

Natural Computing Series
Series Editors: G. Rozenberg
Th. Bäck A.E. Eiben J.N. Kok H.P. Spaink

Leiden Center for Natural Computing

Advisory Board: S. Amari G. Brassard K.A. De Jong
C.C.A.M. Gielen T. Head L. Kari L. Landweber T. Martinetz
Z. Michalewicz M.C. Mozer E. Oja G. Paun J. Reif H. Rubin
A. Salomaa M. Schoenauer H.-P. Schwefel C. Torras
D. Whitley E. Winfree J.M. Zurada

°

C C
N

Kenneth V. Price ·Rainer M. Storn
Jouni A. Lampinen

Differential Evolution

With 292 Figures, 48 Tables and CD-ROM

APractical Approach to Global Optimization

123

Library of Congress Control Number: 2005926508

 ACM Computing Classification (1998): F.1–2, G.1.6, I.2.6, I.2.8, J.6

ISBN-10 3-540-20950-6 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-20950-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting,
reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9,
1965, in its current version, and permission for use must always be obtained from Springer. Violations
are liable for prosecution under the German Copyright Law.
The publisher and the authors accept no legal responsibility for any damage caused by improper
use of the instructions and programs contained in this book and the CD-ROM. Although the
software has been tested with extreme care, errors in the software cannot be excluded.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover Design: KünkelLopka, Werbeagentur, Heidelberg
Typesetting: by the Authors
Production: LE-TEX Jelonek, Schmidt & Vöckler GbR, Leipzig
Printed on acid-free paper 45/3142/YL – 5 4 3 2 1 0

Authors
Kenneth V. Price

Owl Circle 836
Vacaville, CA 95687
USA

Rainer M. Storn

Rohde & Schwarz GmbH & Co.KG
Mühldorfstraße 15
81671 München
Germany

Jouni A. Lampinen

Lappeenranta University of Technology
Department of Information Technology
P.O.Box 20
53851 Lappeenranta
Finland

Series Editors

G. Rozenberg (Managing Editor)

rozenber@liacs.nl

Th. Bäck, J.N. Kok, H.P. Spaink

Leiden Center for Natural Computing
Leiden University
Niels Bohrweg 1
2333 CA Leiden,
The Netherlands

A.E. Eiben

Vrije Universiteit Amsterdam

KP: To my father

RS: To my ever-supportive parents, to my beloved wife, Marion, and to
my wonderful children, Maja and Robin

JL: To the memory of my little dog and best friend Tonique, for all the
happy countryside and city memories we shared

Preface

Optimization problems are ubiquitous in science and engineering. What
shape gives an airfoil maximum lift? Which polynomial best fits the given
data? Which configuration of lenses yields the sharpest image? Without
question, very many researchers need a robust optimization algorithm for
solving the problems that are fundamental to their daily work.

Ideally, solving a difficult optimization problem should not itself be dif-
ficult, e.g., a structural engineer with an expert knowledge of mechanical
principles should not also have to be an expert in optimization theory just
to improve his designs. In addition to being easy to use, a global optimiza-
tion algorithm should also be powerful enough to reliably converge to the
true optimum. Furthermore, the computer time spent searching for a solu-
tion should not be excessive. Thus, a genuinely useful global optimization
method should be simple to implement, easy to use, reliable and fast.

 Differential Evolution (DE) is such a method. Since its inception in
1995, DE has earned a reputation as a very effective global optimizer.
While DE is not a panacea, its record of reliable and robust performance
demands that it belongs in every scientist and engineer’s “bag of tricks”.

 DE originated with the Genetic Annealing algorithm developed by
Kenneth Price and published in the October 1994 issue of Dr. Dobb’s

Journal (DDJ), a popular programmer’s magazine. Genetic Annealing is a
population-based, combinatorial optimization algorithm that implements
an annealing criterion via thresholds. After the Genetic Annealing algo-
rithm appeared in DDJ, Ken was contacted by Dr. Rainer Storn, (then with
Siemens while at the International Computer Science Institute at the Uni-
versity of California at Berkeley; now at Rohde & Schwarz GmbH, Mu-
nich, Germany) about the possibility of using Genetic Annealing to solve
the Chebyshev polynomial fitting problem. Determining the coefficients of
the Chebyshev polynomials is considered by many to be a difficult task for
a general-purpose optimizer.

Ken eventually found the solution to the five-dimensional Chebyshev
problem with the Genetic Annealing algorithm, but convergence was very
slow and effective control parameters were hard to determine. After this
initial find, Ken began modifying the Genetic Annealing algorithm to use
floating-point instead of bit-string encoding and arithmetic operations in-

VIII Preface

stead of logical ones. He then discovered the differential mutation operator
upon which DE is based. Taken together, these alterations effectively
transformed what had been a combinatorial algorithm into the numerical
optimizer that became the first iteration of DE. To better accommodate
parallel machine architectures, Rainer suggested creating separate parent
and child populations. Unlike Genetic Annealing, DE has no difficulty de-
termining the coefficients of even the 33-dimensional Chebyshev polyno-
mial.

DE proved effective not only on the Chebyshev polynomials, but also
on many other test functions. In 1995, Rainer and Ken presented some
early results in the ICSI technical report TR-95-012, “Differential Evolu-
tion – A Simple and Efficient Adaptive Scheme for Global Optimization
over Continuous Spaces”. These successes led Rainer and Ken to enter DE
in the First International Contest on Evolutionary Optimization in Nagoya,
Japan, that was held during May of 1996 in conjunction with the IEEE In-
ternational Conference on Evolutionary Computation. DE finished third
behind two methods that scored well on the contest functions, but which
were not versatile enough to be considered general-purpose optimizers.
The first-place method explicitly relied on the fact that the contest func-
tions were separable, while the second-place algorithm was not able to
handle a large number of parameters due to its dependence on Latin
squares. Buoyed by this respectable showing, Ken and Rainer wrote an ar-
ticle on DE for DDJ that was published in April 1997 (Differential Evolu-
tion - A Simple Evolution Strategy for Fast Optimization). This article was
very well received and introduced DE to a large international audience.

Many other researchers in optimization became aware of DE’s potential
after reading, “Differential Evolution – A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces”, by Rainer and Ken.
Published in the December 1997 issue of The Journal of Global Optimiza-

tion, this paper gave extensive empirical evidence of DE’s robust perform-
ance on a wide variety of test functions. Also about this time, Rainer estab-
lished a DE web site (http://www.icsi.berkeley.edu/~storn/code/html) to
post code, links to DE applications and updates for the algorithm.

Ken entered DE in the Second International Contest on Evolutionary
Optimization that was to be held in Indianapolis, Indiana, USA in April
1997. A lack of valid entries forced the cancellation of the actual contest,
although those that qualified were presented. Of these, DE was the best
performer. At this conference, Ken met Dr. David Corne who subsequently
invited him to write an introduction to DE for the compendium, New Ideas

in Optimization (1999). Since then, Ken has focused on refining the DE
algorithm and on developing a theory to explain its performance. Rainer
has concentrated on implementing DE on limited-resource devices and on

Preface IX

creating software applications in a variety of programming languages. In
addition, Rainer has explored DE’s efficacy as a tool for digital filter de-
sign, design centering and combinatorial optimization.

Prof. Jouni Lampinen (Lappeenranta University of Technology, Lap-
peenranta, Finland) began investigating DE in 1998. In addition to con-
tributing to the theory on DE and demonstrating DE’s effectiveness as a
tool for mechanical engineering, Jouni has also developed an exceptionally
simple yet effective method for adapting DE to the particular demands of
both constrained and multi-objective optimization. Jouni also maintains a
DE bibliography (http://www.lut.fi/~jlampine/debiblio.html).

Like DE, this book is designed to be easy to understand and simple to
use. It details how DE works, how to use it and when it is appropriate.
Chapter 1, “The Motivation for DE”, opens with a statement of the general
optimization problem that is followed by a discussion of the strengths and
weaknesses of the traditional methods upon which DE builds. Classical
methods for optimizing differentiable functions along with conventional
direct search methods like those of Hooke–Jeeves and Nelder–Mead are
discussed. Chapter 1 concludes with a look at some of the more advanced
optimization techniques, like simulated annealing and evolutionary algo-
rithms.

Chapter 2, “The Differential Evolution Algorithm”, introduces the DE
algorithm itself, first in an overview and then in detail. Chapter 3,
“Benchmarking DE”, compares DE’s performance to that reported for
other EAs. Several versions of DE are included in the comparison. Chapter
4, “Problem Domains”, extends the basic algorithm to cover a variety of
optimization scenarios, including constrained, mixed-variable and multi-
objective optimization as well as design centering. All these adaptations
are of great practical importance, since many real-world problems belong
to these domains.

Chapter 5, “Architectural Aspects”, gives explicit advice on how to im-
plement DE on both parallel and sequential machine architectures. In addi-
tion, Chapter 5 presents algorithms for auxiliary operations. Chapter 6,
“Computer Code”, provides instructions for using the software that ac-
companies this book on CD-ROM. Chapter 7, “Applications”, presents a
collection of 12 DE applications that have been contributed by experts
from many disciplines. Applications include structure determination by X-
ray analysis, earthquake relocation, multi-sensor fusion, digital filter de-
sign and many other very difficult optimization problems. An appendix
contains descriptions of the test functions used throughout this book.

Dr. Storn would like to thank Siemens corporate research, especially
Prof. Dr. H. Schwärtzel, Dr. Yeung-Cho Yp and Dr. Jean Schweitzer for
supporting DE research. In addition, Prof. Lampinen would like to express

X Preface

his gratitude to members of his DE research group, Jani Rönkkönen, Jun-
hong Liu and Saku Kukkonen, for their help preparing this book. We espe-
cially wish to thank the researchers who have contributed their DE applica-
tions to Chapter 7.

