE converges faster and is more stable when compared to these other 
methods. The DE strategies “DE/best/1/exp” and “DE/best/2/exp” (Storn 
and Price 1997) are favored for most technical problems. For details and to 
study the theory of such optimization methods, the authors refer to the lit-
erature (Hameyer 1994; Storn and Price 1996, 1997; Pahner 1998). 
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If the number of design parameters is larger than 2, the number of popu-
lation members NP should be at least 15 (Pahner 1998). In our experience, 
however, technical problems with up to 25 parameters can be successfully 
solved with a population size of less than 40. The recommended setting for 
the DE step size F is 0.5 and that for the crossover probability constant CR

is between 0.5 and 0.9. DE in combination with the FEM is well suited for 
parallel implementation in a computer network, which can substantially 
reduce the time required for optimization (Pahner et al. 1998). 

To optimize an electromagnetic device with DE and the FEM, both of 
them must be adapted to function and operate together. A good conver-
gence can be achieved if the optimization function parameters are inde-
pendent. To optimize an electromagnetic device, it is important to improve 
the device design with respect to the given objective function. This func-
tion represents the technical device. Therefore, particular attention has to 
be paid to an appropriate formulation of this function, otherwise it is pos-
sible for the algorithm get stuck in a local minimum. To allow the algo-
rithm to reach the global optimum, contradictory partial aims formulated in 
the objective function have to be avoided. This can be realized by choosing 
appropriate constraints for the optimization problem. 

As mentioned earlier, the aim here is to achieve a maximum force at a 
minimum mass of the entire construction. The bearing must generate a 
maximum force of at least 500 N at the prescribed shaft diameter of 35 
mm, a stator outer diameter of 105 mm and an air gap of 0.4 mm. For the 
optimization, the rotor is placed in the center of the air gap. According to 
Eq. 7.98, the maximum force xF  is generated if one of the electromagnets 

on the x  axis is supplied with the current pb ii + , while the other one is 

supplied with the current pb ii − . Zero force is generated on the y  axis. To 

achieve realistic operating conditions, both electromagnets on the y  axis 

are supplied with the current bi  as shown in Fig. 7.51a. The RAMB design 

is optimized for the currents 5=bi  A and 5=pi  A. 

The dependency of the objective function RRf →4:)(X  on its parame-
ters X  is unknown, while the value of the objective function can be com-
puted by the FEM for each generated set of parameters X . The objective 
of the optimization is to find the set of objective function parameters X  for 
which the value of the objective function is a minimum. The design pa-
rameters, whose values are to be optimized, are the stator yoke height ys ,

the rotor yoke height yr , the leg width wl  and the bearing’s axial length l .

The first three of these design parameters are shown in Fig. 7.51b. 
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a)

b)

Fig. 7.51. Optimization of the radial bearing: a currents supplied to the coils, b the 
objective function parameters. 

The design parameters ),,,( llrs wyy  are transformed by normalization 

(Eq. 7.102) into the set of objective function parameters ),,,( 4321 xxxx=X ,
which are used in DE; the inverse process is denormalization (Eq. 7.103): 
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(7.102)
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jj ddxdd −+= .4,3,2,1=j (7.103)

Here jd  denotes the j th design parameter, while )(L

jd  and )(U
jd  are its 

lower and upper boundary constraints, respectively. In this way, all pa-
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rameters jx  of the objective function )(Xf  are bounded within the inter-

val [0,1], which is used to define the lower and upper boundary con-
straints:

),,,( 4321 xxxx=X ]1,0[∈jx         .4,3,2,1=j (7.104)

The boundary constraints are also defined for functions of the design pa-
rameters to prevent violation of physical laws. In the real bearing the rotor 
cannot overlap the stator, and the stator poles cannot overlap each other. 

DE works with populations of solutions and not with a single solution of 
the optimization problem. Population P  of generation G  contains popn  so-

lution sets X , called individuals of the population (Eq. 7.105). Each indi-
vidual represents a potential solution of the optimization problem. An in-
dividual is actually a set of parameters X  (Eq. 7.104) which contains parn

parameters of the objective function: 
)(

,
)()( G

ji
G

i
G x== XP popni ,...,1=         .,...,1 parnj = (7.105)

In the case of RAMB optimization, the initial population is generated by 
random values within the bounds ]1,0[∈jx . Whenever DE generates an in-

dividual, the parameters of the individual are immediately denormalized 
(Eq. 7.103) and checked for the boundary constraints. The computational 
effort required to generate an individual by DE is negligible when com-
pared to the computational effort required to evaluate the individual’s ob-
jective function by using the FEM. Therefore, the individual that violates 
the boundary constraints is reproduced as many times as required to satisfy 
the boundary constraints. In the case of too many violations of the bound-
ary constraints, the DE settings such as the DE step size F and the cross-
over probability constant CR can be adjusted. 

To evaluate the objective function of a design parameter set (individ-
ual), the FEM package must be able to accept parameters generated by DE, 
to perform the FEM computation automatically, and to return the value of 
the objective function to the DE algorithm. The parameters of the individ-
ual define the temporary bearing design. They are passed to the FEM 
package where the parametrically defined FEM model of the RAMB is 
updated according to the temporary design. For the bearing geometry ob-
tained, the material, the current densities and the FEM boundary condi-
tions are defined. The stator and the rotor iron core are constructed from 
laminated electric steel M36, whose magnetization characteristic is plotted 
in Fig. 7.52a. 
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Fig. 7.52 B–H characteristic for laminated electric steel M36 a and the discretiza-
tion of the model b

The mesh shown in Fig. 7.52b is automatically generated by dividing 
the geometry into discrete elements. Standard triangular elements are ap-
plied here. For the two-dimensional problem described by Eq. 7.100, the 
nonlinear solution of the magnetic vector potential is computed by using a 
conjugated gradient and the Newton–Raphson method. The errors in the 
solution obtained are analyzed, the mesh is refined, and the problem is 
solved again. The procedure is repeated until the solution error is smaller 
than a predefined value. The force xF  is computed from the obtained 
nonlinear solution of the magnetic vector potential by Maxwell’s stress 
tensor (Eq. 7.101). The closed contour in the middle of the air gap is used 
as the path of integration. The mass of the entire construction is calculated 
from the bearing geometry and the specific mass of the materials used.  
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The objective function )(Xf  is defined by Eq. 7.106, where xF  and m

are respectively the maximum force and the bearing mass of the actual de-
sign defined by X , while 0xF  and 0m  are the maximum force and the 

bearing mass of the initial design defined by 0X . The initial bearing design 
is determined by the simplified RAMB model given by Eqs. 7.85, 7.96 and 
7.99 and by the FEM computations: 

.)( 21
0

0 pp
mF

mF
f

x

x ++=X
(7.106)

Table 7.14. DE settings, data for the initial and optimized RAMB design, and de-
sign requirements 

RAMB design data DE settings 
Parameter Initial Optimized 

Design 
requirements 

DE
strategy

DE/best/1/exp Stator yoke
syy

8.5 mm 7.2 mm 
Outer
diameter 

105 mm 

Number of 
generations

60
Rotor yoke 
ryy

9.0 mm 7.8 mm 
Shaft di-
ameter 

35 mm 

Population
size

20 Leg width lww 10.0 mm 9.0 mm Air gap 0.4 mm 

Number of 
parameters 

4
Axial length 
l

53.0 mm 56.3 mm 
Maximal 
force 

500 N at 
least

DE step size 0.50 
Bearing
mass m

2.691 kg 2.688 kg 

Crossover
probability 
constant

0.75
Maximal 
force Fx

580.1 N 629.74 N  

Objective
function 
f(X)

1.00 0.92   

The penalties 1p  and 2p  are used to ensure that the bearing mass of the 
optimized design is not larger than the initial mass and that the maximum 
force is not smaller than the initial force. The penalties are calculated by 
the constraint functions (Eq. 7.107): 

if
0

10
m

m
pmm =>     and    if .0

20
x

x
xx

F

F
pFF =< (7.107)

The obtained value of the objective function is returned to the DE algo-
rithm. DE proceeds to generate new generations of individuals until the 
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desired value of the objective function or the maximum number of genera-
tions is reached.

The RAMB data and the DE settings used for optimizing the RAMB de-
sign are summarized in Table 7.14. 

7.9.5 Conclusion 

This work deals with the optimization of an RAMB for a spindle drive. A 
simplified model of the RAMB is presented first. It is used to determine 
the initial bearing design, which is improved by using experience in com-
bination with FEM computations. In this way the RAMB design obtained 
is optimized by DE. Optimizing an RAMB is a nonlinear and constrained 
optimization problem, where the dependency of the objective function on 
the design parameters (objective function parameters) is unknown. For the 
optimization of the bearing geometry, exact knowledge of the magnetic 
field distribution inside the nonlinear ferromagnetic iron core and in the 
bearing’s air gap is required. The magnetic field distribution can be com-
puted by the FEM. The RAMB is optimized by DE, while the objective 
function of each individual is evaluated by the FEM. To work together, the 
DE algorithm and the FEM package must be adapted. The FEM package 
must be able to accept parameters generated by DE and to return the value 
of the objective function. The FEM package must also be suitable for use 
with parameterized models and to work with user-defined procedures. 
Automatic mesh generation, solvers for different problems, error estima-
tion, mesh refinement and automatic acquisition of results must be a part 
of the FEM package. 

The results presented here show that the performance of the electromag-
netic devices can be substantially improved if DE in combination with the 
FEM is applied for the optimization. In the case of the RAMB, the value of 
the objective function was improved by about 8%, which means that the 
force increased by 49 N at the same bearing mass. 
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7.10 Application of Differential Evolution to the Analysis 
of X-Ray Reflectivity Data 

Matthew Wormington, Kevin M. Matney and D. Keith Bowen 

Abstract. X-ray reflectivity (XRR) is a technique for characterizing the 
structure of thin, multi-layer devices. This section describes the application 
of the differential evolution (DE) algorithm to automatically and reliably 
analyze XRR data. A data-fitting method is presented that is conceptually 
simple, easy to implement and is capable of converging to a global mini-
mum in the parameter space even when there are many additional local 
minima. The method is quite general and could be applied to many prob-
lems in science and engineering. 

7.10.1 Introduction 

X-ray reflectivity (XRR) is a technique used to characterize the structure 
of thin (1–1000 nm), multi-layer devices. Such devices are used in numer-
ous high-technology products, most notably products made by the microe-
lectronics, optoelectronics and magnetic storage industries. XRR is non-
destructive and can be used to characterize crystalline, polycrystalline and 
amorphous materials. The technique accurately and reproducibly measures 
layer thickness, density and roughness/grading. 

Until recently, the XRR technique was mainly used for research and de-
velopment because an experienced scientist was required to manually ana-
lyze the data. The development of an automated and robust data analysis 
method, which is the subject of this section, has allowed the technique to 
be used in manufacturing environments. For example, XRR is now being 
used by the microelectronics industry to measure layer thickness in the lat-
est generation of microprocessors – from the semiconductor layers that 
form the transistors on the silicon substrate to the conductors and insula-
tors that are used to connect these transistors together. The technique is 
also being used by the magnetic storage industry to characterize the struc-
ture of the read-heads used in modern hard disk drives. 

Figure 7.53 schematically illustrates the XRR technique. A collimated, 
monochromatic beam of X-rays illuminates the surface of a sample at a 
very small angle of incidence (0–5°). The specularly reflected beam (i.e.,
the beam with reflection angle equal to the incidence angle) is detected and 
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its intensity is measured. The reflected intensity as a function of the inci-
dence angle is related to the structure of the sample. There is, however, no 
direct method for determining a sample’s structure from such a measure-
ment and so indirect methods must be used. 

X-ray source

Slits

Sample

Detector

Optics

X-ray source

Slits

Sample

Detector

Optics

Fig. 7.53. Schematic of an XRR measurement. The X-ray beam is generated by a 
laboratory source and passes from left to right. The optics produce a collimated, 
monochromatic beam (i.e., small spread in both angle and wavelength). The beam 
illuminates the sample at a small angle of incidence and is specularly reflected 
from the sample. The intensity of the reflected beam is measured as the sample 
and detector are scanned in a ratio of 1:2.

The most common way to determine the structure of a sample from its 
measured XRR data is to create a model that we hope reasonably describes 
its structure and from which we can simulate the reflected X-ray intensity. 
Using the model, we then simulate the XRR intensity and calculate the dif-
ference between the experimental and simulated curves using some objec-
tive function, f. The model parameters are then adjusted by some optimiza-
tion method in order to minimize the difference between the two curves. 
This procedure is repeated until the difference between the two curves is 
judged to be sufficiently small, at which point we accept the model to be 
an accurate representation of the structure. 

The field of data-fitting and parameter optimization has a long and fruit-
ful history. The earliest successes were for linear problems that possessed 
a single minimum in the objective function. The mean-squared difference 
between the experimental and simulated data was commonly used as the 
objective function because of its computational simplicity in the days be-
fore fast digital computers. More recent research has focused on nonlinear 
problems, and on those with local minima in the objective function in addi-
tion to the global minimum. A variety of data-fitting and parameter opti-
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mization strategies have been developed for such systems (Bevington 
1969; Press et al. 1989) and those most commonly encountered are: 

1. Direct search. The parameter space is divided up into small, but finite, 
regions. The objective function is calculated for each region and the re-
gion that gives the smallest value for f is said to give the best-fit (opti-
mum) parameter values. 

2. Downhill simplex. An initial guess at the parameter values is made. The 
simplex (a geometrical construction) then moves in directions that de-
crease the value of f. The parameters that yield the smallest value of f in 
the neighborhood of the initial guess are said to be the best-fit parame-
ters.

3. Levenberg–Marquardt method. An initial guess at the parameter values 
is made by the user. The algorithm then combines linearization and gra-
dient searching of the objective function to minimize f in the neighbor-
hood of the initial guess. The parameter values giving the smallest value 
for f are then selected as the best-fit parameters. 

4. Monte Carlo method The parameter space is again divided into small 
regions. Regions are selected at random and the objective function is 
evaluated. After a certain number of regions have been chosen, or when 
f is smaller than some specified value, the algorithm is stopped. The re-
gion with the smallest value for f is said to yield the best-fit parameter 
values.

5. Simulated annealing. This uses the physical principles governing an-
nealing (i.e., the heating of a material and subsequent slow cooling such 
that the material forms a crystal) to search the objective function and ob-
tain the best-fit parameters. There is a finite probability in any step that 
the parameters can move in a direction so as to increase f, so the method 
does escape from local minima, but slowly. 

All of the above methods run into severe difficulties when fitting XRR 
data. The parameter space is simply too vast for direct searches and be-
comes uncomputable for all but the simplest cases. The downhill simplex 
and Levenberg–Marquardt methods work well for nonlinear problems be-
cause they are guided by the geometry of the objective function in parame-
ter space. However, the initial estimate of the parameter values needs to be 
very close to the optimized values if local minima are present, as they will 
become trapped in the first local minimum that they encounter. These two 
methods are therefore only effective when the parameters are initially con-
tained within the multi-dimensional “well” of the global minimum, and in 
most practical cases in X-ray scattering, we have found them to be of little 
use. The Monte Carlo and simulated annealing methods do not get trapped 
in local minima. However, they are very inefficient at searching the pa-
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rameter space, since they search it randomly without taking into account 
the geometry of the objective function. A successful strategy for non-linear 
problems containing many local minima will combine both random and 
guided elements. Recently, genetic algorithms (GAs) have attracted wide-
spread interest for nonlinear optimization problems as they overcome 
many of the problems associated with the more traditional optimization 
strategies mentioned above.

In this section, we apply the differential evolution (DE) algorithm (Storn 
and Price 1995, 1997) to the analysis of XRR data using a data-fitting 
method. We were attracted to the DE algorithm over other GAs for several 
reasons: the algorithm was straightforward, it used real numbers (rather 
than binary strings or integers) to encode the problem parameters, and it 
was reported to be both versatile and reasonably efficient. For a more de-
tailed discussion of our application, the interested reader is referred to the 
original publication (Wormington et al. 1999) on which this section is 
largely based. Additional information regarding the characterization of ad-
vanced materials using X-ray techniques can be found in Bowen and Tan-
ner (1998) and Holý et al. (1999), and the references contained therein. 

7.10.2 The Data-Fitting Procedure 

The Differential Evolution (DE) Algorithm 

Let us assume that the experimental data contains N measured points 
( , )j jIθ  where jθ  is the incidence angle, jI  is the intensity measured at jθ
and 1, 2,...,j N= . Simulated data ( , )jI θ p is computed assuming a structural 

model with n continuous, adjustable parameters represented by the vector 

1 2[ , ,... ]np p p=p  and is compared to the experimental data using some ob-

jective function ( )f p . Guided by ( )f p , the DE algorithm attempts to op-

timize the parameter vector p  starting with an initial population of ran-
domly generated parameter vectors, by a repeated cycle of mutation, 
recombination and selection. 

As discussed in previous chapters, several versions of the basic DE al-
gorithm have been proposed. The DE/Best/1/Bin version of the algorithm 
was used in this work. The population was initialized by assigning the pa-
rameter vector 0p  the user’s initial guess at the structure, while the remain-
ing vectors were initialized by assigning each parameter with a randomly 
chosen value from within its allowed range. The control parameters of the 
DE algorithm, namely the mutation constant and crossover constants, re-
spectively designated F and rC , must be empirically determined to give 
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fast convergence (minutes). Values of F = 0.7 and rC  = 0.5 were used in 
this work. The population size was also determined empirically and a 
population size of about 25 to 50 seemed to work well for most cases. 

The recombination operation of the DE algorithm is able to produce pa-
rameter values outside of the range specified by the user (or physically im-
plausible solutions such as a thickness being less than zero). In order to 
prevent this from happening we modified the basic DE algorithm such that 
any temporary (trial) parameter jp′  that falls outside the specified con-

straints is replaced by a random value selected according to the expression 
min max minrand( )j j j jp p p p′ = + − (7.108)

where min
jp  and max

jp  are the minimum and maximum permissible values 

of parameter j, respectively. The function rand(x) designates a real uniform 
random number drawn from the range [0, x]. We found that setting the out-
of-range trial parameter to a random value within the specified constraints 
improved the data-fitting performance. 

Finally, we added several stopping criteria to the DE algorithm such that 
the algorithm will stop if:

1. the user cancels the data-fitting procedure; 
2. a specified number of simulations is reached; 
3. a specified elapsed time is exceeded; 
4. a specified value of the objective function is attained. 

The Objective Function 

The choice of an appropriate objective function is crucial for any data-
fitting procedure regardless of the optimization method used. The DE algo-
rithm gives us a great deal of flexibility in this choice since we need only 
choose a continuous function and do not require the function to have con-
tinuous derivatives. When fitting XRR data, the objective function should 
have the following additional properties: 

1. a single deep global minimum; 
2. local minima that are much less deep than the global minimum; 
3. fast and simple to calculate; 
4. relative insensitivity to the absolute magnitude of the data, since XRR 

data often spans many orders of magnitude; 
5. does not overemphasize outlying points in the experimental data, since 

we expect a Poisson distribution of statistical noise. 

Point 4 suggests that a logarithmic function could be appropriate since it 
linearizes data spanning several orders of magnitude. Point 5 suggests that 



468      7 Applications 

a robust objective function (Press et al. 1989) will be one that is more suit-
able than the mean-squared objective function commonly encountered in 
least squares fitting. To confirm these conjectures, we have investigated a 
number of objective functions that have been applied to fitting problems, 
namely: 

Mean-square difference of the data: 
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Mean-square difference of the log transformed data:  
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Tests of these functions with XRR data showed that the non-logarithmic 
objective functions (Eqs. 7.109 and 7.110), as expected, did not effectively 
fit the data at low intensities. These occur at large scattering angles and 
contain information on the smallest length scales present in the structure, 
which are often those at which the X-ray characterization is aimed. The 
objective functions in Eqs. 7.111 and 7.112 both could cope adequately 
with such data, but Eq. 7.112 is preferred because of its lower sensitivity to 
outlying data points (due mainly to statistical noise in the experimental 
data). Clearly we cannot assert that Eq. 7.112 is the best possible objective 
function but it is very effective, and this is sufficient. 

Performance 

The performance of the data-fitting procedure is primarily affected by the 
following four factors: 

1. The quality and size of the experimental data. If the experimental data is 
noisy or contains a very large number of points it will take longer to de-
termine the best-fit parameter values. 

2. The quality of the initial estimates for the parameters. If the initial val-
ues for the parameters are grossly different from the optimized values 
the fitting procedure will take longer to converge. 
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3. The search range of the parameter values. If a large search range is 
specified the fitting procedure may take longer to converge to the global 
minimum of the objective function. However, because the DE algorithm 
is rather good at finding the global minimum, without becoming trapped 
in local minima, it tends not to falsely converge to incorrect values for 
the parameters. 

4. The number of adjustable parameters. The ability of the procedure to de-
termine the optimum parameter values decreases as the number of pa-
rameters increases. In practice we find that up to ten parameters can be 
optimized in a matter of minutes, and that several tens of parameters can 
be optimized during an overnight run. 

We have developed an efficient program for analyzing XRR data based 
on the fitting procedure presented in this section. The program, which was 
developed using Borland Delphi, runs on personal computers (PCs) under 
the Microsoft Windows operating system. All benchmarks reported in this 
work were obtained using a 1 GHz Pentium III-based notebook computer 
fitted with 512 Mbytes of memory. 

7.10.3 The Model and Simulation 

The simulation method used is taken from the Bede REFS program 
(Wormington et al. 1992). We will consider a multi-layer on a thick sub-
strate in which the refractive index of each layer is assumed constant. For 
X-rays, the refractive index of a material is slightly less than unity and can 
be written as 

2

1 ( i ) ,
2e a a a a

a

n r f f f N
λ
π

′ ′′= − + +
(7.113)

where er  is the classical electron radius and λ  is the X-ray wavelength. 

The atomic scattering factor is denoted by af  and the real and imaginary 

parts of the dispersion correction are af ′  and af ′′ , respectively. Values for 
the scattering factor and its corrections are tabulated in the International 
Tables for Crystallography (Ibers and Hamilton 1974). The summation is 
taken over all constituent atoms, a, of number density aN .

The amplitude ratio /r t

j j jX E E=  of the reflected and transmitted waves 

at the bottom of layer j within the multi-layer is obtained by solving Max-
well’s equations and the appropriate boundary conditions. According to 
Parratt (1954), we may write 
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where jr  is the Fresnel coefficient for reflection from the interface be-

tween layers j and j + 1. For a sharp interface, jr  is given by the expression  
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where 2 2 1/ 2
, 2 / ( cos )j z jk nπ λ θ= × −  is the component of the wavevector in 

layer j perpendicular to the surface of the multi-layer (i.e., along the z

axis), jn  is the refractive index of the layer and θ  is the grazing angle of 

the incident plane wave. The complex phase factor for wave propagation 
through the layer thickness jt  is denoted by ,exp(i )j j z jk tϕ = . To include 

the effects of grading (interdiffusion) and roughness within this formalism 
we need only modify the form of the Fresnel coefficient. From the work of 
Névot and Croce (1980) an appropriate modification is given by  
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where 1jσ +  denotes the width of the interface between layers j and j + 1 

due to both grading and roughness. 
To calculate the amplitude ratio at the top of the multi-layer, 0X , Eqs. 