J.-P. Armspach, Institut de Physique Biologique, Université Louis Pasteur,
Strasbourg, UMR CNRS-ULP 7004, Faculté de Médecine, F-67085,
Strasbourg Cedex, France ; (Sect. 7.6)

Keith D. Bowen, Bede Scientific Incorporated, 14 Inverness Drive East,
Suite H-100, Englewood, CO, USA; (Sect. 7.10)

Nirupam Chakraborti, Department of Metallurgical and Materials Engi-
neering, Indian Institute of Technology, Kharagpur (W.B) 721 302,
India; (Sect. 7.1)

David Corcoran, Department of Physics, University of Limerick, Ireland;
(Sect. 7.2)

Robert W. Derksen, Department of Mechanical and Industrial Engineering
University of Manitoba, Canada; (Sect. 7.3)

Drago Dolinar, University of Maribor, Faculty of Electrical Engineering
and Computer Science, Smetanova 17, 2000 Maribor, Slovenia; (Sect.
7.9)

Steven Doyle, Department of Physics, University of Limerick, Ireland;
(Sect. 7.2)

Kay Hameyer, Katholieke Universiteit Leuven, Department E.E. (ESAT),
Division ELEN, Kaardinal Mercierlaan 94, B-3001 Leuven, Belgium;
(Sect. 7.9)

Evan P. Hancox, Department of Mechanical and Industrial Engineering,
University of Manitoba, Canada; (Sect. 7.3)

Fabrice Heitz, LSIIT-MIV, Université Louis Pasteur, Strasbourg, UMR
CNRS-ULP 7005, Pôle API, Boulevard Sébastien Brant, F-67400 Ill-
kirch, France ; (Sect. 7. 6)

Rajive Joshi, Real-Time Innovations Inc., 155A Moffett Park Dr, Sunny-
vale, CA 94089, USA; (Sect. 7.4)

Michal Kvasni ka, ERA a.s, Pod bradská 186/56, 180 66 Prague 9, Czech
Republic; (Sect. 7.5)

Kevin M. Matney, Bede Scientific Incorporated, 14 Inverness Drive East,
Suite H-100, Englewood, CO, USA; (Sect. 7.10)

Lars Nolle, School of Computing and Mathematics, The Nottingham Trent
University, Burton Street, Nottingham, NG1 4BU, UK; (Sect. 7.12)

Guy-René Perrin, LSIIT-ICPS, Université Louis Pasteur, Strasbourg,
UMR CNRS-ULP 7005, Pôle API, Boulevard Sébastien Brant, F-
67400 Illkirch, France ; (Sect. 7. 6)

Preface XI

Bohuslav R žek, Geophysical Institute, Academy of Sciences of the Czech
Republic, Bo ní II/1401, 141 31 Prague 4, Czech Republic; (Sect.
7.5)

Michel Salomon, LSIIT-ICPS, Université Louis Pasteur, Strasbourg, UMR
CNRS-ULP 7005, Pôle API, Boulevard Sébastien Brant, F-67400 Ill-
kirch, France ; (Sect. 7. 6)

Arthur C. Sanderson, Rensselaer Polytechnic Institute, 110 8th St, Troy,
NY 12180, USA; (Sect. 7.4)

Amin Shokrollahi, Laboratoire d’algorithmique Laboratoire de mathé-
matiques algorithmiques, EPFL, I&C-SB, Building PSE-A, 1015
Lausanne, Switzerland; (Sect. 7.7)

Rainer M. Storn, Rohde & Schwarz GmbH & Co. KG, Mühldorfstr. 15,
81671 München, Germany; (Sects. 7.7 and 7.8)

Gorazd Štumberger, University of Maribor, Faculty of Electrical Engineer-
ing and Computer Science, Smetanova 17, 2000 Maribor, Slovenia;
(Sect. 7.9)

Matthew Wormington, Bede Scientific Incorporated, 14 Inverness Drive
East, Suite H-100, Englewood, CO, USA; (Sect. 7.10)

Ivan Zelinka, Institute of Information Technologies, Faculty of Technol-
ogy, Tomas Bata University, Mostni 5139, Zlin, Czech Republic;
(Sects. 7.11 and 7.12)

We are also indebted to everyone who has contributed the public do-
main code that has made DE so accessible. In particular, we wish to thank
Eric Brasseur for making plot.h available to the public, Makoto Matsu-
moto and Takuji Nishimura for allowing the Mersenne Twister random
number generator to be freely used, Lester E. Godwin for writing the C++
version of DE, Feng-Sheng Wang for providing the Fortran90 version of
DE, Walter Di Carlo for porting DE to Scilab , Jim Van Zandt and Arnold
Neumaier for helping with the MATLAB version of DE and Ivan Zelinka
and Daniel Lichtblau for providing the MATHEMATICA version of DE.

A special debt of gratitude is owed to David Corne for his unflagging
support and to A. E. Eiben and the editors of Springer-Verlag’s Natural
Computing Series for their interest in DE. In addition, we want to thank
Ingeborg Meyer for her patience and professionalism in bringing our book
to print. We are also indebted to Neville Hankins for his exquisitely de-
tailed copyediting and to both Ronan Nugent and Ulrike Stricker at
Springer-Verlag for helping to resolve the technical issues that arose dur-
ing the preparation of this manuscript.

XII Preface

Additionally, this book would not be possible were it not for the many
engineers and scientists who have helped DE become so widespread. Al-
though they are too numerous to mention, we wish to thank them all.

Finally, it would have been impossible to write this book without our
families’ understanding and support, so we especially want to thank them
for their forbearance and sacrifice.

Kenneth V. Price
Rainer M. Storn
Jouni A. Lampinen

Table of Contents

Preface ..VII

Table of Contents ... XIII

1 The Motivation for Differential Evolution ...1

1.1 Introduction to Parameter Optimization ...1
1.1.1 Overview ...1
1.1.2 Single-Point, Derivative-Based Optimization6
1.1.3 One-Point, Derivative-Free Optimization and the Step Size

Problem ...11
1.2 Local Versus Global Optimization ...16

1.2.1 Simulated Annealing ...18
1.2.2 Multi-Point, Derivative-Based Methods..................................19
1.2.3 Multi-Point, Derivative-Free Methods20
1.2.4 Differential Evolution – A First Impression............................30

References ..34

2 The Differential Evolution Algorithm..37

2.1 Overview ..37
2.1.1 Population Structure ..37
2.1.2 Initialization...38
2.1.3 Mutation ..38
2.1.4 Crossover ...39
2.1.5 Selection ..40
2.1.6 DE at a Glance...41
2.1.7 Visualizing DE ..43
2.1.8 Notation ...47

2.2 Parameter Representation ...48
2.2.1 Bit Strings..48
2.2.2 Floating-Point ..50
2.2.3 Floating-Point Constraints...52

2.3 Initialization..53
2.3.1 Initial Bounds ..53

XIV Table of Contents

2.3.2 Initial Distributions.. 56
2.4 Base Vector Selection... 61

2.4.1 Choosing the Base Vector Index, r0.. 61
2.4.2 One-to-One Base Vector Selection.. 63
2.4.3 A Comparison of Random Base Index Selection Methods 64
2.4.4 Degenerate Vector Combinations.. 65
2.4.5 Implementing Mutually Exclusive Indices.............................. 68
2.4.6 Gauging the Effects of Degenerate Combinations: The

Sphere.. 70
2.4.7 Biased Base Vector Selection Schemes................................... 72

2.5 Differential Mutation.. 74
2.5.1 The Mutation Scale Factor: F .. 75
2.5.2 Randomizing the Scale Factor ... 79

2.6 Recombination.. 91
2.6.1 Crossover... 92
2.6.2 The Role of Cr in Optimization... 97
2.6.3 Arithmetic Recombination .. 104
2.6.4 Phase Portraits ... 112
2.6.5 The Either/Or Algorithm ... 117

2.7 Selection ... 118
2.7.1 Survival Criteria .. 119
2.7.2 Tournament Selection.. 121
2.7.3 One-to-One Survivor Selection ... 122
2.7.4 Local Versus Global Selection .. 124
2.7.5 Permutation Selection Invariance.. 124
2.7.6 Crossover-Dependent Selection Pressure 125
2.7.7 Parallel Performance ... 127
2.7.8 Extensions.. 128

2.8 Termination Criteria ... 128
2.8.1 Objective Met .. 129
2.8.2 Limit the Number of Generations.. 129
2.8.3 Population Statistics .. 129
2.8.4 Limited Time ... 130
2.8.5 Human Monitoring .. 130
2.8.6 Application Specific .. 130

References .. 131

3 Benchmarking Differential Evolution... 135

3.1 About Testing ... 135
3.2 Performance Measures ... 137
3.3 DE Versus DE .. 139

3.3.1 The Algorithms.. 139

Table of Contents XV

3.3.2 The Test Bed..142
3.3.3 Phase Portraits ...142
3.3.4 Summary..154

3.4 DE Versus Other Optimizers ..156
3.4.1 Comparative Performance: Thirty-Dimensional Functions...157
3.4.2 Comparative Studies: Unconstrained Optimization167
3.4.3 Performance Comparisons from Other Problem Domains171
3.4.4 Application-Based Performance Comparisons......................175

3.5 Summary...182
References ..182

4 Problem Domains..189

4.1 Overview ..189
4.2 Function and Parameter Quantization ..189

4.2.1 Uniform Quantization..190
4.2.2 Non-Uniform Quantization..191
4.2.3 Objective Function Quantization...192
4.2.4 Parameter Quantization ...195
4.2.5 Mixed Variables ..201

4.3 Optimization with Constraints ..201
4.3.1 Boundary Constraints ..202
4.3.2 Inequality Constraints..206
4.3.3 Equality Constraints ..220

4.4 Combinatorial Problems ...227
4.4.1 The Traveling Salesman Problem..229
4.4.2 The Permutation Matrix Approach..230
4.4.3 Relative Position Indexing...231
4.4.4 Onwubolu’s Approach...233
4.4.5 Adjacency Matrix Approach ...233
4.4.6 Summary..237

4.5 Design Centering ..239
4.5.1 Divergence, Self-Steering and Pooling..................................239
4.5.2 Computing a Design Center ..242

4.6 Multi-Objective Optimization ..244
4.6.1 Weighted Sum of Objective Functions..................................244
4.6.2 Pareto Optimality...246
4.6.3 The Pareto-Front: Two Examples..247
4.6.4 Adapting DE for Multi-Objective Optimization....................250

4.7 Dynamic Objective Functions ..255
4.7.1 Stationary Optima..256
4.7.2 Non-Stationary Optima..259

References ..262

XVI Table of Contents

5 Architectural Aspects and Computing Environments 267

5.1 DE on Parallel Processors... 267
5.1.1 Background.. 267
5.1.2 Related Work... 267
5.1.3 Drawbacks of the Standard Model .. 271
5.1.4 Modifying the Standard Model.. 272
5.1.5 The Master Process.. 273