7.113 and 7.115 are applied recursively for all interfaces starting at the 
substrate (layer N + 1), where N NX r= . The plane-wave reflectivity is then 

given by 2
0| |R X=  and is related to the reflected intensity through the cor-

relation function  

0( ; ) ( ) ( )d bI I F R Iθ θ θ θ θ′ ′ ′= − +p (7.117)

where 0I  and bI  denote the incident and background intensity, respec-

tively. Here ( )F θ  denotes an instrument function and takes into account 
the finite divergence of the incident X-ray beam. We have included both 
this incident angle θ  and the adjustable parameters p in our notation. Spe-
cifically p contains the following: 

1. the incident intensity 0I ;

2. the background intensity bI ;

3. the densities jρ  of the layers 1,2,...j N= ;

4. the thicknesses jd  of the layers 1,2,...j N= ;

5. the widths 1jσ +  of the interfaces between layers j and j + 1 due to grad-

ing and/or roughness. 
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Finally, we note that X-ray reflectivity measurements cannot usually 
distinguish between layers of high atomic number Z and low mass density, 
and those with low Z and high density. We have therefore chosen to fit the 
density of layers in the structural model and assume their chemical compo-
sition.

7.10.4 Examples 

Example I – Ta Layer on Al2O3

In our first example, we consider a Ta (10 nm) layer deposited on an Al2O3

substrate. Figure 7.54a shows the measured and simulated XRR curves be-
fore fitting. At very small angles of incidence, 0.5θ ≤ ° , the intensity is 
very high as a result of total external reflection from the Ta layer. As the 
incidence angle is increased, the reflected intensity decreases rapidly and 
prominent oscillations (Kiessig fringes) are clearly visible due to the inter-
ference of the waves partially reflected from the Ta layer and the underly-
ing Al2O3 substrate. The period, θ∆ , of the Kiessig fringes is related to the 
thickness, t, of the Ta layer according to the relation / 2tθ λ∆ ≈ . The am-
plitude of the Kiessig fringes depends on the difference in the refractive 
index of the layer and the substrate, which is quite large in this example. 
Figure 7.54b shows the measured curve together with its best-fit simula-
tion.

The time for the fitting procedure to converge was about 30 seconds, fit-
ting a total of nine adjustable parameters. The best-fit parameter values 
and their uncertainties are given in Table 7.15. It should be noted that a 
surface oxide layer had to be included in the structural model to obtain 
close agreement of the measured and simulated curves. 

Table 7.15. Best-fit parameter values for the Ta layer on Al2O3

Layer Material t (nm)  (nm)  (g/cm3)
2 Ta2O5 2.70 ± 0.05 0.71 ± 0.03  8.6 ± 0.2 
1 Ta 10.49 ± 0.02 0.45 ± 0.02 16.1 ± 0.2 

Substrate Al2O3  0.38 ± 0.02 3.99 
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Fig. 7.54. Comparison of experimental and simulated X-ray reflectivity curves for 
a Ta layer on Al2O3, a before and b after the fitting procedure has converged. The 
dashed lines represent the measurements and the solid lines are the simulations. 

The parameter values for the simulated curve shown in Fig. 7.54a were 
chosen to be far from the anticipated best-fit parameter values. This was a 
deliberate choice in order to demonstrate that the fitting procedure rapidly 
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converges to the global minimum in the objective function without getting 
trapped in local minima. The progress of the fitting procedure is illustrated 
in Fig. 7.55, which shows the value of the objective function versus the 
number of generations (iterations of the DE algorithm). Horizontal sec-
tions are times during which the fitting procedure is temporarily in local 
minima. The fitting procedure is seen to have converged to the global 
minimum after only 1000 generations. 
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Fig. 7.55. Variation of the objective function, f, with the number of DE genera-
tions. The fitting procedure has converged after approximately 1000 generations.
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Fig. 7.56. Variation of the objective function, f, with the Ta layer thickness. All 
other adjustable parameters in the model are held constant at their best-fit values. 
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Figure 7.56 shows the value of the objective function as a function of 
the thickness of the Ta layer, with all other parameters held at their best-fit 
values. We note that the objective function has a single, deep global mini-
mum and many local minima. Harmonic minima, which occur at half and 
twice the best-fit Ta layer thickness, are the deepest of the local minima. 
The global minimum is “shielded” by fairly large maxima on either side. 
This is a typical feature in such curves when the thickness is varied, and 
turns out to be caused by the beating of two sets of oscillations (Kiessig 
fringes) in which one period is fixed and the other is variable. This charac-
teristic shape is very useful for recognizing whether the global minimum is 
in fact within the range specified for the thickness parameters in question. 

Example II – GaAs/Al0.3Ga0.7As Layers on GaAs 

For our next example we consider an Al0.3Ga0.7As (50 nm) layer capped 
with a GaAs (50 nm) layer grown on a GaAs substrate. Figure 7.57a shows 
the measured and simulated XRR curves prior to fitting. We see that the 
Kiessig fringes are far less prominent than in the previous example be-
cause the refractive index of Al0.3Ga0.7As is similar to that of GaAs. Fur-
thermore, the period of the Kiessig fringes is much smaller than in the pre-
vious example because of the thicker layers considered. The measured 
curve and best-fit simulation are shown in Fig. 7.57b. Whilst more itera-
tions are required than in the previous example, the fitting procedure still 
took about 45 seconds to converge and fit ten adjustable parameters. The 
best-fit parameters and their respective uncertainties are given in Table 
7.16.

We included an additional layer of GaAs in the structural model and al-
lowed its density to be fitted within the range 2.66–5.32 g/cm3 (i.e., 50–
100% of its bulk value) to test for the presence of a surface oxide layer. If 
no surface layer were present, the density of the top layer would naturally 
converge to 5.32 g/cm3. However, the density converged to 3.19 g/cm3, in-
dicating the presence (most likely) of an oxide. 

Finally, we note that detector saturation is evident in the measured data 
(see Fig. 7.57), but this has clearly not prevented the fitting procedure from 
converging. The reason for this is that we treated the incident intensity as 
an adjustable parameter and ignored most of the measured data in the re-
gion of total external reflection. The incident intensity is, in effect, deter-
mined from the initial slope of the reflectivity curve. However, for the 
most accurate characterization of a sample it is important to reduce this ef-
fect experimentally, e.g., by using an Al absorber to attenuate the reflected 
beam at very low incident angles, or a high dynamic-range detector. 
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Fig. 7.57. Experimental and simulated X-ray reflectivity curves for an AlxGa1 xAs 
layer capped with GaAs on a GaAs substrate, a before and b after fitting. The 
dashed lines are the measurements and the solid lines represent the simulations. 
Experimental data courtesy of Prof. B. K. Tanner (University of Durham). 
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Table 7.16. Best-fit parameter values for the GaAs/Al0.3Ga0.7As layers on GaAs 

Layer Material t (nm)  (nm)  (g/cm3)
3 GaAs 2.28 ± 0.02 0.57 ± 0.02 3.19 ± 0.05 
2 GaAs 50.97 ± 0.01 0.64 ± 0.03 5.32 
1 Al0.3Ga0.7As 50.40 ± 0.02 0.5 ± 0.1 4.87 

Substrate GaAs  0.7 ± 0.1 5.32 

Table 7.17. Best-fit parameter values for the Si1 xGex/Si superlattice on Si 

Layer Material t (nm) σ (nm) 
12 SiO2 1.18 ± 0.02 0.19 ± 0.01 
11 Si 9.31 ± 0.02 1.19 ± 0.01 

…10 Si0.43Ge0.57 9.08 ± 0.01 0.97 ± 0.01 
1… Si 22.89 ± 0.01 0.43 ± 0.01 

Substrate Si ∞ 0.3 ± 0.1 

Example III – A Si1 xGex/Si Superlattice on Si 

In our last example, we have applied our fitting procedure to a superlattice 
(i.e., a periodic repetition of two or more layers) with nominal structure 
[Si0.5Ge0.5(10 nm)/Si(22 nm)]5 capped with Si(10 nm), grown by molecular 
beam epitaxy (MBE) on an Si(001) substrate. The measured curve and its 
best-fit simulation are shown in Fig. 7.58. The reflectivity curves contain 
much fine detail; Bragg peaks and Kiessig fringes between them are 
clearly visible. The angular separation of adjacent Bragg peaks is related to 
the superlattice period while the period of the Kiessig fringes is related to 
the total thickness of the structure including the Si capping layer. Despite 
the reasonably large number of adjustable parameters involved in this ex-
ample (a total of 11), the fitting procedure still managed to converge in ap-
proximately 4 minutes. The best-fit parameters and their uncertainties are 
listed in Table 7.17. With the exception of the surface oxide layer (as-
sumed to be SiO2), which had a fitted density of 1.5 ± 0.1 g/cm3, all den-
sity values were fixed at their bulk values during the fitting. The Ge con-
centration was determined precisely by high-resolution X-ray diffraction to 
be x = 57 ± 5% and also remained fixed during the fitting. 
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Fig. 7.58. X-ray reflectivity curves for an Si1 xGex/Si superlattice on an Si sub-
strate. The dashed line represents the measurements and the solid line is the best-
fit simulation. 

Note that the fitting procedure automatically found an asymmetry be-
tween the SiGe-on-Si and Si-on-SiGe interfaces. The width of the latter in-
terfaces was almost twice that of the former. This asymmetry is due to 
“waviness” at the Si-on-SiGe interfaces and has been observed by imaging 
the interface using transmission electron microscopy (TEM). 

7.10.5 Conclusions 

We have developed an effective data-fitting and parameter optimization 
method using a combination of the differential evolution algorithm and a 
thoughtful consideration of the objective function. The procedure is robust 
against nonlinearity, local minima in the objective function, data that spans 
many orders of magnitude, and the choice of initial parameter values. The 
method is conceptually simple, easy to implement and rapid in execution. 
We have specifically applied the data-fitting method to the analysis of X-
ray reflectivity data; however, the method is general and could be applied 
to many problems in science and engineering.  
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7.11 Inverse Fractal Problem 

Ivan Zelinka 

Abstract. This contribution focuses on the so-called inverse fractal prob-
lem and its solution by means of a new evolutionary algorithm – the dif-
ferential evolution algorithm. The principles behind the inverse fractal 
problem are briefly explained here. The contribution then discusses the use 
of differential evolution for the solution of the inverse fractal problem and 
selected results. 

7.11.1 General Introduction 

The inverse fractal problem (IFP) arises where some appropriate mathe-
matical methods are searching for so-called “coefficients of affine trans-
formations”. These coefficients are used in fractal geometry to generate 
“special” objects called fractals. The main aim of IFP is such that the dif-
ference between an observed object and an object generated by means of 
identified coefficients of affine transformations is minimal. A good de-
scription of this problem can be found in Barnsley (1993) and a description 
of fractal geometry in Peitgen et al. (1992), Barnsley (1993), Hastings and 
Sugihara (1993) and Bunde and Shlomo (1996). The solution of IFP can be 
based on two algorithms, i.e., IFS (Iterated Function System, Barnsley 
1993) or TEA (Time Escape Algorithm, Barnsley 1993). Because there is a 
clear relation between the IFS and TEA (Barnsley 1993), the IFS solved in 
this contribution focuses on use of the TEA for ease of cost function con-
struction.

Other research articles on IFP from various points of view and by means 
of various methods can be found in the literature (e.g., Arneodo et al. 
1994, 1995; Muzy et al. 1994; Arul and Kanmani 1995; Struzik 1995, 
1996; Deliu et al. 1997; Gutierrez et al. 2000). 

Fractal Geometry – An Introduction 

The basic idea of fractal geometry is that the geometric structure of the 
main object body repeats itself at smaller scales inside the main body of 
the observed object (Peitgen et al. 1992; Barnsley 1993; Hastings and Su-
gihara 1993; Bunde and Shlomo 1996). This geometrical repetition can be 
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extended to infinity but only in a mathematical sense. The term “infinity” 
has to be taken into account only in such a sense, because in the real world 
physical borders appear. Fractal structures behind these borders usually 
disappear, such as, for example, in a bush–root system.  

In fractal geometry fractals are divided into two main groups, i.e., 

• self-similar 
• self-affine.

Self-similar fractals can usually be observed in the artificial–
mathematical world. Their characteristic attribute is that the structure of 
the main body of the observed object repeats itself everywhere in the main 
body at different levels of magnification (Fig. 7.59a). Any subset of such 
an object is an exact copy of the main object. 

Self-affine fractals are objects which can be observed everywhere at any 
time. Examples are trees (Fig. 7.59b), clouds, water surface, etc. Their 
characteristic attribute is that the structure of the main body of the ob-
served object does not repeat itself in the main body as an exact copy of 
the original object. Any subset of such an object is an affine copy of the 
main object. 

a) b)

Fig. 7.59. Self-similar a and self-affine b fractals 

Fractal construction can be performed by means of so-called affine

transformations. Transformations of this kind involve three geometrical 
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operations with the object under consideration – rotation, scaling and shift. 
The mathematical description of the affine transformation is given by Eq. 
7.118:
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Basic body Scaling

Rotation Movement 

Fig. 7.60. Affine transformations 

The parameters in Eq. 7.118 have the following sense: r1 and r2 are so- 
called scaling parameters which define the change in size – the reduction 
along the x and y axes. The angles define rotation of the object around the 
x and y axes, and parameters e and f define the shift along the x and y axes. 
The action of all three types of transformations is represented artificially in 
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Fig. 7.60. By means of their composition very complicated structures can 
be generated (Figs. 7.61–7.65). 

Usually more than one affine transformation is needed to build up frac-
tal structure. For example, the fractal called the “Sierpinski triangle” (Fig. 
7.59a) needs three affine transformations to be properly generated. By 
means of repetition of a whole set of affine transformations, also called it-
eration, the fractal structure begins to emerge from the main object body 
(Figs. 7.61–7.65).  

a) b)

c) d)

Fig. 7.61. Affine transformations in action 

As examples of the principles mentioned above, some fractals are gen-
erated here. One concerns three transformations applied on a basic object 
called “Mr. Head”, namely rotation, shrinking and shifting (see second 
head from bottom in Fig. 7.61b. They were repeated on the second head 
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and the third head was obtained. This was done again and again till 20 it-
erations had been completed and b) was finished. The same approach and 
set of iterations as used on b) were used on one graphical object and c) and 
then d) were created. A similar philosophy but with different transforma-
tions was used in Fig. 7.62. From both figures it is clearly visible that the 
shape of the initial object is not important – which means that any structure 
can be generated from any other structure. 

Fractal construction by means of these described affine transformations 
is also referred to as the iterated function system (IFS) algorithm (Barnsley 
1993); it is able to generate black and white fractals. 

Fig. 7.62. The same basic object and different final shape 

The second algorithm which can be used for fractal creation is the so-
called time escape algorithm (TEA), also well described in Barnsley 
(1993). This algorithm also has an iterative nature like the IFS and is based 
on complex numbers using the philosophy of a user-defined “area” inside 
which the trajectory starts. This trajectory is calculated in an iterative way 
(the next point from the previous one) and after each calculation it is 
checked whether the border of the user-defined area has been overstepped. 
If so, then the start point is marked by a color which is proportional to the 
number of iterations needed for overstepping, otherwise the point is black. 
This means that black points are points which “show” or “are sources” of 
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“stable” behavior (the trajectory does not run away from the user-defined 
area). Thus if coordinates of recalculated points are control parameters of 
some dynamical system, then the TEA can be used for example for check-
ing the stability of a system etc. 

After the first iteration After 10 iterations 

Fig. 7.63. The fern 

After the first iteration After 10 iterations 

Fig. 7.64. The tree 
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“Alley” from fractal Tree

(other 5 iterations with Tree) 

“Orchard” from Alley 

(other 3 iterations with Alley) 

Fig. 7.65. Alley and orchard 

Fig. 7.66. Principle of TEA… 

The whole principle of the TEA is demonstrated in Fig. 7.66 and Fig. 
7.67, which are in principle based on Mandelbrot’s simple fractal given by 
the equation 

Cczczz nn ∈+=+ ""and""where2
1

(7.119)

Transformation into the colored version reveals a few “reefs”. The first 
one is that fractal conversion from a black and white version into a colored 
one is easy only for those fractals that do not contain the transformation of 
rotation, and sets (black points) are not mutually overlapping. The second 
“reef” is that the color composition of the final colored version of black 
and white fractals depends on what color “rule” is associated with appro-
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priate areas (where the IFS acts) or with areas where no IFS transformation 
acts.

Fig. 7.67. …and its result. 

Fig. 7.68. Various versions of a Christmas tree by TEA 
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Different ways of how to paint sectors are shown in Fig. 7.68 for a frac-
tal Christmas tree. Shown in Fig. 7.69 is a mix of both, i.e., the painting of 
areas where no IFS transformation acts (left upper sector of the Sierpinski 
triangle) and different color rules for whole fractal repainting (all four pic-
tures). All this means that there are different ways of how to generate col-
ored fractals. Only one part of the colored fractals is “stable”: a set of 
black points which represents the original fractal from the IFS algorithm. 
This is the main reason why only black and white versions of TEA fractals 
were used for cost functions, as is described in the next subsection. 

The third “reef” concerns the size of the grid which is used for TEA cal-
culation. From Fig. 7.66 and Fig. 7.67 it is clear that in the ideal case each 
point should be recalculated, but practically this is impossible. Thus some 
grid has to be defined (see Fig. 7.71). The size of the grid used then deter-
mines the time of calculations and precision of the depicted (or identified) 
fractals.

Fig. 7.69. Various versions of the Sierpinski triangle by TEA 
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Inverse Fractal Problem 

IFP is a process during which so-called coefficients of affine transforma-
tions are identified, or the coefficients of the TEA, which is complemen-
tary to the IFS algorithm (Barnsley 1993) as mentioned above. Fractal re-
construction is one of the well-known problems of fractal geometry and 
was solved not just by evolutionary algorithms. IFP might be an artificial 
problem, but its solution can help in time series processing (see fractal in-
terpolation of time series in Barnsley 1993) or as part of artificial intelli-
gence in computer vision (Hlavá  and Šonka 1992). In computer vision 
fractal geometry can be used in object description. Such a description is 
not large in terms of data size and is exact – each pixel position is given by 
the coefficients of affine transformations (Peitgen et al. 1992; Barnsley 
1993; Hastings and Sugihara 1993; Bunde and Shlomo 1996; Zelinka 
1999a).

Algorithms like the differential evolution algorithm (Lampinen 1999; 
Lampinen and Zelinka 1999; Zelinka 2002a, 2002b; Storn 2002) can be 
used for the solution of IFP here. For this purpose the cost function is de-
fined whose minimization “produces” coefficients of affine transforma-
tions. For IFP the TEA was chosen with a grid resolution of 100 × 100 
cells. The rule of color association of the original TEA was modified so 
that a recalculated cell remained black if its color was calculated as black, 
otherwise the color was white. In this way colored fractals were trans-
formed into black and white versions. As a result of this transformation 
black cells were associated to 1 and white cells to 0. The principle of the 
cost function is shown in Fig. 7.70 and is given by Eq. 7.120: 
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Fig. 7.70. Graphical principle of cost function of IFP 
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In Eq. 7.120 the terms Porg and Pident represent respectively the original 
and actually identified elements of the matrix of cells of the fractal picture. 
This formula calculates the sum of cells in which both fractals differ. 
Minimization of this cost function (zero in the ideal case) leads to optimal 
coefficients, which should be the same as the coefficients of the original 
fractal. For each combination of coefficients the cost function returns the 
total sum – a scalar. For simple and maximally identified two-coefficient 
fractals such a cost function can be depicted like the geometrical surface 
shown in Fig. 7.71. This picture represents the surface of the cost function 
of the fractal “Spider” (for the equation, see Eq. 7.123). The global ex-
treme (the black spot set on position {41,11}) is surrounded by a flat land-
scape which makes finding the global extreme harder especially for gradi-
ent-based methods. This is not a problem for the class of evolutionary 
algorithms. IFP has been solved many times by different evolutionary al-
gorithms such as the hybrid evolutive–genetic strategy (Gutierrez et al. 
2000), genetic algorithms, etc. Also, hybrid or different approaches like 
wavelet analysis have been used for the solution of IFP (Arneodo et al. 
1994; Muzy et al. 1994). Differential evolution was chosen for the solution 
of IFP here for two reasons, as follows. 

Fig. 7.71. Landscape of the “Spider” cost function. The global extreme is ap-
proximately located near coordinates b = 4.15 and a = 1.11 (axes divided by 10). 
The global extreme is in fact a point – here a black “spot” due to quite a rough 
grid that was used to increase the speed of calculations. 

The first reason is that DE’s population is floating-point encoded. Indi-
viduals of the population, which is binary encoded, have limited precision 
(in recalculating from the binary to the decimal domain), which can lead 

Global extreme 
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evolutionary process into a local extreme instead of global one, while 
floating-point encoded population doesn’t suffer by such “property”. The 
second reason is the fact that DE is very capable of finding global ex-
tremes on surfaces which are surrounded by a “flat landscape”; it does not 
matter what size of dimension is determined for the solved problem. This 
ability of DE was demonstrated for example in a “pathological function”, 
see Zelinka (2001, 2002b). For all simulations here the DE version 
“DE/Rand/1/Bin” was chosen, which in the author’s opinion is one of the 
best versions of DE. It was used for many problems with good success (see 
for example Lampinen 1999; Storn 2002; Zelinka 2001, 2002a, 2002b). 
The parameter settings of DE in the frame of IFP were similar for all simu-
lations. Table 7.18 describes the parameter settings for the basic simula-
tions of IFP. 

Table 7.18. Parameter settings for basic simulations of IFP (Eqs. 7.121–7.123) 

Fractal NP D Generations F CR Parameters 
(a,b,c,d)

Mandelbrot 20 2 100 0.82 0.3 <0, 3> 
Vortex 20 2 100 0.82 0.3 <0, 3> 
Spider 200 4 1000 0.2 0.73 <0, 5> 

Identification of fractal objects was done by DE so that a population of 
individuals of size = number of searched coefficients (Eqs. 7.121–7.123) 
was generated. For Mandelbrot set individuals of size = 2 (a, b, see Eq. 
7.121), for vortex individuals of size = 2 (a, b, see Eq. 7.122) and for spi-
der individuals of size = 4 (a, b, c, d, see Eq. 7.123), then 

>∈<∈+=+ 3,0,&""&""1 baCczwhereczaz b
nn

(7.121)

>∈<∈+=+ 3,0,&""68.1 baCzwhereizaz b
nn

(7.122)

>∈<∈++=+ 3,0,,,&""78.1 dcbaCzwherezczaz d
n

b
nn

(7.123)

In this basic IFP three fractals were identified in total, i.e., the Mandel-
brot set (Eq. 7.121), the vortex (Eq. 7.122) and the spider (Eq. 7.123) (see 
Figs. 7.73–7.75). Each IFP was repeated 100 times to check the validity 
and robustness of the results obtained. Shown in Fig. 7.72 for demonstra-
tion purposes are the histories of all 100 simulations done by DE for the 
Mandelbrot set. Original fractals for which IFP was done are not depicted 
here because the results of IFP (Figs. 7.73–7.75) are almost the same. 
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Fig. 7.72. Simulation of IFP repeated 100 times for the Mandelbrot set by DE 

Start Evolution 

Evolution End

Fig. 7.73. IFP of Mandelbrot set 
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Start Evolution 

Evolution End

Fig. 7.74. IFP of vortex 

In the context of all three basic simulations good results were obtained 
by means of DE. All three simulations were done under the presumption 
that Eqs. 7.121–7.123 are known and only parameters should be estimated. 
These presumptions are usually not valid, because in the real world there is 
no a priori known structure of Eqs. 7.121–7.123 which generates the ob-
served object.