5.2 DE on Limited Resource Devices... 276
5.2.1 Random Numbers .. 276
5.2.2 Permutation Generators ... 279
5.2.3 Efficient Sorting .. 282
5.2.4 Memory-Saving DE Variants .. 282

References .. 284

6 Computer Code... 287

6.1 DeMat – Differential Evolution for MATLAB® 287
6.1.1 General Structure of DeMat .. 287
6.1.2 Naming and Coding Conventions.. 288
6.1.3 Data Flow Diagram ... 291
6.1.4 How to Use the Graphics... 293

6.2 DeWin – DE for MS Windows®: An Application in C 295
6.2.1 General Structure of DeWin .. 296
6.2.2 Naming and Coding Conventions.. 300
6.2.3 Data Flow Diagram ... 300
6.2.4 How To Use the Graphics ... 304
6.2.5 Functions of graphics.h ... 305

6.3 Software on the Accompanying CD... 307
References .. 309

7 Applications... 311

7.1 Genetic Algorithms and Related Techniques for Optimizing
Si–H Clusters: A Merit Analysis for Differential Evolution 313

7.1.1 Introduction ... 313
7.1.2 The System Model... 315
7.1.3 Computational Details ... 317
7.1.4 Results and Discussion .. 318
7.1.5 Concluding Remarks ... 325
References .. 325

7.2 Non-Imaging Optical Design Using Differential Evolution......... 327
7.2.1 Introduction ... 327
7.2.2 Objective Function .. 328
7.2.3 A Reverse Engineering Approach to Testing 331

Table of Contents XVII

7.2.4 A More Difficult Problem: An Extended Source334
7.2.5 Conclusion...337
References ..337

7.3 Optimization of an Industrial Compressor Supply System339
7.3.1 Introduction ...339
7.3.2 Background Information on the Test Problem340
7.3.3 System Optimization ...340
7.3.4 Demand Profiles ..341
7.3.5 Modified Differential Evolution; Extending the

Generality of DE ...342
7.3.6 Component Selection from the Database343
7.3.7 Crossover Approaches...343
7.3.8 Testing Procedures ..348
7.3.9 Obtaining 100% Certainty of the Results348
7.3.10 Results ...349
7.3.11 Summary..350
References ..351

7.4 Minimal Representation Multi-Sensor Fusion Using
Differential Evolution...353

7.4.1 Introduction ...353
7.4.2 Minimal Representation Multi-Sensor Fusion.......................357
7.4.3 Differential Evolution for Multi-Sensor Fusion361
7.4.4 Experimental Results ...364
7.4.5 Comparison with a Binary Genetic Algorithm......................372
7.4.6 Conclusion...374
References ..375

7.5 Determination of the Earthquake Hypocenter: A Challenge for
the Differential Evolution Algorithm ...379

7.5.1 Introduction ...379
7.5.2 Brief Outline of Direct Problem Solution..............................382
7.5.3 Synthetic Location Test ...384
7.5.4 Convergence Properties ...385
7.5.5 Conclusions ...389
References ..389

7.6 Parallel Differential Evolution: Application to 3-D Medical
Image Registration..393

7.6.1 Introduction ...393
7.6.2 Medical Image Registration Using Similarity Measures.......395
7.6.3 Optimization by Differential Evolution.................................398
7.6.4 Parallelization of Differential Evolution401
7.6.5 Experimental Results ...404
7.6.6 Conclusions ...408

XVIII Table of Contents

Acknowledgments .. 408
References .. 408

7.7 Design of Efficient Erasure Codes with Differential Evolution ...413
7.7.1 Introduction ... 413
7.7.2 Codes from Bipartite Graphs... 414
7.7.3 Code Design .. 418
7.7.4 Differential Evolution.. 421
7.7.5 Results ... 423
Acknowledgments .. 426
References .. 426

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters
Using Differential Evolution .. 429

7.8.1 Introduction ... 429
7.8.2 Unconventional Design Tasks ... 432
7.8.3 Approach ... 435
7.8.4 Examples ... 444
7.8.5 Conclusion... 445
References .. 445

7.9 Optimization of Radial Active Magnetic Bearings by Using
Differential Evolution and the Finite Element Method 447

7.9.1 Introduction ... 447
7.9.2 Radial Active Magnetic Bearings.. 448
7.9.3 Magnetic Field Distribution and Force Computed by the

Two-Dimensional FEM... 454
7.9.4 RAMB Design Optimized by DE and the FEM 455
7.9.5 Conclusion... 461
Acknowledgments .. 461
References .. 462

7.10 Application of Differential Evolution to the Analysis of
X-Ray Reflectivity Data ... 463

7.10.1 Introduction ... 463
7.10.2 The Data-Fitting Procedure ... 466
7.10.3 The Model and Simulation .. 469
7.10.4 Examples ... 471
7.10.5 Conclusions ... 477
References .. 477

7.11 Inverse Fractal Problem.. 479
7.11.1 General Introduction.. 479
7.11.2 Conclusion... 495
References .. 497

7.12 Active Compensation in RF-Driven Plasmas by Means of
Differential Evolution... 499

Table of Contents XIX

7.12.1 Introduction ...499
7.12.2 RF-Driven Plasmas..500
7.12.3 Langmuir Probes..501
7.12.4 Active Compensation in RF-Driven Plasmas501
7.12.5 Automated Control System Structure and Fitness

Function...502
7.12.6 Experimental Setup..504
7.12.7 Parameters and Experimental Design..................................505
7.12.8 Results ...509
7.12.9 Conclusion...509
Acknowledgments ..510
References ..510

Appendix...513

A.1 Unconstrained Uni-Modal Test Functions...................................514
A.1.1 Sphere ...514
A.1.2 Hyper-Ellipsoid...515
A.1.3 Generalized Rosenbrock...515
A.1.4 Schwefel’s Ridge ..516
A.1.5 Neumaier #3 ...517

A.2 Unconstrained Multi-Modal Test Functions................................518
A.2.1 Ackley...518
A.2.2 Griewangk ..519
A.2.3 Rastrigin..520
A.2.4 Salomon ..521
A.2.5 Whitley ...522
A.2.6 Storn’s Chebyshev ..523
A.2.7 Lennard-Jones...525
A.2.8 Hilbert ...526
A.2.9 Modified Langerman ..526
A.2.10 Shekel’s Foxholes...528
A.2.11 Odd Square ...529
A.2.12 Katsuura..530

A.3 Bound-Constrained Test Functions ...531
A.3.1 Schwefel ...531
A.3.2 Epistatic Michalewicz...531
A.3.3 Rana ..532

References ..533

Index..535

1 The Motivation for Differential Evolution

1.1 Introduction to Parameter Optimization

1.1.1 Overview

In simple terms, optimization is the attempt to maximize a system’s desir-
able properties while simultaneously minimizing its undesirable character-
istics. What these properties are and how effectively they can be improved
depends on the problem at hand. Tuning a radio, for example, is an attempt
to minimize the distortion in a radio station’s signal. Mathematically, the
property to be minimized, distortion, can be defined as a function of the
tuning knob angle, x:

.
powersignal

powernoise
)(=xf

(1.1)

Because their most extreme value represents the optimization goal,
functions like Eq. 1.1 are called objective functions. When its minimum is
sought, the objective function is often referred to as a cost function. In the
special case where the minimum being sought is zero, the objective func-
tion is sometimes known as an error function. By contrast, functions that
describe properties to be maximized are commonly referred to as fitness

functions. Since changing the sign of an objective function transforms its
maxima into minima, there is no generality lost by restricting the following
discussion to function minimization only.

Tuning a radio involves a single variable, but properties of more com-
plex systems typically depend on more than one variable. In general, the
objective function, f(x) = f(x0, x1, …, xD -1), has D parameters that influence
the property being optimized. There is no unique way to classify objective
functions, but some of the objective function attributes that affect an opti-
mizer’s performance are:

• Parameter quantization. Are the objective function’s variables continu-
ous, discrete, or do they belong to a finite set? Additionally, are all vari-
ables of the same type?

2 1 The Motivation for Differential Evolution

• Parameter dependence. Can the objective function’s parameters be op-
timized independently (separable function), or does the minimum of one
or more parameters depend on the value of one or more other parame-
ters (parameter dependent function)?

• Dimensionality, D. How many variables define the objective function?
• Modality. Does the objective function have just one local minimum

(uni-modal) or more than one (multi-modal)?
• Time dependency. Is the location of optimum stationary (e.g., static), or

non-stationary (dynamic)?
• Noise. Does evaluating the same vector give the same result every time

(no noise), or does it fluctuate (noisy)?
• Constraints. Is the function unconstrained, or is it subject to additional

equality and/or inequality constraints?
• Differentiability. Is the objective function differentiable at all points of

interest?

In the radio example, the tuning angle is real-valued and parameters are
continuous. Neither mixed-variable types, nor parameter dependence is an
issue because the objective function’s dimension is one, i.e., it depends on
a single parameter. The objective function’s modality, however, depends
on how the tuning knob angle is constrained. If tuning is restricted to the
vicinity of a single radio station, then the objective function is uni-modal

because it exhibits just one (local) optimum. If, however, the tuning knob
scans a wider radio band, then there will probably be several stations. If
the goal is to find the station with least distortion, then the problem be-
comes multi-modal. If the radio station frequency does not drift, then the
objective function is not time dependent, i.e., the knob position that yields
the best reception will be the same no matter when the radio is turned on.
In the real world, the objective function itself will have some added noise,
but the knob angle will not be noisy unless the radio is placed on some vi-
brating device like a washing machine. The objective function has no ob-
vious constraints, but the knob-angle parameter is certainly restricted.

Even though distortion’s definition (Eq. 1.1) provides a mathematical
description of the property being minimized, there is no computable objec-
tive function – short of simulating the radio’s circuits – to determine the
distortion for a given knob angle. The only way to estimate the distortion
at a given frequency is to tune in to it and listen. Instead of a well-defined,
computable objective function, the radio itself is the “black box” that
transforms the input (knob angle) into output (station signal). Without an
adequate computer simulation (or a sufficiently refined actuator), the ob-
jective function in the radio example is effectively non-differentiable.

1.1 Introduction to Parameter Optimization 3

Tuning a radio is a trivial exercise primarily because it involves a single
parameter. Most real-world problems are characterized by partially non-
differentiable, nonlinear, multi-modal objective functions, defined with
both continuous and discrete parameters and upon which additional con-
straints have been placed. Below are three examples of challenging, real-
world engineering problems of the type that DE was designed to solve.
Chapter 7 explores a wide range of applications in detail.