To show that DE is able to solve IFP, including estimation of the struc-
ture of “fractal” equations, some additional simulations were done. These 
simulations were based on Eqs. 7.124–7.126: 

>∈<∈
++=+

3,0,,,&""&""
1

edbaCczwhere

czdzaz e
n

b
nn

(7.124)

>∈<∈
+++=+

3,0,,,,,&""&""
1

gfedbaCczwhere

czfzdzaz g
n

e
n

b
nn

(7.125)

]1,0[,&3,0,,,&""&""
1

∈>∈<∈
++=+

gfedbaCczwhere

czdgzafz e
n

b
nn

(7.126)



7.11 Inverse Fractal Problem      493 

Start Evolution 

Evolution End

Fig. 7.75. IFP of spider 

The first equation, Eq. 7.124, is basically Eq. 7.121 enriched with an 
additional term as well as Eq. 7.125 and Eq. 7.126. IFP simulations based 
on Eqs. 7.124–7.125 demonstrate by their numerical and graphical outputs 
(Table 7.19, Fig. 7.76) that the same fractal can be generated by different 
equations, which can be called “redundant” for the sake of additional 
terms, which are not needed for generation of the final fractal structure.  

If the different equations can generate the same fractal, then the question 
arises: “how can one select the optimal equation (not redundant) of all pos-
sible equations?” There is probably more than one approach to solving this 
problem. Here the simplest one is discussed and demonstrated. The main 
idea is that redundant terms can be “disabled” from the equation during 
evolutionary searching for IFP. This disabling is satisfied by converting 
Eq. 7.124 to Eq. 7.126 by means of additional parameters f and g which 
belong to the discrete set [0,1]. Their values in multiplication are responsi-
ble for disabling or enabling the appropriate term in the relevant equation. 
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Table 7.19. IFP simulations, selected results of 100 repeated simulations. 

a) Eq. 7.124 b) Eq. 7.125 c) Eq. 7.126 

Fig. 7.76. Graphical “output” of simulations based on Eqs. 7.124–7.126, selected 
results of 100 repeated simulations. 

The results in Table 7.19, selected from 100 repeated simulations, show 
that this approach is viable because parameter f = 0, i.e., the first term in 
Eq. 7.126 is disabled, and because g = 1 the second term in Eq. 7.126 is 
enabled. It can be seen that the enabled second term has exactly the same 
parameters as the Mandelbrot set which was identified originally. The 
graphical representation of the finally identified and consequently gener-
ated structure appears in Fig. 7.76c.

Software Support 

All the above-mentioned examples are supported in the C language, a 
Mathematica environment notebook and are accessible on the Internet (Ze-
linka 2002b). In C++ for running IFP special initial files have to be used. 
The syntax for their use in a DOS environment is “Der1b IFP”. For DE, 
version DE/Rand1//Bin is used (remaining versions are in development 
now). Term IFP represents one of the three names of initializing files, i.e., 
“Mandelbrot”, “Vortex” or “Spider”. After completion two files will be 

IFP simulation according to equation Estimated 
parameters Eq. 7.124 Eq. 7.125 Eq. 7.126 

a 0.53743 0.01714 0.45900 
b 1.94713 2.96700 2.26800 
d 0.50508 0.06780 1.03154 
e 2.08631 0.00600 2.00110 
f – 1.02654 0 
g – 1.99800 1 
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created with extension *.HST and *.OUT (where * represents the appro-
priate name of the IFP initial file). In the HST file the history of the evolu-
tion (migration loops or generations) is shown. In the OUT file is a report 
with all the details about the simulation including estimated parameters. 
The content of initializing files can be changed, but it is important to re-
member that results can differ from simulation to simulation because the 
parameters of the algorithm may be modified. For more details see Zelinka 
(2002b).

The cost function of, for example, the Mandelbrot set is shown in Fig. 
7.77. Code for other fractals is similar to this one. 

For the Mathematica environment Zelinka (2002b) provides an accessi-
ble notebook which contains the DE, some examples and selected simula-
tions of basic IFP depicted in this section. All-important information on 
how to handle this notebook is given on the web site. 

7.11.2 Conclusion 

In this contribution the inverse fractal problem was solved by means of a 
differential evolution algorithm. Two kinds of inverse fractal problem 
simulations were undertaken using differential evolution. Both sets of 
simulations were based on the time escape algorithm, which is the source 
of colored fractals. This algorithm was chosen because of its “complemen-
tarity” with the algorithm called the iterated function system (Barnsley 
1993) or multiple reduction copy machine (Peitgen et al. 1992). The term 
“complementarity” here means that the iterated function system (or multi-
ple reduction copy machine) can be converted into the time escape algo-
rithm and vice versa (Barnsley 1993). In the case of the time escape algo-
rithm it is easier to build up the cost function – the main reason why this 
algorithm was chosen for the inverse fractal problem. 

The first set of simulations focused on identification of appropriate pa-
rameters with a priori knowledge of the equation structure. Three well-
known fractals, i.e., the Mandelbrot set (Eq. 7.121), vortex (Eq. 7.122) and 
spider (Eq. 7.123), were selected for these simulations. According to re-
sults from the simulations in Figs. 7.72–7.75 it can be seen that the inverse 
fractal problem is solvable by means of differential evolution as well as by 
other evolutionary algorithms. In the second set of simulations attention 
was focused on parameter estimation as well as on optimal equation struc-
ture. Results were again satisfactory. Despite the fact that the simulations 
here can look like easy ones, results show that the inverse fractal problem 
is solvable quite well if the appropriate technique is used.  
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//Inverse Fractal Problem - Mandelbrot 
//See http://www.ft.utb.cz/people/zelinka/soma.htm 
//**  Mandelbrot for constant k and power n -> kz^2-c  ** 

#ifdef __cplusplus 
  #include <complex.h> 
#endif
double absval,Im,Re,incIm,incRe,m,n; 
int        TEA,UserArea,UserNunmIts,Org,Ident,Difference; 
#ifdef __cplusplus /* if C++, use class complex */ 
complex Mand(0,0); 
complex MandOrg(0,0); 
complex C(0,0); 
complex COrg(0,0); 

m=getPopulation(0,Individual);
n=getPopulation(1,Individual);
UserArea=10;
UserNunmIts=50;
Difference=0;
for(Im=-2;Im<0.5+incIm;Im=Im+incIm)
 for(Re=-1;Re<1+incRe;Re=Re+incRe) 
   { 
   Org=Ident=0; 
   Mand = complex(0,0); 
   C = complex(Re,Im); 
   MandOrg = complex(0,0); 
   COrg = complex(Re,Im); 
   for(TEA=0;TEA<UserNunmIts;TEA++) 
   { 
      if(Ident=0) 
         { 
         if(abs(Mand)>UserArea) 
         Mand = m * pow(Mand,n) + C; 
         Ident=1; 
         } 
      if(Org=0) 
         { 
         if(abs(MandOrg)>UserArea) 
         MandOrg = 1 * pow(MandOrg,2) + COrg; 
         Org=1; 
         } 
      } 
   Difference = Difference + abs(Org-Ident); 
   } 
CostValue=Difference;
#endif

Fig. 7.77. Cost function for “Mandelbrot set” in the C language, see Zelinka 
(2002b). 

From a general point of view the inverse fractal problem is not just an 
“academic toy” because its use can be very practical. Future possible uses 
lie for example in computer vision (Zelinka 1999b, 1999c) where the se-
lected object in the digital picture can be described by fractal geometry. 
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This type of description consists in high compression of the object de-
scribed (see the fern, 24 numbers in the fractal approach or megabytes in, 
for example, the bitmap description) without loss of any information about 
its structure. In standard computer vision methods this is a problem. The 
object is usually described roughly (low amount of data, no information 
about structure) or described in high detail (huge amount of data) and the 
object classification based on such a large data set is thus problematic. For 
more details see Hlavá  and Šonka (1992) and Zelinka (1999b, 1999c). 
Another possible use of the inverse fractal problem is in fitting missing 
data if a data set has fractal properties. For more details see fractal interpo-
lation in Arneodo et al. (1995). 

The simulations done here can be taken as basic simulations, which 
show not only how the inverse fractal problem can be solved and to what 
quality, but also how robust differential evolution is in finding the global 
extreme.  
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7.12 Active Compensation in RF-Driven Plasmas by 
Means of Differential Evolution 

Ivan Zelinka and Lars Nolle 

Abstract. In this section two different stochastic optimization methods are 
discussed and compared. They were applied to the deduction of 14 Fourier 
terms in a radio-frequency (RF) waveform to tune a Langmuir probe. 
Langmuir probes are diagnostic tools used to analyze the electron energy 
distribution in plasma processes. RF plasmas are inherently nonlinear, and 
many harmonics of the driving fundamental are generated in the plasma. 
RF components across the probe sheath distort the measurements made by 
the probes. To improve the quality of the measurements, these RF compo-
nents must be removed. In this research, this was achieved by applying an 
RF signal to the probe tip that matches both the phase and amplitude of the 
driving RF signal. It also had to match the waveform of the plasma, which 
is determined by the nonlinearity of the plasma. Here, seven harmonics are 
used to generate the waveform. Therefore, 14 mutually interacting parame-
ters (seven phases and seven amplitudes) had to be tuned on-line. In this 
work, two stochastic optimization algorithms were used for automated tun-
ing of the probe – simulated annealing (SA) and differential evolution 
(DE). SA was previously used for this problem, whereas DE was chosen 
and compared with SA because of its reported global optimization per-
formance.

7.12.1 Introduction 

Radio-frequency (RF) driven discharge plasmas, which are partially ion-
ized gases that are not in thermal equilibrium with their surroundings, are 
widely used in the material processing industry for etching, deposition and 
surface treatment, e.g., in the semiconductor industry. In order to achieve 
best-quality products, it is essential for users of such plasmas to have tight 
control over the plasma and hence they need appropriate diagnostic tools 
in order to close the control loop. Better diagnostics lead to better control 
of the plasma and hence to better-quality products. In this work, simulated 
annealing (SA) and differential evolution (DE) are used and compared to 
control a Langmuir probe, which is a diagnostic measurement system for 
industrial RF-driven plasma systems. 
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7.12.2 RF-Driven Plasmas 

Under normal conditions gases do not conduct electrically. Almost all 
electrons are bound to atoms or molecules. If, however, electrons are in-
troduced and given enough energy by an external power source (e.g., elec-
tromagnetic fields, light, heat, etc.), then they have the potential on collid-
ing with gas atoms or surfaces to release more electrons, which themselves 
may release other electrons. This resulting electrical breakdown is known 
as an avalanche effect. The ionized gas or plasma so formed is now con-
ducting.

In the case of industrial RF-powered plasmas, an RF generator is used 
as an external power source, usually operating at 13.56 MHz. The use of 
RF rather than DC has developed for a number of reasons including effi-
ciency and compatibility with systems in which direct electrical contact 
with the plasma is not feasible. This frequency is assigned for industrial, 
non-telecommunications use. The RF is inductively or capacitively cou-
pled into a constant gas flow through a vacuum vessel using electrodes, see 
Fig. 7.78. 

~Plasma

RF Generator

Output

Input

Massflow controller

Vacuum Vessel

Fig. 7.78. Principle of RF-driven plasmas 

The main application of RF-powered plasmas is to produce a flux of en-
ergetic ions, which can be applied continuously to a large area of a work-
piece, e.g., for etching or deposition. This flux is generated by the RF 
plasma because the mass of the electrons is only a fraction of the mass of 
the atoms, and hence they can follow the electric field, while the ions re-
spond only to slower variations in electrical structure. Electrons near the 
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electrodes can thus escape, which results in electric fields, pointing from 
the plasma to the electrodes. These fields then generate a flux of energetic 
ions.

7.12.3 Langmuir Probes 

Langmuir probes, developed in 1924 by Irving Langmuir, are one of the 
oldest probes used to obtain information about low-pressure plasma prop-
erties. They are metallic electrodes, which are inserted into a plasma. By 
applying a positive or negative DC potential to the probe, either an ion or 
an electron current can be drawn from the plasma, returning via a large 
conducting surface such as the walls of the vacuum vessel or an electrode. 
This current is used to analyze the plasma properties, e.g., for the determi-
nation of the energy of electrons, electron particle density, etc. 

The region of space charge (or sheath) that forms around a probe im-
mersed in a plasma has a highly nonlinear electrical characteristic. As a re-
sult, harmonic components of potential across this layer give rise to serious 
distortion of the probe’s signal. In RF-generated plasmas this is a major is-
sue as the excitation process necessarily leads to the space potential in the 
plasma having RF components. As a consequence of this fact a serious dis-
tortion of the probe’s signal can be observed. It is caused by harmonic 
components of potential across this layer. 

7.12.4 Active Compensation in RF-Driven Plasmas 

To eliminate the time variation of RF potential difference, which is be-
tween the probe and plasma, the probe potential has to follow that of the 
exciting RF signal (Benjamin et al. 1988). This can be achieved by super-
imposing a synchronous signal of appropriate amplitude and phase onto 
the probe tip. Because plasmas are inherently nonlinear, they generate 
many harmonics of the exciting fundamental. As a consequence, the RF 
signal necessary for satisfactory compensation has not only to match the 
amplitude and the phase of the exciting RF, but also to match the wave-
form of the harmonics generated in the plasma. 

Conveniently, the electrostatic probe and the plasma spontaneously gen-
erate a useful control signal. In the presence of plasma, an isolated electro-
static probe adopts a “floating potential”, at which it draws zero current. 
The effect of inadequate compensation on a probe in an RF plasma is to 
drive the DC potential of the probe less positive (or less negative). Thus, 
optimal tuning is identical with the probe adopting the most positive (or 
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least negative) potential. The “floating potential” is also referred to here as 
a DC bias. 

7.12.5 Automated Control System Structure and Fitness 
Function

During previous work, an additive synthesizer (harmonic box) with seven 
harmonics was developed (Nolle et al. 2002) to generate the appropriate 
waveform for a Langmuir probe system attached to a Gaseous Electronics 
Conference (GEC) reference reactor (Sobolewski 1992). Figure 7.79 
shows the schematics of the control system for waveform tuning. 

PC with Xwos system

DC Buffer

DC Bias

Harmonic Generator RF Generator

Langmuir Probe GEC Cell

Sync

Plasma

RFRF Signal

Floating Potencial

14 Control Signals

Floating Potential

Fig. 7.79. Closed control loop for waveform tuning 

The control software selects set points for the harmonic generator and 
sets the parameters using 14 D/A converter channels. The harmonic box, 
which is synchronized with the main RF power generator, outputs the re-
quired waveform to the Langmuir probe. The Langmuir probe’s floating 
potential (DC bias) is used as a fitness measure. It is read on-line via a DC 
buffer and an A/D converter by the computer system. Depending on the 
optimization algorithm used in the system, the software then calculates a 
new set point based on the actual measure of the fitness (DC bias). It can 
be seen that all the fitness evaluations are actually measurements rather 
than simulation results. This implies time restrictions on the search proc-
ess.

The 14 input parameters (seven amplitudes and seven phases) are 
strongly interacting due to the technical realization of the synthesizer and 
the nature of the problem. For example, the slightest departure from an 
ideal sinusoidal shape in one of the channels introduces harmonics. In 
practice, even after careful electronic design, it is found that there is a 
weak but significant coupling between amplitude control and phase and 
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vice versa. As a consequence, the number of points in the discrete search 
space has to be calculated as follows: 
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The D/A and A/D converters used in this project had a resolution of 12 
bits and the dimensionality of the search space was 14. Hence, the search 
space consisted of n ≈ 3.7 × 1050 search points. In this case, mapping out 
the entire search space would take approximately 1041 years with the 
plasma system used. This was clearly not an option! 

In previous work, SA was used successfully to tune the Langmuir probe 
(Nolle et al. 2002). The results could even be improved further by intro-
ducing step width adaptation to SA (Nolle et al. 2001). However, small 
variations in fitness indicated that the SA algorithm had not always found 
the precise global solution, even if it always came quite close to it. There-
fore, in this research DE (Price 1999) was used for the optimization and 
compared with SA. 

For this application domain, only simplified physical models are avail-
able. For the tuning of the Langmuir probe, these models were not accurate 
enough to simulate the complex plasma system used. Hence, the fitness 
function f could not be calculated, but was an actual measurement of the 
DC bias produced by the real process during the experiments (Fig. 7.79): 
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Therefore, the fitness value was obtained on-line from the real process. 
This means that from the observer’s point of view, the fitness function was 
basically a “black box”.  
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a)

b)

Fig. 7.80. Laboratory equipment: a computer with control software (right), wave 
synthesizer (left bottom) and oscilloscope (left top); b plasma reactor with Lang-
muir probe. 

7.12.6 Experimental Setup 

All experiments were carried out at the Oxford Research Unit, The Open 
University, UK. Figure 7.80 shows the experimental setup. Apart from the 
control system described above, a digital oscilloscope was used to measure 
the actual waveforms found by the two optimization algorithms. The con-
trol software was run on a PC under the Linux operating system. The algo-
rithms used for this experiments were written in C++ and integrated in the 
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existing Langmuir probe control software. The plasma system used was a 
standard GEC cell. 

7.12.7 Parameters and Experimental Design 

Table 7.20 shows the plasma parameters used for the experiments, whereas 
Table 7.21 states the parameter settings for the optimization algorithms. 

The parameter settings for SA were chosen to be the same as in previous 
experiments (Nolle et al. 2001). The DE parameters were then selected 
empirically (Lampinen and Zelinka 1999; Price 1999; Zelinka 2002). Find-
ing the optimum parameter settings is not an easy task, because the plasma 
drifts over time, i.e., its behavior is not constant. The plasma can change 
its behavior constantly over time as well as spontaneously. 

Table 7.20. Plasma parameters 

Plasma parameters 
Gas Argon 
Power 50 W 
Pressure 100 mTorr 
Flow rate 95 sccm 

Table 7.21. The best parameter settings used in experiments 

Simulated annealing  Differential evolution 
Tstart 25,000  CR 0.5 
Temperature coeff. 0.8  F 0.8 
Iterations per 
temperature 

50
NP 50

Smax 4000  Generations 250 
Number of particles  3   
Iterations 4000   

The experiments were designed so that for both algorithms one optimi-
zation cycle took no longer than 4 minutes, which was a requirement made 
by users of such plasma diagnostic systems. Despite the fact that the search 
time was limited to 4 minutes, approximately 12,000 cost function evalua-
tions, i.e., DC bias measurements, were achieved in one optimization run.  
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a) DE

b) SA 

Fig. 7.81. Fitness value history 
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a) DE

b) SA 

Fig. 7.82. Waveform 
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a) DE

b) SA 

Fig. 7.83. Estimated parameters and diversity 



7.12 Active Compensation in RF-Driven Plasmas      509 

7.12.8 Results 

The experimental results can be seen in Figs. 7.81–7.84 for both algo-
rithms. Figure 7.81 shows a typical search run over time. The average fit-
ness of the population, the best individual in the current generation and the 
standard deviation are given. In Fig. 7.82 the average waveform found by 
the algorithms is depicted and Fig. 7.83 shows the average values and the 
deviation for all the 14 parameters found by the algorithm. 

In Fig. 7.84 it can be seen that DE had outperformed SA not only by 
finding a greater average fitness, but also by having a smaller standard de-
viation than SA. 

Fig. 7.84. Diversity and average value of fitness value (highest DC bias). 

7.12.9 Conclusion

Two stochastic optimization algorithms, SA and DE, were used for on-line 
optimization to tune an actively compensated Langmuir probe system. 
These algorithms were selected because of the complexity of the problem. 
Based on the experimental results, which are depicted in Figs. 7.81–7.84, 
one can draw the following conclusions: 

Ability to be used. Both algorithms can be used for active compensation 
in RF-driven plasmas. However, based on the results in Figs. 7.81–7.83 it 
is clear that DE has greater potential for this task. 

Preciseness and reproducibility. One of the crucial points in science is 
reproducibility, i.e., the ability to achieve the same results for two identical 
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experiments. In practical applications like this one, a high degree of repro-
ducibility is needed. From Fig. 7.83 it can be seen that DE has a greater 
reproducibility than SA. It is also more precise than SA. 

Speed. The speed of the optimization process was not determined by the 
computer power available, but by the time constants of the analogue 
equipment, e.g., the harmonic box. Therefore, both algorithms have shown 
similar speed performance in this specific application. 

Diversity. This is closely connected with preciseness and reproducibil-
ity. From this point of view, DE performed almost three times better than 
SA. If one remembers that plasmas are highly nonlinear dynamical sys-
tems with complicated behavior, then the results produced by DE are very 
sufficient.

Although only two algorithms were used for these experiments, the time 
needed for setting up the experiments and the actual realization took 
slightly more than 2 weeks. The time needed for each experiment was 4 
minutes. This time can be reduced by using previous results, e.g., by using 
solutions from previous runs as start points for new search runs. This 
modification should be considered for future experiments with active com-
pensation in RF-driven plasmas. 
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Appendix 

This appendix contains a total of twenty test functions that have been di-
vided into three categories: unconstrained uni-modal (5), unconstrained 
multi-modal (12) and bound-constrained multi-modal (3). Functions range 
from trivially simple to very challenging. Most test functions can be evalu-
ated at more than one dimension. Each function definition includes a set of 
upper and lower initial parameter bounds. In this test bed, a function’s ini-
tial parameter bounds apply to all of its parameters. For bound-constrained 
functions, initial parameter bounds also constrain the search. 

Each test problem description also lists the minimum objective function 
value. In most cases, the minimum is independent of the function’s dimen-
sion. If, however, the objective function’s minimum depends on its dimen-
sion, then the optimal function values for selected dimensions are given. 
Problem descriptions also include a value for ε to indicate how close to the 
minimum objective value an optimizer’s best point must be before the op-
timization can be considered a success. In all cases, this value-to-reach, or 
“VTR”, is VTR = f(x*) + ε, where x* is the globally optimal vector. 

In most cases, a picture is included that illustrates the function’s two-
dimensional landscape. Usually, these two-dimensional figures provide in-
sight into the characteristics of the higher-dimensional functions, but in a 
couple of cases (e.g., Storn’s Chebyshev function) the restriction to two 
dimensions does not permit the difficulties posed by the function to be 
faithfully rendered. In some cases, figures are not possible due to technical 
reasons. Not all functions listed here are used in the text of this book, but 
all appear on the accompanying CD-ROM. 

Some functions in this appendix are taken from the test bed developed 
for the Second International Contest on Evolutionary Optimization (2nd

ICEO). The actual contest was not held due to a lack of participation, but 
code and data for functions described as 2nd ICEO functions can be found 
on both the CD-ROM that accompanies this book and on the Internet 
(Second ICEO 1997). For a moderately challenging test bed of constrained 
functions, the interested reader is referred to Michalewicz and Shoenauer 
(1996).
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A.1 Unconstrained Uni-Modal Test Functions 

This section includes five unconstrained, uni-modal test functions, none of 
which should pose a problem for a robust optimizer. Not all sources agree 
on the initial parameter bounds for these functions, but in practice these 
variations do not dramatically affect run times or the probability of suc-
cess. For many EAs, the most difficult function to optimize in this uni-
modal test bed is the generalized Rosenbrock function. In addition, some 
GAs may have problems solving Schwefel’s ridge function because it is a 
highly eccentric, rotated hyper-ellipsoid with dependent parameters. 