Optimization of Radial Active Magnetic Bearings

The goal of this electrical/mechanical engineering task is to maximize the
bearing force of a radial active magnetic bearing while simultaneously
minimizing its mass (Štumberger et al. 2000). As Fig. 1.1 shows, several
constraints must be taken into account.

Objectives: maximal bearing force

minimum mass

Constraints: air gap δ0 = 0.4mm

stator radius rs = 52.5mm

shaft radius rsh = 35mm

rs = rsh + ry + δ0 + lp + sy

Parameters: stator yoke sy > 0

rotor yoke width ry > 0

pole width wp > 0

axial length l > 0

rsh

sy

ry

wp

rsδ0

lp

Fig. 1.1. Optimizing a radial active magnetic bearing

Capacity Assignment Problem

Figure 1.2 shows a computer network that connects terminals to concentra-
tors, which in turn connect to a large mainframe computer. The cost of a
line depends nonlinearly on the capacity. The goal is to satisfy the data de-
lay constraint of 4 ms while minimizing the cost of the network. A more
detailed discussion appears in Schwartz (1977).

4 1 The Motivation for Differential Evolution

mainframe
(Manhattan)

concentrator
(Richmond)

concentrator
(Manhattan)

concentrator
(Bronx)

concentrator
(Brooklyn)

concentrator
(Queens)

15km

5km

20km

10km

18km

Objectives: minimize network cost

Constraints: average data delay between terminals < 4s

line capacities > 0

cost of line nonlinearly depending on capacity

Terminals transmit at 64kbps on average

Average message length is 1000 bits long

10 terminals
attached

15 terminals
attached

20 terminals
attached

10 terminals
attached

5 terminals
attached

Parameters: line capacities

Fig. 1.2. Optimizing a computer network

Filter Design Problem

The goal here is to design an electronic filter consisting of resistors, ca-
pacitors and an operational amplifier so that the magnitude of the ratio of
output to input voltages, |V2(ω)/V1(ω)| (a function of frequency ω), satis-
fies the tolerance scheme depicted in the lower half of Fig. 1.3.

Classifying Optimizers

Once a task has been transformed into an objective function minimization
problem, the next step is to choose an appropriate optimizer. Table 1.1
classifies optimizers based, in part, on the number of points (vectors) that
they track through the D-dimensional problem space. This classification
does not distinguish between multi-point optimizers that operate on many
points in parallel and multi-start algorithms that visit many points in se-
quence. The second criterion in Table 1.1 classifies algorithms by their re-
liance on objective function derivatives.

1.1 Introduction to Parameter Optimization 5

V1(ω)

R1 R2 R3

C1

C2

C3

+

- V2(ω)

ω

Limhigh(ω)

Limhigh(ω)

Objectives: Fit |V2(ω)/V1(ω)| between

Constraints: 0 < Ci < Cmax

0 < Ri < Rmax

Ri, Ci from E24 norm series

Parameters: Resistors Ri, Capacitors Ci

Limhigh(ω) and Limlow(ω)

(discrete set)

|V2(ω)/V1(ω)|

Fig. 1.3. Optimizing an electronic filter

Table 1.1. A classification of optimization approaches and some of their represen-
tatives

 Single-point Multi-point

Derivative-based
Steepest descent

Conjugate gradient
Quasi-Newton

Multi-start and
clustering techniques

Derivative-free
(direct search)

Random walk
Hooke–Jeeves

Nelder–Mead
Evolutionary algorithms

Differential evolution

6 1 The Motivation for Differential Evolution

Not all optimizers neatly fit into these categories. Simulated annealing
(Kirkpartick et al. 1983; Press et al. 1992) does not appear in this classifi-
cation scheme because it is a meta-strategy that can be applied to any de-
rivative-free search method. Similarly, clustering techniques are general
strategies, but because they are usually combined with derivative-based
optimizers (Janka 1999) they have been assigned to the derivative-based,
multi-point category. As Table 1.1 indicates, differential evolution (DE) is
a multi-point, derivative-free optimizer.

The following section outlines some of the traditional optimization algo-
rithms that motivated DE’s development. Methods from each class in Ta-
ble 1.1 are discussed, but their many variants and the existence of other
novel methods (Corne et al. 1999; Onwubolu and Babu 2004) make it im-
possible to survey all techniques. The following discussion is primarily fo-
cused on optimizers designed for objective functions with continuous
and/or discrete parameters. With a few exceptions, combinatorial optimi-
zation problems are not considered.

1.1.2 Single-Point, Derivative-Based Optimization

Derivative-based methods embody the classical approach to optimization.
Before elaborating, a few details on notation are in order. First, a D-
dimensional parameter vector is defined as:

....
... 110

1

1

0
T

D

D

xxx

x

x

x

== −

−

x

(1.2)

Letters in lowercase italic symbolize individual parameters; bold lower-
case letters denote vectors, while bold uppercase letters represent matrices.
Introducing several special operator symbols further simplifies formulation
of the classical approach. For example, the nabla operator is defined as

∂∂

∂∂
∂∂

=∇

−1

1

0

/

...

/

/

Dx

x

x (1.3)

in order to simplify the expression for the gradient vector:

1.1 Introduction to Parameter Optimization 7

() ()

()

()

()

.

...

1

1

0

∂
∂

∂
∂
∂

∂

=⋅∇=

−Dx

f

x

f

x

f

f

x

x

x

xxg

(1.4)

It is also convenient to define the Hessian matrix:

() () .

/....../

...

/

/...//

1101

01

101000

2

∂∂∂∂∂∂

∂∂∂
∂∂∂∂∂∂∂∂∂

=⋅∇=

−−−

−

DDD

D

xxfxxf

xxf

xxfxxfxxf

f xxG

(1.5)

The symbol 2∇ is meant to imply second-order (partial) differentiation, not
that the nabla operator,∇ , is squared.

Using these notational conveniences, the Taylor series for an arbitrary
objective function becomes

() () () () () ()

() () () () () () ...,
2

1

...
!2!1

)(

000000

0
0

2

00
0

0

+−⋅⋅−+−⋅+=

+−⋅∇⋅−+−⋅∇+=

xxxGxxxxxgx

xx
x

xxxx
x

xx

T

T

f

ff
ff

(1.6)

where x0 is the point around which the function f(x) is developed. For a
point to be a minimum, elementary calculus (Rade and Westergren 1990)
demands that

() ,extr 0xg = (1.7)

i.e., all partial derivatives at x = xextr must be zero. In the third term on the
right-hand side of Eq. 1.6, the difference between x and x0 is squared, so in
order to avoid a negative contribution from the Hessian matrix, G(x0) must
be positive semi-definite (Scales 1985). In the immediate neighborhood
about x0, higher terms of the Taylor series expansion make a negligible
contribution and need not be considered.

Applying the chain rule for differentiation to the first three terms of the
Taylor expansion in Eq. 1.6 allows the gradient about the arbitrary point x0

to be expressed as

8 1 The Motivation for Differential Evolution

() () () ,)(0extr00extr 0xxxGxgx =−⋅+=∇f (1.8)

which reduces to

() () .00
1

0extr xxGxgx +⋅−= − (1.9)

where G
−1 is the inverse of the Hessian matrix.

If the objective function, f(x), is quadratic, then Eq. 1.9 can be applied
directly to obtain its true minimum. Figure 1.4 shows how Eq. 1.9 com-
putes the optimum of a (uni-modal) quadratic function independent of
where the starting point, x0, is located.

x1

x2

Start

contour lines
of f(x1,x2)

x0

xextr

Fig. 1.4. If the objective function is quadratic and differentiable, then Eq. 1.9 can
determine its optimum.

Even though there are applications, e.g., acoustical echo cancellation in
speakerphones, where the objective function is a simple quadratic (Glentis
et al. 1999), the majority of optimization tasks lack this favorable property.
Even so, classical derivative-based optimization can be effective as long
the objective function fulfills two requirements:

R1 The objective function must be two-times differentiable.

R2 The objective function must be uni-modal, i.e., have a single mini-
mum.

1.1 Introduction to Parameter Optimization 9

A simple example of a differentiable and uni-modal objective function is

().10),(
2
2

2
1 3

21
xx

exxf
+−−= (1.10)

 Figure 1.5 graphs the function defined in Eq. 1.10.

Fig. 1.5. An example of a uni-modal objective function

The method of steepest descent is one of the simplest gradient-based
techniques for finding the minimum of a uni-modal and differentiable
function. Based on Eq. 1.9, this approach assumes that G−1(x0) can be re-
placed with the identity matrix:

.

1...00

............

0...10

0...01

=I

(1.11)

This crude replacement does not lead directly to the minimum, but to the
point

().001 xgxx −= (1.12)

10 1 The Motivation for Differential Evolution

Since the negative gradient points downhill, x1 will be closer to the
minimum than x0 unless the step was too large. Adding a step size, γ, to the
general recursion relation that defines the direction of steepest descent
provides a measure of control:

()nnn xgxx ⋅γ−=+1
(1.13)

Figure 1.6 shows a typical pathway from the starting point, x0, to the opti-
mum xextr. Additional details of the classical approach to optimization can
be found in Bunday and Garside (1987), Pierre (1986), Scales (1985) and
Press et al. (1992). The point relevant to DE is that the classical approach
reveals the existence of a step size problem in which the best step size de-
pends on the objective function.

x1

x2

Start

contour lines
of f(x1,x2)

x0

xextr

Fig. 1.6. The method of steepest descent first computes the negative gradient, then
takes a step in the direction indicated.

Replacing the inverse Hessian, G
−1(x0), with the identity matrix intro-

duces its own set of problems and more elaborate techniques like Gauss–
Newton, Fletcher–Reeves, Davidon–Fletcher–Powell, Broyden–Fletcher–
Goldfarb–Shanno and Levenberg–Marquardt (Scales 1985; Pierre 1986)
have been developed in response. These methods roughly fall into two
categories. Quasi-Newton methods approximate the inverse Hessian by a
variety of schemes, most of which require extensive matrix computations.

1.1 Introduction to Parameter Optimization 11

By contrast, conjugate gradient methods dispense with the Hessian matrix
altogether, opting instead to use line optimizations in conjugate directions
to avoid computing second-order derivatives. In addition to Quasi-Newton
and conjugate gradient methods, mixtures of the two approaches also exist.
Even so, all these methods require the objective function to be one-time or
two-times differentiable. In addition, their fast convergence on quadratic
objective functions does not necessarily transfer to non-quadratic func-
tions. Numerical errors are also an issue if the objective function exhibits
singularities or large gradients. Methods that do not require the objective
function to be differentiable provide greater flexibility.