A.1.1 Sphere 

This simple function tests a search method’s local optimization speed and 
its response to changing dimension. To accommodate bit-encoded GAs, 
early test beds usually specified the initial parameter bounds as [–5.12,  
5.12], but Yao and Liu’s more recent and widely referenced test bed (Yao 
and Liu 1997) initializes parameters with values chosen from the interval 
[–100, 100]. 
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A.1.2 Hyper-Ellipsoid 

Some literature specifies [–5.12, 5.12] as the bounds for initializing this 
function, but this book adopts the limits given in Yao and Liu (1997). To 
decrease the eccentricity of the hyper-ellipsoid, some versions of this func-
tion use a term like (j + 1)2 as the pre-factor to xj instead of putting the pa-
rameter index in the exponent. This function can take a long time to solve 
if an optimizer cannot adapt step sizes to suit each dimension. 
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Fig. A.2. The unrotated hyper-ellipsoid 

A.1.3 Generalized Rosenbrock 

The original Rosenbrock function was just two-dimensional, but it was 
later generalized to this higher-dimensional version. The ridge in Fig. A.3 
shows that this uni-modal function is non-convex. This function exhibits 
limited parameter dependence that poses a problem for many optimizers. 
Some studies use [–2.048, 2.048], while others use [–5.12, 5.12] for initial 
parameter bounds. Yao and Liu initialized parameters with values chosen 
from [–32, 32], but initial parameter bounds were  [–30, 30] for studies in 
this book. 
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A.1.4 Schwefel’s Ridge 

When this function is posed as a minimization problem, the “ridge” in its 
landscape becomes an elliptical “valley”. For some EAs, adapting to both 
the orientation and high eccentricity of the ellipse can be a significant chal-
lenge. Some studies have used [–65.536, 65.536] as initial parameter 
bounds, but this book adopts the bounds published in Yao and Liu (1997). 
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A.1.5 Neumaier #3 

This function also displays elliptical contours that are aligned with coordi-
nate diagonals, but the optimum is not centered in the initial bounding box. 
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A.2 Unconstrained Multi-Modal Test Functions 

Uni-modal functions can reveal how an algorithm responds to dimension, 
parameter dependence and disparities in step size, but few practical prob-
lems are so simple. The following multi-modal functions range from mod-
erately challenging to very difficult depending in part on the dimension at 
which they are evaluated and on the amount of special knowledge about 
the function that an optimizer exploits. Not all functions can be evaluated 
at arbitrarily high dimensions.  

A.2.1 Ackley 

One of the most commonly cited multi-modal test functions is Ackley’s 
function. At high dimension (e.g., D ≥ 30), care must be taken with com-
puter code to ensure a precise result. For example, the constant e =
2.71828… in Eq. A.6 is best implemented as e = exp(1). Bounds are usu-
ally given as [–32, 32], but this book uses [–30, 30]. 
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Fig. A.7. The Ackley function at small scale 

Fig. A.8. Griewangk’s function 

A.2.2 Griewangk 

This mildly parameter-dependent function becomes relatively easier to 
solve as D increases. The summation term creates a parabolic bowl while 
the product of cosine terms generates the local optima. As D increases, the 
contribution from the cosine terms becomes less significant and the local 
basins of attraction become shallower. At the same time, the relative size 
of the optimal basin of attraction increases. See Whitley et al. (1996) for 
details. It is not uncommon that this function will require a relatively large 
population to forestall premature convergence. 
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Fig. A.9. Rastrigin’s function 

A.2.3 Rastrigin 

Like the Ackley and Griewangk functions, Rastrigin’s function has many 
local optima arrayed on the side of a larger bowl-shaped depression. This 
function is separable as written and easily solved by methods that can ex-
ploit decomposable functions. It is much harder to solve when rotated. 
Like Rosenbrock’s function, Rastrigin’s function is a generalization of a 
two-dimensional function. Like the Ackley and Griewangk’s functions, 
Rastrigin’s function is symmetric about its solution. Optimizers that search 
the vicinity of the mean population vector will do well on these symmetric 
functions because, like the local minima, the population will also be sym-
metrically distributed.  
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A.2.4 Salomon 

The landscape for this parameter-dependent function resembles a pond 
with ripples. Because this function is symmetric, methods that search the 
vicinity of the population’s mean vector will likely perform well.  
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A.2.5 Whitley 

Whitley’s function is a composition of the Griewangk and Rosenbrock 
functions. This implementation uses the unweighted full matrix expansion 
detailed in Whitley et al. (1996). This function’s landscape resembles 
Rosenbrock’s function at large scale and Griewangk’s function at small 
scale.
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A.2.6 Storn’s Chebyshev 

The goal of this 2nd ICEO problem (Second ICEO 1997) is to find the coef-
ficients of a polynomial such that the value of the polynomial oscillates be-
tween 1 and –1 as its argument, z, varies in the same range. In addition, the 
polynomial’s value is also constrained when z = 1.2 and z = –1.2. The solu-
tion gives the coefficients of a Chebyshev polynomial. The coefficients for 
a Chebyshev polynomial of degree D – 1 can be expressed recursively as 
TD + 1(z) = 2z⋅TD(z) – TD – 1(z), D > 0 and odd, T0(z) = 1, T1(z) = z. The ob-
jective function is designed as a three-term error function. The term, pk, is 
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the sum of m + 1, regularly sampled, squared deviations of the trial vec-
tor’s objective function value in the [–1, 1] containment zone. Optimal pa-
rameter values for this problem grossly differ in magnitude. The picture of 
the two-dimensional version of this function does not give any indication 
of the multiple local optima that occur at higher dimensions. 
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A.2.7 Lennard-Jones 

This problem is based on the Lennard-Jones atomic potential energy func-
tion. The goal is to position n atoms in three-dimensional space to mini-
mize their total potential energy. Since neither the cluster’s position nor its 
orientation is specified, optimal parameter values are not unique. 
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Table A.1. Optimal function values for n=2 to n=19 “atoms” 

n         f(x*) n       f(x*)
2 −1.0 11 −37.967600
3 −3.0 12 −44.326801
4 −6.0 13 −47.845157
5 −12.712062 14 −52.322627
6 −16.505384 15 −56.815742
7 −19.821489 16 −61.317995
8 −24.113360 17 −66.530949
9 −28.422532 18 −72.659782

10 −32.765970 19 −77.177704
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A.2.8 Hilbert 

The elements of an n×n Hilbert matrix, H, are hi,j=1 / (i + j + 1), i = 0, 1, 2,  
…, n – 1, j = 0, 1, 2, …, n – 1. The goal of this problem is to find H-1, the 
inverse Hilbert matrix. Because it is ill defined, H-1 becomes increasingly 
difficult to accurately compute as n increases. For this function, parameters 
in x (D = n2) are first are mapped to a square matrix, Z. Next, the identity 
matrix, I, is subtracted from the matrix product HZ. The (error) function 
returns the sum of the absolute value of the elements of W = HZ–I. Like 
the Chebyshev problem, parameter values are of grossly different magni-
tude. Equation A.13 provides a sample result for D = 9 (n = 3). 

( )

( )

( )
( )

( )

.3for,

180180-30

180-19236-

3036-9

,0

,100.1,1,...,1,0,22

,,

,,1,...,1,0,,
1

1
,

...100

0...10

0...01

,

,

*

*

8

,,

2
,,

,

1

0

1

0
,

==

=

×=−=≤≤−

==

=−=
++

==

===−

=

−

+

−

=

−

=

n

f

Djx

xzz

nDnki
ki

hh

w

wf

D
j

D

nkikiki

kiki

ki

n

i

n

k

ki

Z

x

Z

H

IWIHZ

x

ε

(A.13)

A.2.9 Modified Langerman 

This 2nd ICEO function (Second ICEO 1997) function relies on a vector (c
in Table A.2) and a matrix (A in Table A.3) of real-valued constants. The 
vector, c, contains thirty constants, while A is a matrix that contains the 
coordinates of thirty points in ten dimensions. Points are indexed by rows 
and coordinates are indexed by columns, e.g., numbers in the kth row are 
the coordinates of the point Ak, k = 0, 1, 2, …, 29. The optimum is the 



A.2 Unconstrained Multi-Modal Test Functions      527 

point in A that has the lowest corresponding value of c. Although origi-
nally designed to use all thirty points in A, this implementation, like the 
code posted for the 2nd ICEO, uses only the first five. Data for both c and 
A are available on the CD-ROM that accompanies this book. 
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Fig. A.15. The Modified Langerman function 

Table A.2. Values for c=(ck)

k    ck k    ck k    ck k    ck k    ck

0 0.806 6 0.524 12 0.463 18 0.828 24 0.332 
1 0.517 7 0.902 13 0.714 49 0.964 25 0.817 
2 0.100 8 0.531 14 0.352 20 0.789 26 0.632 
3 0.908 9 0.876 15 0.869 21 0.360 27 0.883 
4 0.965 10 0.462 16 0.813 22 0.369 28 0.608 
5 0.669 11 0.491 17 0.811 23 0.992 29 0.326 
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Table A.3. Values for A=(aj,k). The columns are counted by j (parameter index) 
while the points, Ak, are numbered by row and are counted by k.

9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020 
9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374 
8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982 
2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426 
8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567 
7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208 
1.256 3.605 8.623 6.905 4.584 8.133 6.071 6.888 4.187 5.448 
8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762 
0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637 
7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247 
0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016 
2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789 
8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109 
2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564 
4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670 
8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826 
8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591 
4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740 
2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675 
6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258 
0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070 
5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234 
3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027 
8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064 
1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224 
0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644 
0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229 
4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506 
9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732 
4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500 

A.2.10 Shekel’s Foxholes 

This 2nd ICEO version of the Shekel’s foxholes function (Second ICEO 
1997) also relies on the set of points listed in A and on the constants in c,
but unlike the Modified Langerman function, this function uses all thirty 
points. Minima for both D = 5 and D = 10 are provided below. This func-
tion is hard for optimizers that tend to prematurely converge. 
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Fig. A.16. The Shekel’s foxholes function 

A.2.11 Odd Square 

This 2nd ICEO function (Second ICEO 1997) resembles Salomon’s func-
tion except that the ripples are rectangular, not circular. Because the Odd 
Square is symmetric about the solution, methods that search the vicinity of 
the population’s mean vector will likely do well on this problem. In 
Eq. A.16, d is D times the square of the single, largest coordinate differ-
ence between the trial vector and the center point, b.
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Fig. A.17. The Odd Square function 

A.2.12 Katsuura 

To be computed accurately, this function needs a floating-point format that 
supports more than 32 bits of precision when m ≥ 32. The function “nint()” 
returns the nearest integer to the argument. 
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A.3 Bound-Constrained Test Functions 

A.3.1 Schwefel 

This classic test function has a solution that lies on a coordinate system di-
agonal. In this version, the objective function is normalized by D so that 
f(x*) is the same regardless of dimension. Success here can depend heavily 
on how bound constraints are handled. This function is separable. 
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Fig. A.18. Schwefel’s function 

A.3.2 Epistatic Michalewicz 

This 2nd ICEO function (Second ICEO 1997) also has a solution that lies 
near the limits of the allowed search space. 
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Fig. A.19. The epistatic Michalewicz function 

A.3.3 Rana 

This is one of the extended functions described in Whitley et al. (1996) in 
which a two-dimensional primitive function is evaluated with consecutive 
pairs of parameters, e.g., (0, 1), (1, 2), …, (D – 1, 0), so that the last term 
pairs the trial vector’s first and last parameters (a “full-wrap” evaluation). 
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Fig. A.20. Rana’s function  

References

Michalewicz Z, Shoenauer M (1996) Evolutionary algorithms for constrained pa-
rameter optimization problems. Evolutionary Computation 4(1):1–32; the test 
problems are also  available via the Internet at:  
http://www.lut.fi/~jlampine/testset.pdf 

Second ICEO (1997) Code for 2nd ICEO test functions is available via the Internet 
at: http://iridia.ulb.ac.be/~aroli/ICEO/Functions/Functions.html 

Yao X, Liu Y (1997) Fast evolution strategies. In: Angeline PJ, Reynolds RG, 
McDonnell JR, Eberhart R (eds) Evolutionary programming VI, Lecture notes 
in computer science 1213, Springer, Berlin, pp 151–161 

Whitley D, Mathias K, Rana S, Dzubera J (1996) Evaluating evolutionary algo-
rithms. Artificial Intelligence 85:1–32 



Index

a posteriori weight, 245 
a priori weight, 245 
Ackley’s function, 115, 142, 146, 

154, 155, 156, 161, 165, 518 
adaptive penalty, 203 
adjacency matrix, 233 
AES, 139 
age-based replacement, 119 
annealing schedule, 19 
arithmetic recombination, 67, 73, 

91, 104 

backward transformation, 233 
barrier function, 206 
base index, 38 
base vector selection, 61, 72 
benchmarking, 135 
binary genetic algorithm, 372 
binomial crossover, 95 
bipartite graph, 414 
bit string encoding, 48 
bounce back, 204 
boundary constraints, 202 
breeder genetic algorithm, 51 
brick wall penalty, 203 
brute force method, 13 

Cauchy distribution, 52 
center index, 242 
centroid, 23, 29 
Chebyshev, 55, 86, 116, 142, 147, 

154, 155, 156, 293, 305 
classic DE, 41, 42 
clustering method, 20 
combinatorial optimization, 227 
combinatorial problem, 227 
complex, 28 

compressor supply system, 339 
conjugate gradient method, 11 
constrained optimization, 201 
constraint relaxation, 210 
constraint satisfaction, 208, 223 
constraints, 201 
continuous recombination, 67, 91 
contour matching, 44 
controlled random search, 29 
convergence plot, 137 
correlation matrix, 22 
cost function, 1 
covariance matrix, 22, 59 
crossover, 92 
crossover probability, 39, 76 

data flow diagram, 291, 300 
decomposable function, 22 
degenerate vector combination, 65 
degree distribution, 416 
DeMat, 287 
density clustering, 20 
derivative based optimization, 6 
design centering, 239 
DeWin, 295 
difference vector, 38 
difference vector distribution, 44 
differential evolution, 30, 37 
differential mutation, 38, 74 
diffusion model, 269 
digital filter, 199, 224, 429 
dimensionality, 2 
direct constraint handling, 210 
direct search, 12, 465 
discrete recombination, 39 
dither, 80 
divergence, 240 



536      Index 

downhill simplex, 384, 385, 465 
drift, 259 
dual crossover, 92 
dynamic objective function, 255 

earthquake hypocenter, 379 
earthquake relocation, 176 
either/or algorithm, 117 
elimination of variables, 220 
elitism, 120 
ENES, 138 
enumeration, 13 
epistasis, 23 
epistatic Michalewicz function, 531 
equality constraints, 201, 220 
erasure codes, 413 
error function, 1 
evolutionary algorithm, 20 
exclusive or, 234 
expansion step, 24 
exponential crossover, 93 
extended intermediate 

recombination, 105 

far initialization, 53, 60 
farming model, 268 
filter, 4 
finite element method, 454 
fitness function, 1 
fitness proportional selection, 122 
FIWIZ, 199, 429 
floating point, 50 
flowgraph, 43 
forward transformation, 233 
function quantization, 189 

Gaussian distribution, 14, 21, 52, 59, 
79, 81 

genetic algorithm, 313 
global discrete recombination, 92 
global selection, 124 
gradient vector, 6 
Gray code, 49 
Griewangk’s function, 117, 142, 

148, 154, 155, 156, 162, 165, 519  

Halton point, 56 
Hammersley point, 56 
Hamming distance, 49 
Hessian matrix, 7 
Hilbert function, 116, 526 
Hooke and Jeeves, 15 
hyper-ellipsoid, 83, 84, 115, 127, 

142, 143, 154, 155, 156, 515 
hyper-ellipsoid, rotated, 84, 99, 102, 

104 
hypersphere, 82 

ICEO, 136 
image registration, 179, 393 
inequality constraints, 201, 206 
initialization, 38, 53 
intermediate recombination, 21 
inverse fractal problem, 479 

jitter, 80 

Katsuura’s function, 530 
knock-out competition, 123 

L2 norm, 380 
Langerman’s function, 142, 150, 

154, 155, 156, 526 
Langmuir probe, 501 
least mean square, 260 
Lennard-Jones function, 115, 142, 

153, 154, 155, 156, 525 
Levenberg-Marquardt method, 465 
limited resource, 276 
line recombination, 105, 106 
linear programming, 419 
local selection, 124 
log-normal distribution, 88 

magnetic bearing, 447 
masking of minima, 197 
master process, 273 
Mathematica, 30 
memory saving DE, 282 
Metropolis algorithm, 19 
migration, 268 



References      537 

mixed variables, 201 
modality, 2 
modified DE, 342 
Monte Carlo method, 465 
multi-modal, 2, 16 
multi-objective DE, 250 
multi-objective optimization, 244 
multi-sensor fusion, 175, 353 
multi-start technique, 19 
mutation, 38 
mutation constraint, 108 
mutation operation, 29, 32 
mutation rate, 97 
mutation scale factor, 75 

nabla operator, 6 
Nelder and Mead, 23, 111, 384 
Neumaier, 517 
No Free Lunch (NFL) theorem, 136 
non-dominated solution, 247 
non-uniform quantization, 191 
normalization constraint, 107 
notation, 47 
N-point crossover, 93 

objective function, 1 
objective function evaluation noise, 

258 
objective function quantization, 192 
odd square, 116, 529 
one-point crossover, 93 
one-to-one selection, 122 
optical design, 327 

parallel DE, 127, 267, 401 
parameter dependence, 2, 23, 51, 99 
parameter noise, 257 
parameter quantization, 1, 189, 195 
parameter representation, 48 
parent selection, 118 
Pareto optimality, 246 
Pareto-DE, 254 
Pareto-dominance, 246 
Pareto-front, 246, 247 
particle swarm optimization, 123 
pattern search, 15 

peaks function, 16, 45 
penalty method, 202, 222 
permutation generator, 279 
permutation matrix, 230 
permutation selection, 63, 124 
phase portrait, 112, 142 
polyhedron search, 23 
polynomial fitting problem, 293, 

305 
pooling, 239 
Powell’s method, 384, 385 
power law distribution, 90 
problem domains, 189 
progress plot, 137 
progressive weight, 245 

quantization, 189 
Quasi-Newton methods, 10 

Rana’s function, 532 
random number generator, 276 
random offset selection, 63 
random re-initialization, 204 
random walk, 14 
Rastrigin’s function, 142, 149, 154, 

155, 156, 163, 165, 520 
recombination, 91 
recombination constraint, 109 
reflection operation, 23, 29 
region of acceptability, 215, 239 
relative position indexing, 231 
replacement, 119 
resetting scheme, 202 
RF plasma, 499 
ridge function, 516 
ROA, 215, 239 
Rosenbrock, 114, 142, 145, 154, 

155, 156, 159, 165, 294, 515 
rotational invariance, 101 
roulette wheel selection, 61 

Salomon’s function, 521 
scatter matrix, 22 
Schwefel’s function, 163, 165, 531 
selection, 32, 118 
selection neighborhood, 124 



538      Index 

selection pressure, 125 
self-affine, 480 
self-similar, 480 
self-steering, 239 
sequential DE, 399 
Shekel’s foxholes, 116, 142, 151, 

154, 155, 156, 528 
Si–H cluster, 313 
simplex, 23 
simulated annealing, 6, 18, 313, 465, 

499 
sorting, 282 
speedup, 271 
sphere, 193, 514 
stagnation, 79, 195 
standard model, 268, 271 
starting point problem, 17 
stationary distribution, 256 
steepest descent, 9 
step size, 79 
step size problem, 10 
stochastic universal sampling, 61 
Storn’s Chebyshev, 523 
strategy parameter, 23 
strongly efficient, 246 
survival criteria, 119 
survivor selection, 119 

table-based quantization, 192 
target vector, 40, 67 

Taylor series, 7 
termination criteria, 128 
test bed, 142 
testing, 135 
three-vector recombination, 108 
tight-binding model, 315 
tournament selection, 121 
transposition, 122 
Traveling Salesman Problem (TSP), 

229 
trial vector, 30, 40 
TSP matrix, 234 
two-exchange, 236 

uniform arithmetic recombination, 
105 

uniform crossover, 39, 92, 95 
uniform distribution, 56, 89 
uniform quantization, 190 
uni-modal, 2, 8 
urn algorithm, 125, 279 

value-to-reach (VTR), 138 
Whitley’s function, 115, 142, 152, 

154, 155, 156, 522 

X-ray reflectivity, 463 

Zaharie, 75, 192, 240 



Natural Computing Series

W.M. Spears: Evolutionary Algorithms. The Role of Mutation and Recombination.
XIV, 222 pages, 55 figs., 23 tables. 2000

H.-G. Beyer: The Theory of Evolution Strategies. XIX, 380 pages, 52 figs., 9 tables. 2001

L. Kallel, B. Naudts, A. Rogers (Eds.): Theoretical Aspects of Evolutionary Computing.
X, 497 pages. 2001

G. Paun: Membrane Computing. An Introduction. XI, 429 pages, 37 figs., 5 tables. 2002

A.A. Freitas: Data Mining and Knowledge Discovery with Evolutionary Algorithms.
XIV, 264 pages, 74 figs., 10 tables. 2002

H.-P. Schwefel, I. Wegener,  K. Weinert (Eds.): Advances in Computational Intelligence.
Theory and Practice. VIII, 325 pages. 2003

A. Ghosh,  S. Tsutsui (Eds.): Advances in Evolutionary Computing. Theory and
Applications. XVI, 1006 pages. 2003

L.F. Landweber,  E. Winfree (Eds.): Evolution as Computation. DIMACS Workshop,
Princeton, January 1999. XV, 332 pages. 2002

M. Hirvensalo: Quantum Computing. 2nd ed., XI, 214 pages. 2004 (first edition
published in the series)

A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing. XV, 299 pages. 2003

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in Living
Cells. Gene Assembly in Ciliates. XIV,  202 pages. 2004

L. Sekanina: Evolvable Components. From Theory to Hardware Implementations.
XVI, 194 pages. 2004

G. Ciobanu, G. Rozenberg (Eds.): Modelling in Molecular Biology.  X,  310 pages. 2004

R.W. Morrison: Designing Evolutionary Algorithms for Dynamic Environments.
XII, 148 pages, 78 figs. 2004

R. Paton†, H. Bolouri, M. Holcombe, J.H. Parish, R. Tateson (Eds.): Computation in Cells
 and Tissues. Perspectives and Tools of Thought.  XIV,  358 pages, 134 figs. 2004

M. Amos: Theoretical and Experimental DNA Computation. XIV, 170 pages, 78 figs. 2005

M. Tomassini: Spatially Structured Evolutionary Algorithms. XIV, 192 pages, 91 figs.,
21 tables. 2005

G. Ciobanu, G. Paun, M.J. Pérez-Jiménez (Eds.): Applications of Membrane Computing.
X, 441 pages, 99 figs., 24 tables. 2006

K. V. Price, R. M. Storn, J. A. Lampinen: Differential Evolution. XX, 538 pages,
292 figs., 48 tables and CD-ROM. 2006

A. Brabazon, M. O’Neill: Biologically Inspired Algorithms for Financial Modelling.
XVI, 275 pages, 92 figs., 39 tables. 2006

°

°



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [439.200 666.000]
>> setpagedevice