1.1.3 One-Point, Derivative-Free Optimization and the Step Size
Problem

There are many reasons why an objective function might not be differenti-
able. For example, the “floor” operation in Eq. 1.14 quantizes the function
in Eq. 1.10, transforming Fig. 1.5 into the stepped shape seen in Fig. 1.7.
At each step’s edge, the objective function is non-differentiable:

()()() 10/3exp1010floor),(2
2

2
121 xxxxf −−−⋅= (1.14)

Fig. 1.7. A non-differentiable, quantized, uni-modal function

12 1 The Motivation for Differential Evolution

There are other reasons in addition to function quantization why an ob-
jective function might not be differentiable:

• Constraining the objective function may create regions that are non-
differentiable or even forbidden altogether.

• If the objective function is a computer program, conditional branches
make it non-differentiable, at least for certain points or regions.

• Sometimes the objective function is the result of a physical experiment
(Rechenberg 1973) and the unavailability of a sufficiently precise actua-
tor can make computing derivatives impractical.

• If, as is the case in evolutionary art (Bentley and Corne 2002), the ob-
jective function is “subjective”, an analytic formula is not possible.

• In co-evolutionary environments, individuals are evaluated by how ef-
fectively they compete against other individuals. The objective function
is not explicit.

When the lack of a computable derivative causes gradient-based opti-
mizers to fail, reliance on derivative-free techniques known as direct

search algorithms becomes essential. Direct search methods are “generate-
and-test” algorithms that rely less on calculus than they do on heuristics
and conditional branches. The meta-algorithm in Fig. 1.8 summarizes the
direct search approach.

Initialization(); //choose the initial base point
 //(introduces starting-point problem)
while (not converged) //decide the number of iterations
{ //(dimensionality problem)
 vector_generation(); //choose a new point
 //(introduces step size problem)
 selection(); //determine new base point
}

Fig. 1.8. Meta-algorithm for the direct search approach

The meta-algorithm in Fig. 1.8 reveals that the direct search has a selec-
tion phase during which a proposed move is either accepted or rejected.
Selection is an acknowledgment that in all but the simplest cases, not all
proposed moves are beneficial. By contrast, most gradient-based optimiz-
ers accept each point they generate because base vectors are iterates of a
recursive equation. Points are rejected only when, for example, a line

1.1 Introduction to Parameter Optimization 13

search concludes. For direct search methods, however, selection is a cen-
tral component that can affect the algorithm’s next action.

Enumeration or Brute Force Search

As their name implies, one-point, direct search methods are initialized with
a single starting point. Perhaps the simplest one-point direct search is the
brute force method. Also known as enumeration, the brute force method
visits all grid points in a bounded region while storing the current best
point in memory (see Fig. 1.9). Even though generating a sequence of grid
points is trivial, the enumerative method still faces a step size problem be-
cause if nothing is known about the objective function, it is hard to decide
how fine the grid should be. If the grid is too coarse, then the optimum
may be missed. If the grid becomes too small, computing time explodes
exponentially because a grid with N points in one dimension will have ND

points in D dimensions. Because of this “curse of dimensionality”, the
brute force method is very rarely used to optimize objective functions with
a significant number of continuous parameters. The curse of dimensional-
ity demonstrates that better sampling strategies are needed to keep a search
productive.

x1

x2

x1,low
x1,high

x2,low

x2,high

contour lines
of f(x1,x2)

evaluation path
of the brute force
search

Fig. 1.9. The brute force search tries all grid points in a given region.

14 1 The Motivation for Differential Evolution

Random Walk

The random walk (Gross and Harris 1985) circumvents the curse of di-
mensionality inherent in the brute force method by sampling the objective
function value at randomly generated points. New points are generated by
adding a random deviation, ∆x, to a given base point, x0. In general, each
coordinate, ∆xi, of the random deviation follows a Gaussian distribution

() ()
,5.0exp

2

1
2

2−∆⋅−
⋅

=∆
i

ii

i

i

x
xp

σ
µ

πσ

(1.15)

where σi and µi are the standard deviation and the mean value, respec-
tively, for coordinate i. The random walk’s selection criterion is “greedy”
in the sense that a trial point with a lower objective function value than
that of the base point is always accepted. In other words, if f(x0 + ∆x) ≤
f(x0), then x0 + ∆x becomes the new base point; otherwise the old point, x0,
is retained and a new deviation is applied to it. Figure 1.10 illustrates how
the random walk operates.

x1

: successful move

: unsuccessful move

x2

contour lines
of f(x1,x2)

Fig. 1.10. The random walk samples the objective function by taking randomly
generated steps from the last accepted point.

The stopping criterion for a random walk might be a preset maximum
number of iterations or some other problem-dependent criterion. With
luck, a random walk will find the minimum quicker than can be done with

1.1 Introduction to Parameter Optimization 15

a brute force search. Like both the classical and the brute force methods,
the random walk suffers from the step size problem because it is very dif-
ficult to choose the right standard deviations when the objective function is
not sufficiently well known.

Hooke and Jeeves

The Hooke–Jeeves method is a one-point direct search that attacks the step
size problem (Hooke and Jeeves 1961; Pierre 1986; Bunday and Garside
1987; Schwefel 1994). Also known as a direction or pattern search, the
Hooke–Jeeves algorithm starts from an initial base point, x0, and explores
each coordinate axis with its own step size. Trial points in all D positive
and negative coordinate directions are compared and the best point, x1, is
found. If the best new trial point is better than the base point, then an at-
tempt is made to make another move in the same direction, since the step
from x0 to x1 was a good one. If, however, none of the trial points improve
on x0, the step is presumed to have been too large, so the procedure repeats
with smaller step sizes. The pseudo-code in Fig. 1.11 summarizes the
Hooke–Jeeves method. Figure 1.12 plots the resulting search path.

...
while (h > hmin) //as long as step length is still not small enough

{
x1 = explore(x0,h); //explore the parameter space

 if (f(x1) < f(x0)) //if improvement could be made

 {
x2 = x1 + (x1 - x0); //make differential pattern move

 if (f(x2) < f(x1)) x0 = x2;

 else x0 = x1;

 }
 else h = h*reduction_factor;
}
...

function explore(vector x0, vector h)

{ //---note that ei is the unit vector for coordinate i---

 for (i=0; i<D; i++) //for all D dimensions
 {
 if (f(x0+ei*h) < f(x0)) x0 = x0 + ei*h; //check coordinate i

 else if (f(x0-ei*h) < f(x0)) x0 = x0 - ei*h;

 }
 return(x0);

}

Fig. 1.11. Pseudo-code for the Hooke–Jeeves method

16 1 The Motivation for Differential Evolution

x1

x2

Start

: successful move

: unsuccessful move

contour lines
of f(x1,x2)

pattern move

pattern move

Fig. 1.12. A search guided by the Hooke–Jeeves method. Positive axis directions
are always tried first.

On many functions, its adaptive step sizes make the Hooke–Jeeves
search much more effective than either the brute force or random walk al-
gorithms, but step sizes that shrink and never increase can be a drawback.
For example, if steps are forced to become small because the objective
function contains a “valley”, then they will be unable to expand to the ap-
propriate magnitude once the valley ends.

1.2 Local Versus Global Optimization

Both the step size problem and objective function non-differentiability can
make even uni-modal functions a challenge to optimize. Additional obsta-
cles arise once requirement R2 is dropped and the objective function is al-
lowed to be multi-modal. Equation 1.16 is an example of a multi-modal
function. As Fig. 1.13 shows, the “peaks” function in Eq. 1.16 has more
than one local minimum:

1.2 Local Versus Global Optimization 17

() ()()
() ()().1exp

3

1
exp

5
101exp13),(

2
2

2
1

2
2

2
1

5
2

3
1

12
2

2
1

2
121

xxxx

xx
x

xxxxxf

++⋅−+⋅

⋅−−−++⋅−=
(1.16)

Fig. 1.13. The “peaks” function defined by Eq. 1.16 is multi-modal.

Because they exhibit more than one local minimum, multi-modal func-
tions pose a starting point problem. Mentioned briefly in the direct search
meta-algorithm (Fig. 1.8), the starting point problem refers to the tendency
of an optimizer with a greedy selection criterion to find only the minimum
of the basin of attraction in which it was initialized. This minimum need
not be the global one, so sampling a multi-modal function in the vicinity of
the global optimum, at least eventually, is essential. Because the Gaussian
distribution is unbounded, there is a finite probability that the random walk
will eventually generate a new and better point in a basin of attraction
other than the one containing the current base point. In practice, successful
inter-basin jumps tend to be rare. One method that increases the chance
that a point will travel to another basin of attraction is simulated annealing.

18 1 The Motivation for Differential Evolution

1.2.1 Simulated Annealing

Simulated annealing (SA) (Kirkpatrick et al. 1983; Press et al. 1992), thor-
oughly samples the objective function surface by modifying the greedy cri-
terion to accept some uphill moves while continuing to accept all downhill
moves. The probability of accepting a trial vector that lies uphill from the
current base point decreases as the difference in their function values in-
creases. Acceptance probability also decreases with the number of function
evaluations, i.e., after a reasonably long time, SA’s selection criterion be-
comes greedy. The random walk has traditionally been used in conjunction
with SA to generate trial vectors, but virtually any search can be modified
to incorporate SA’s selection scheme. Figure 1.14 describes the basic SA
algorithm.

...
fbest = f(x0);//start with some base point

T = T0; //and some starting temperature

while (convergence criterion not yet met)
{

∆x = generate_deviation(); //e.g., a Gaussian distribution
 if (f(x0+∆x) < f(x0)) //if improvement can be made

 {
fbest = f(x0+∆x);

x0 = x0+∆x; //new, improved base point

 }
 else
 {
 d = f(x0+∆x)-f(x0);//positive value

r = rand(); //generate uniformly distr. variable ex [0,1]
 if (r < exp(-d*beta/T)) //Metropolis algorithm
 {

x0 = x0+∆x; //new base point derived from uphill move

 }
 }

T = T*reduction_factor;
}
...

Fig. 1.14. The basic simulated annealing algorithm. In this implementation, the
random walk generates trial points.

The term “annealing” refers to the process of slowly cooling a molten
substance so that its atoms will have the opportunity to coalesce into a
minimum energy configuration. If the substance is kept near equilibrium at
temperature T, then atomic energies, E, are distributed according to the
Boltzmann equation

1.2 Local Versus Global Optimization 19

() ,exp~
⋅Tk

E
EP

(1.17)

where k is the Boltzmann constant.
By equating energy with function value, SA attempts to exploit nature’s

own minimization process via the Metropolis algorithm (Metropolis et al.
1953). The Metropolis algorithm implements the Boltzmann equation as a
selection probability. While downhill moves are always accepted, uphill
moves are accepted only if a uniformly distributed random number from
the interval [0,1] is smaller than the exponential term:

.exp
⋅−=Θ
T

d β (1.18)

 The variable, d, is the difference between the uphill objective function
value and the function value of the current base point, i.e., their “energy
difference”. Equation 1.18 shows that the acceptance probability, Θ, de-
creases as d increases and/or as T decreases. The value, β, is a problem-
dependent control variable that must be empirically determined.

One of annealing’s drawbacks is that special effort may be required to
find an annealing schedule that lowers T at the right rate. If T is reduced
too quickly, the algorithm will behave like a local optimizer and become
trapped in the basin of attraction in which it began. If T is not lowered
quickly enough, computations become too time consuming. There have
been many improvements to the standard SA algorithm (Ingber 1993) and
SA has been used in place of the greedy criterion in direct search algo-
rithms like the method of Nelder–Mead (Press et al. 1992). The step size
problem remains, however, and this may be why SA is seldom used for
continuous function optimization. By contrast, SA’s applicability to virtu-
ally any direct search method has made it very popular for combinatorial
optimization, a domain where clever, but greedy, heuristics abound (Syslo
et al. 1983; Reeves 1993).

1.2.2 Multi-Point, Derivative-Based Methods

Multi-start techniques are another way to extensively sample an objective
function landscape. As their name implies, multi-start techniques restart
the optimization process from different initial points. Typically, each sam-
ple point serves as the initial point for a greedy, local optimization method
(Boender and Romeijn 1995). Often, the local search is derivative-based,
but this is not mandatory and if the objective function is non-differentiable,

20 1 The Motivation for Differential Evolution

any direct search method may be used. Without detailed knowledge of the
objective function, it is difficult to know how many different starting
points will be enough, especially since many points might lead to the same
local minimum because they all initially fell within the perimeter of the
same basin of attraction.

Clustering methods (Törn and Zelinkas 1989; Janka 1999) refine the
multi-start method by applying a clustering algorithm to identify those
sample points that belong to the same basin of attraction, i.e., to the same
cluster. Ideally, each cluster yields just one point to serve as the base point
for a local optimization routine. Density clustering (Boender and Romeijn
1995; Janka 1999) is based on the assumption that clusters are shaped like
hyper-ellipsoids and that the objective function is quadratic in the
neighborhood of a minimum. Other methods, like the one described in Lo-
catelli and Schoen (1996), use a proximity criterion to decide if a local
search is justified. Because this determination often requires that all previ-
ously visited points be stored, highly multi-modal functions of high dimen-
sion can strain computer memory capacity. As a result, clustering algo-
rithms are typically limited to problems with a relatively small number of
parameters.

1.2.3 Multi-Point, Derivative-Free Methods

Evolution Strategies and Genetic Algorithms

Evolution strategies (ESs) were developed by Rechenberg (1973) and
Schwefel (1994), while genetic algorithms (GAs) are attributed to Holland
(1962) and Goldberg (1989). Both approaches attempt to evolve better so-
lutions through recombination, mutation and survival of the fittest. Be-
cause they mimic Darwinian evolution, ESs, GAs, DE and their ilk are of-
ten collectively referred to as evolutionary algorithms, or EAs.
Distinctions, however, do exist. An ES, for example, is an effective con-
tinuous function optimizer, in part because it encodes parameters as float-
ing-point numbers and manipulates them with arithmetic operators. By
contrast, GAs are often better suited for combinatorial optimization be-
cause they encode parameters as bit strings and modify them with logical
operators. Modifying a GA to use floating-point formats for continuous pa-
rameter optimization typically transforms it into an ES-type algorithm
(Mühlenbein and Schlierkamp-Vosen 1993; Salomon 1996). There are
many variants to both approaches (Bäck 1996; Michalewicz 1996), but be-
cause DE is primarily a numerical optimizer, the following discussion is
limited to ESs.

1.2 Local Versus Global Optimization 21

Like a multi-start algorithm, an ES samples the objective function land-
scape at many different points, but unlike the multi-start approach where
each base point evolves in isolation, points in an ES population influence
one another by means of recombination. Beginning with a population of µ
parent vectors, the ES creates a child population of λ ≥ µ vectors by re-
combining randomly chosen parent vectors. Recombination can be discrete

(some parameters are from one parent, some are from the other parent) or
intermediate (e.g., averaging the parameters of both parents) (Bäck et al.
1997; Bäck 1996). Once parents have been recombined, each of their chil-
dren is “mutated” by the addition of a random deviation, ∆x, that is typi-
cally a zero mean Gaussian distributed random variable (Eq. 1.15).

After mutating and evaluating all λ children, the (µ, λ)-ES selects the
best µ children to become the next generation’s parents. Alternatively, the
(µ + λ)-ES populates the next generation with the best µ vectors from the
combined parent and child populations. In both cases, selection is greedy
within the prescribed selection pool, but this is not a major drawback be-
cause the vector population is distributed. Figure 1.15 summarizes the
meta-algorithm for an ES.

Initialization(); //choose starting population of µ members
while (not converged) //decide the number of iterations
{
 for (i=0; i<λ; i++) //child vector generation: λ > µ
 {

p1(i) = rand(µ); //pick a random parent from µ parents

p2(i) = rand(µ); //pick another random parent p2(i) != p1(i)

c1(i) = recombine(p1(i),p2(i)); //recombine parents

c1(i) = mutate(c1(i)); //mutate child

 save(c1(i)); //save child in an intermediate population

}
 selection(); //µ new parents out of either λ, or λ+µ
}

Fig. 1.15. Meta-algorithm for evolution strategies (ESs)

While ESs are among the best global optimizers, their simplest imple-
mentations still do not solve the step size problem. Schwefel addressed this
issue in Schwefel (1981) where he proposed modifying the Gaussian muta-
tion distribution with a matrix of adaptive covariances, an idea that Re-
chenberg suggested in 1967 (Fogel 1994). Equation 1.19 generalizes the
multi-dimensional Gaussian distribution to include a covariance matrix, C
(Papoulis 1965):

22 1 The Motivation for Differential Evolution

()
()

() ()()µµ
π

−∆⋅⋅−∆−
⋅

=∆ − xCx

C

x 15.0exp
2)det(

1 T

D
p

(1.19)

In Eq. 1.19, µ is the mean vector and C is the covariance matrix

SRSC ⋅⋅==

−−−−

−

−

2
1,11,10,1

1,1
2
1,10,1

1,01,0
2

0,0

...

............

...

...

DDDD

D

D

σσσ

σσσ
σσσ (1.20)

with the scatter matrix

=

−
2

1

2
1

2
0

...00

............

0...0

0...0

Dσ

σ
σ

S

(1.21)

and the correlation matrix

=

−−

−

−

1...

............

...1

...1

1,10,1

1,10,1

1,01,0

DD

D

D

ρρ

ρρ
ρρ

R

(1.22)

By permitting the otherwise symmetrical Gaussian distribution to be-
come ellipsoidal, the ES can assign a different step size to each dimension.
In addition, the covariance matrix allows the Gaussian mutation ellipsoid
to rotate in order to adapt better to the topography of non-decomposable
objective functions. A decomposable function (Salomon 1996) can always
be written as

() ().
1

0

−

=

=
D

i

ii xff x
(1.23)

Because decomposable functions lack cross-terms, their parameters can be
optimized independently. Thus, decomposability replaces the task of opti-
mizing one function having D dimensions with the much simpler task of
optimizing D one-dimensional functions. The hyper-ellipsoid is a simple
example of a decomposable function:

1.2 Local Versus Global Optimization 23

() .
1

0

2
−

=

=
D

i

ii xf αx
(1.24)

If, however, the hyper-ellipsoid is rotated in all dimensions, it becomes
impossible to optimize one parameter independent of the others. This pa-
rameter dependence is often referred to as epistasis, an expression from
biology (www 01). Salomon (1996) shows that unless an optimizer ad-
dresses the issue of parameter dependence, its performance on epistatic ob-
jective functions will be seriously degraded. This important issue is dis-
cussed extensively in Sect. 2.6.2.

Adapting the components of C requires additional “strategy parame-
ters”, i.e., the variances and position angles of the D-dimensional hyper-
ellipsoids for which C is positive definite (Sprave 1995). Thus, the ES
with correlated mutations increases a problem’s dimensionality because it
characterizes each individual by not only a vector of D objective function
parameters, but also an additional vector of up to D⋅(D 1)/2 strategy pa-
rameters. For problems having many variables, the time and memory
needed to execute these additional (matrix) calculations may become pro-
hibitive.

Nelder and Mead

The Nelder–Mead polyhedron search (Nelder and Mead 1965; Bunday and
Garside 1987; Press et al. 1992; Schwefel 1994), tries to solve the step size
problem by allowing the step size to expand or contract as needed. The al-
gorithm begins by forming a (D + 1)-dimensional polyhedron, or simplex,
of D + 1 points, xi, i = 0, 1, …, D, that are randomly distributed throughout
the problem space. For example, when D = 2, the simplex is a triangle. In-
dices of the points are ordered according to ascending objective function
value so that x0 is the best point and xD is the worst point. To obtain a new
trial point, xr, the worst point, xD, is reflected through the opposite face of
the polyhedron using a weighting factor, F1:

().1 DmDr F xxxx −⋅+= (1.25)

The vector, xm, is the centroid of the face opposite xD:

.
1 1

0

=
−

=

D

i

im
D

xx
(1.26)

Figure 1.16 illustrates the reflection operation defined in Eq. 1.25.

24 1 The Motivation for Differential Evolution

x1

x2

: successful move

: unsuccessful move
x2

xm xr

reflection

expansion
xe

x0

x1

contour lines
of f(x1,x2)

Fig. 1.16. Reflection and expansion in the Nelder–Mead method where D = 2

If a reflection through the centroid improves on the best point, x0, i.e., if
f(xr) < f(x0), then the Nelder–Mead algorithm takes another step in the
same direction based on the assumption that still further improvement may
be possible. When weighted by a second scale factor, F2, this expansion

step generates a new trial point, xe:

()Dmre F xxxx −⋅+= 2 (1.27)

If this expansion step also improves on x0, then xe replaces xD. This new
set of D + 1 points becomes the next simplex and the procedure begins
again by ordering points based on their objective function value. If, how-
ever, xe did not improve upon x0, then xr replaces xD. If xr did not improve
upon x0 in the first place, then xr is compared to the next worst point, xD 1.
If xr is better than xD 1, then xr replaces xD. If, however, xr is worse than
xD 1, a third scaling constant, F3, shrinks the entire simplex. Pseudo-code
for the Nelder–Mead algorithm appears in Fig. 1.17. Figures 1.18–1.21 il-
lustrate how the simplex moves in a two-dimensional parameter space.

1.2 Local Versus Global Optimization 25

...
while (convergence criterion not yet met)
{

//---sort all D+1 points of the simplex according to-----
 //---ascending objective function value------------------
 sort(xi,D+1);

 //---compute centroid------------------------------------
xm = 0;

 for (i=0; i<D; i++) xm = xm + xi;

xm = xm/D;

 //---start exploration of surface------------------------
xr = xm + F1(xm - xD);//reflection

 if (f(xr) < f(x0)) //if best point is improved

 {
xe = xr + F2(xm - xD);//expansion

 if (f(xe) < f(x0)) xD = xe;

 else xD = xr;

 }
 else if (f(xr) < f(xD-1))//if next worst point is improved

 {
xD = xr;

 }
 else//if best and next worst point are not improved
 {
 if (f(xr) < f(xD))

 {
xD = xr;//replace worst point with reflected point

xc = xm + F3(xm - xD);//contract around centroid

 }
 else
 {

xc = xm - F3(xm - xD);//contract around centroid

 }
 if (f(xc) < f(xD))//if contraction was successful

 {
xD = xc;

 }
 else //contract around the best point
 {
 for (i=1; i<=D; i++) xi = 0.5*(x0 + xi);

 }
 }
}//end while
...

Fig. 1.17. Pseudo-code for the Nelder–Mead algorithm

26 1 The Motivation for Differential Evolution

x1

x2

reflection succeeds

expansion fails

successful move
unsuccessful move

current simplex

previous simplex

Fig. 1.18. Evolution of the Nelder–Mead simplex: first iteration. The reflection
succeeds but the following expansion fails.

x1

x2

reflection succeeds

expansion fails

Fig. 1.19. Evolution of the Nelder–Mead simplex: second iteration. Again the re-
flection succeeds but the expansion fails.

1.2 Local Versus Global Optimization 27

x1

x2

reflection fails

contraction succeeds

Fig. 1.20. Evolution of the Nelder–Mead simplex: third iteration. This time, even
the reflection fails so a contraction must be tried. The contraction is successful.

x1

x2

reflection succeeds

expansion fails

Fig. 1.21. Evolution of the Nelder–Mead simplex: fourth iteration. The reflection
succeeds, but the expansion does not.

28 1 The Motivation for Differential Evolution

The Nelder–Mead method is one of the oldest optimization algorithms
to heavily rely on difference vectors for exploring the objective function
landscape. One advantage of the Nelder–Mead method is that the simplex
can shrink as well as expand to adapt to the current objective function sur-
face. This makes the step size a variable that depends on the topography of
the objective function landscape. Like the Nelder–Mead method, DE also
exploits vector differences but without the positional bias inherent in sim-
plex reflections. Section 2.6.3 explores this distinction in detail.

Unlike DE, the Nelder–Mead algorithm restricts the number of sample
points to D + 1. This limitation becomes a drawback for complicated ob-
jective functions that require many more points to form a clear model of
the surface topography. Box (Box 1965; Bunday and Garside 1987;
Schwefel 1994) suggested using a geometrical entity called a complex that,
unlike a simplex, contains 2D points. Box also exploited the difference
vectors formed by the centroid and all other points except for the worst
one, but for multi-modal functions in particular, excessive reliance on the
centroid as a reference point is meaningless, or, worse, the cause of prema-
ture convergence.

x1

x2

xr

xw

: successful move

contour lines
of f(x1,x2)

Fig. 1.22. The CRS method applies Nelder–Mead’s reflections to a population of
points.

1.2 Local Versus Global Optimization 29

...
while (convergence criterion not yet met)
{

//---sort all NP points according to---------------------

 //---ascending objective function value------------------
 sort(xi,NP); //x0 is best, xD is worst point xw
 //---compute centroid (Points of centroid should be------
 //---all different. Code to achieve that is not shown.)--

j = rand(NP); //pick a random point from the population

 //as a variant pick j=0 (best point)
xm = xj;

 for (i=1; i<D; i++)
 {

j = rand(NP); //pick a random point from the population

xm = xm + xj;

 }
xm = xm/D;

 //---start exploration of surface------------------------
xr = xm + F1(xm - xj);//reflection from last j, usually F1=1

 if (bounds_ok(xr) == TRUE)//if inside the region of interest

 {
 if (f(xr) < f(xD)) //if worst point is improved

 {
xD = xr;

 }
 }
 //---optionally there follows a local search-------------
 //---starting from the best points-----------------------
 ...
}//end while
...

Fig. 1.23. Pseudo-code for the CRS-type algorithms

Controlled Random Search

Price’s (no relation to the author of this book) controlled random search

(CRS) also uses difference vectors for reflection operations (Price 1978).
CRS employs a Nelder–Mead-like simplex consisting of D + 1 points
drawn at random from a population of Np > D + 1 vectors as shown in
Figure 1.22. A reflection through the centroid generates a new point xr. If
this point is better than the current worst point xw, xr replaces xw. Figure
1.23 presents pseudo-code for the CRS.

CRS resembles DE because the population size is a control variable and
because vector differences generate new points. Like the Nelder–Mead al-
gorithm, though, CRS’s reflection operations are a form of arithmetic re-
combination (see Sect. 2.6.3), whereas DE’s vector operations more
closely resemble a mutation operation (see Sect. 2.5).

30 1 The Motivation for Differential Evolution

One drawback of the CRS algorithm is that continually replacing the
current worst point exerts high selective pressure that may force the popu-
lation to prematurely converge. Even though it is a multi-point strategy,
this “replace worst” selection strategy also makes it difficult to implement
the CRS algorithm in parallel. Conflicts can arise because the current
worst point can change after every reflection. There have been several im-
provements to the CRS algorithm, most notably by Ali et al. (1997) and
Ali and Törn (2004).

1.2.4 Differential Evolution – A First Impression

Price and Storn developed DE to be a reliable and versatile function opti-
mizer that is also easy to use. The first written publication on DE appeared
as a technical report in 1995 (Storn and Price 1995). Since then, DE has
proven itself in competitions like the IEEE’s International Contest on Evo-
lutionary Optimization (ICEO) in 1996 and 1997 and in the real world on a
broad variety of applications. Recently, Mathematica added DE to its
numerical optimizer package.

Like nearly all EAs, DE is a population-based optimizer that attacks the
starting point problem by sampling the objective function at multiple, ran-
domly chosen initial points. Preset parameter bounds define the domain
from which the Np vectors in this initial population are chosen (Fig. 1.24).
Each vector is indexed with a number from 0 to Np − 1. Like other popula-
tion-based methods, DE generates new points that are perturbations of ex-
isting points, but these deviations are neither reflections like those in the
CRS and Nelder–Mead methods, nor samples from a predefined probabil-
ity density function, like those in the ES. Instead, DE perturbs vectors with
the scaled difference of two randomly selected population vectors (Fig.
1.25). To produce the trial vector, u0, DE adds the scaled, random vector
difference to a third randomly selected population vector (Fig. 1.26). In the
selection stage, the trial vector competes against the population vector of
the same index, which in this case is number 0. Figure 1.27 illustrates the
select-and-save step in which the vector with the lower objective function
value is marked as a member of the next generation. Figures 1.28–1.29 in-
dicate that the procedure repeats until all Np population vectors have com-
peted against a randomly generated trial vector. Once the last trial vector
has been tested, the survivors of the Np pairwise competitions become par-
ents for the next generation in the evolutionary cycle.

1.2 Local Versus Global Optimization 31

x1

x2

contour lines
of f(x1,x2)

A vector population is
generated such that the
allowed parameter region
is entirely covered.

0

1

2
3

4

5

6

7

8

All vectors get a
unique index for bookkeeping
because each of them has to
enter a competition.

x1,min x1,max

x2,min

x2,max

Fig. 1.24. Initializing the DE population

x1

x2

xr1
xr2

difference
vector xr1-xr2 xr1 and xr2 are two

randomly selected vectors
from the vector population

0

1

2
3

4

5

6

7

8

Fig. 1.25. Generating the perturbation: xr1 − xr2

32 1 The Motivation for Differential Evolution

x1

x2

xr3*

u0=xr3+F⋅(xr1-xr2)

xr3 is another randomly
selected vector which,
together with the weighted
difference vector, yields
the trial vector u0.

weighted difference
vector F⋅(xr1-xr2)

0

1

2
3

4

5

6

7

8
u0

Fig. 1.26. Mutation

x1

x2
u0 competes against
the vector no. 0 of the
population.

0

1

2
3

4

5

6

7

8
u0

The vector with the
lower objective function
value gets marked as
vector no. 0 of the next
population.

 0

Fig. 1.27. Selection. Because it has a lower function value, u0 replaces the vector
with index 0 in the next generation.

1.2 Local Versus Global Optimization 33

x1

x2

xr3

*
u1=xr3+F⋅(xr1-xr2)

weighted difference
vector F⋅(xr1-xr2)

0

1

2
3

4

5

6

7

8

xr1

xr2

 0 xr1, xr2 and xr3 are
generated anew and
u1 is the new trial vector

Fig. 1.28. A new population vector is mutated with a randomly generated pertur-
bation.

x1

x2
u1 competes against
vector no. 1 of the
population and loses.

0

1

2
3

4

5

6

7

8 Vector no. 1 of the old
population is marked so
that it survives into the
next population.

 0

 1

Fig. 1.29. Selection. This time, the trial vector loses.

34 1 The Motivation for Differential Evolution

Figure 1.30 presents pseudo-code for DE’s most basic idea.

...
while (convergence criterion not yet met)
{

//---xi defines a vector of the current vector population-------

 //---yi defines a vector of the new vector population-----------

 for (i=0; i<NP; i++)

 {
r1 = rand(NP); //select a random index from 1, 2, ..., Np
r2 = rand(NP); //select a random index from 1, 2, ..., Np
r3 = rand(NP); //select a random index from 1, 2, ..., Np
ui = xr3 + F*(xr1 - xr2);

 if (f(ui) <= f(xi))

 {
yi = ui;

 }
 else
 {

yi = xi;

 }
 }
}//end while
...

Fig. 1.30. Pseudo-code for a simplified form of DE’s generate-and-test operations

Even though the scheme described above already works remarkably
well, DE’s performance can be improved and its methodology adapted to a
wide variety of optimization scenarios. The following chapters provide ad-
ditional insight into how and why DE works, including a convergence
proof, performance comparisons with other global optimization algo-
rithms, practical applications, and computer code for solving real-world
tasks.

References

Ali MM, Törn A, Viitanen S (1997) A numerical comparison of some modified
controlled random search algorithms. Journal of Global Optimization 11:377–
385

Ali MM, Törn A (2004) Population set based global optimization
algorithms: some modifications and numerical studies. Computers and
Operations Research 31(10):1703–1725

Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford University
Press

References 35

Bäck T, Hammel U, Schwefel H-P (1997) Evolutionary computation: comments
on the history and current state. IEEE Transactions on Evolutionary Computa-
tion 1(1):3–17

Bentley PJ, Corne DW (2002) Creative evolutionary systems. Morgan Kaufmann,
San Francisco

Boender C, Romeijn H (1995) Stochastic methods. In: Horst R, Pardalos P (eds)
Handbook of global optimization. Kluwer, Dordrecht

Box MJ (1965) A new method of constrained optimization and a comparison with
other methods. Computer Journal 8:42–52

Bunday BD, Garside GR (1987) Optimisation methods in PASCAL. Edward Ar-
nold, London

Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw-Hill,
London

Fogel DB (1994) Guest editorial on evolutionary computation. IEEE Transactions
on Neural Networks 5(1):1–14

Glentis GO, Berberidis K, Theodoridis S (1999) Efficient least squares adaptive
algorithms for FIR transversal filtering. IEEE Signal Processing Magazine
July:13–41

Goldberg DE (1989) Genetic algorithms in search optimization and machine
learning. Addison-Wesley, Reading, MA

Gross D, Harris CM (1985) Fundamentals of queuing theory. Wiley, New York
Holland JH (1962) Outline for a logical theory of adaptive systems. Journal of the

Association for Computing Machinery 3:297–314
Hooke R, Jeeves TA (1961) Direct search solution of numerical and statistical

problems. Journal of the Association for Computing Machinery 8:212–229
Ingber L (1993) Simulated annealing: practice versus theory. Journal of Mathe-

matical and Computer Modeling 18(11): 29–57
Janka E (1999) Vergleich stochastischer Verfahren zur globalen Optimierung.

Diplomarbeit, University of Wien
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated anneal-

ing. Science 220:671–680
Locatelli M, Schoen F (1996) Simple linkage: analysis of a threshold-accepting

global optimization method. Journal of Global Optimization 9:95–111
Metropolis N, Rosenbluth AE, Rosenbluth NM, Teller AN, Teller E, (1953) Equa-

tion of state calculation by fast computing machines, Journal of Chemical
Physics 21:1087-1091

Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs,
3rd ed. Springer, Berlin Heidelberg New York

Mühlenbein H, Schlierkamp-Vosen D (1993) Predictive models for the breeder
genetic algorithm I. Evolutionary Computation 1(1):25–49

Nelder JA, Mead R (1965) A simplex method for function minimization. Com-
puter Journal 7:308–313

Onwubolu GC, Babu BV (eds) (2004) New optimization techniques in engineer-
ing. Studies in Fuzziness and Soft Computing, vol 141. Springer, Berlin Hei-
delberg New York

36 1 The Motivation for Differential Evolution

Papoulis A (1965) Probability, random variables and stochastic processes.
McGraw-Hill, New York

Pierre DA (1986) Optimization theory with applications. Dover, New York
Press WH et al. (1992) Numerical recipes in C. Cambridge University Press
Price WL (1978) A controlled random search procedure for global optimization.

In: Dixon LCW, Szegö GP (eds) Towards global optimization 2. North-
Holland, Amsterdam, pp 71–84

Rade L, Westergren B (1990) Beta mathematics handbook. CRC Press, Boca
Raton, FL

Rechenberg I (1973) Evolutionsstrategie. Frommann-Holzboog, Stuttgart
Reeves CR (1993) Modern heuristic techniques for combinatorial problems.

Wiley, New York
Salomon R (1996) Reevaluating genetic algorithm performance under coordinate

rotation of benchmark functions. BioSystems 39(3):263–278.
Scales LE (1985) Introduction to non-linear optimization. Macmillan
Schwartz M (1977) Computer communication network design and analysis. Pren-

tice Hall, Englewood Cliffs, NJ
Schwefel H-P (1981) Numerical optimization of computer models. Wiley, New

York
Schwefel H-P (1994) Evolution and optimum seeking. Wiley, New York
Sprave J (1995) Evolutionäre Algorithmen zur Parameteroptimierung. Automatis-

ierungstechnik 43(3):110–117
Storn R, Price KV (1995) Differential evolution – a simple and efficient adaptive

scheme for global optimization over continuous spaces. Technical Report TR-
95-012, ICSI

Štumberger G, Dolinar D, Pahner U, Hameyer K (2000) Optimization of radial ac-
tive magnetic bearings using the finite element technique and the differential
evolution algorithm. IEEE Transactions on Magnetics 36(4):1009–1013

Syslo MM, Deo N, Kowalik JS (1983) Discrete optimization algorithms with Pas-
cal programs. Prentice-Hall

Törn A, Zilinskas A (1989) Global optimization. Lecture Notes in Computer Sci-
ence, vol 350, 250pp Springer, Berlin Heidelberg New York

www 01 PCB 4673 About Epistasis. [Online]. Available:
http://www.bio.fsu.edu/courses/pcb4673/about_epistasis.html

2 The Differential Evolution Algorithm

2.1 Overview

2.1.1 Population Structure

DE’s most versatile implementation maintains a pair of vector populations,
both of which contain Np D-dimensional vectors of real-valued parame-
ters. The current population, symbolized by Px, is composed of those vec-
tors, xi,g, that have already been found to be acceptable either as initial
points, or by comparison with other vectors:

()
() .110,

,,...,1,0,1,...,1,0,P

,,,

max,,

−==

=−==

,...,D,jx

ggNpi

gijgi

gig

x

xx
(2.1)

Indices start with 0 to simplify working with arrays and modular arithme-
tic. The index, g = 0, 1, ..., gmax, indicates the generation to which a vector
belongs. In addition, each vector is assigned a population index, i, which
runs from 0 to Np − 1. Parameters within vectors are indexed with j, which
runs from 0 to D − 1.

Once initialized, DE mutates randomly chosen vectors to produce an in-
termediary population, Pv,g, of Np mutant vectors, vi,g:

()
() .1,...,1,0,

,,...,1,0,1,...1,0,P

,,,

max,,

−==

=−==

Djv

ggNpi

gijgi

gig

v

vv
(2.2)

Each vector in the current population is then recombined with a mutant to
produce a trial population, Pu, of Np trial vectors, ui,g:

()
() .1,...,1,0,

,,...,1,0,1,...,1,0,P

,,,

max,,

−==

=−==

Dju

ggNpi

gijgi

gig

u

uu
(2.3)

During recombination, trial vectors overwrite the mutant population, so a
single array can hold both populations.

38 2 The Differential Evolution Algorithm

2.1.2 Initialization

Before the population can be initialized, both upper and lower bounds for
each parameter must be specified. These 2D values can be collected into
two, D-dimensional initialization vectors, bL and bU, for which subscripts
L and U indicate the lower and upper bounds, respectively. Once initializa-
tion bounds have been specified, a random number generator assigns each
parameter of every vector a value from within the prescribed range. For
example, the initial value (g = 0) of the jth parameter of the ith vector is

() .)1,0(rand L,L,U,0,, jjjjij bbbx +−⋅= (2.4)

The random number generator, randj(0,1), returns a uniformly distributed
random number from within the range [0,1), i.e., 0 ≤ randj(0,1) < 1. The
subscript, j, indicates that a new random value is generated for each pa-

rameter. Even if a variable is discrete or integral, it should be initialized
with a real value since DE internally treats all variables as floating-point
values regardless of their type.

2.1.3 Mutation

Once initialized, DE mutates and recombines the population to produce a
population of Np trial vectors. In particular, differential mutation adds a
scaled, randomly sampled, vector difference to a third vector. Equation 2.5
shows how to combine three different, randomly chosen vectors to create a
mutant vector, vi,g:

().,2,1,0, grgrgrgi F xxxv −⋅+= (2.5)

The scale factor, F ∈ (0,1+), is a positive real number that controls the rate
at which the population evolves. While there is no upper limit on F, effec-
tive values are seldom greater than 1.0.

The base vector index, r0, can be determined in a variety of ways, but
for now it is assumed to be a randomly chosen vector index that is differ-
ent from the target vector index, i. Except for being distinct from each
other and from both the base and target vector indices, the difference vec-

tor indices, r1 and r2, are also randomly selected once per mutant. Figure
2.1 illustrates how to construct the mutant, vi,g, in a two-dimensional pa-
rameter space.

2.1 Overview 39

xr1,g

xr2,g

F⋅(xr1,g-xr2,g)

xr0,g

vi,g = xr0,g+F⋅(xr1,g-xr2,g)

x0

x1

Fig. 2.1. Differential mutation: the weighted differential, F⋅(xr1,g− xr2,g), is added
to the base vector, xr0,g, to produce a mutant, vi,g.

2.1.4 Crossover

To complement the differential mutation search strategy, DE also employs
uniform crossover. Sometimes referred to as discrete recombination,
(dual) crossover builds trial vectors out of parameter values that have been
copied from two different vectors. In particular, DE crosses each vector
with a mutant vector:

()=≤
==

otherwise.

or(0,1)randif

,,

rand,,

,,,
gij

jgij

gijgi
x

jjCrv
uu

(2.6)

The crossover probability, Cr ∈ [0,1], is a user-defined value that con-
trols the fraction of parameter values that are copied from the mutant. To
determine which source contributes a given parameter, uniform crossover

40 2 The Differential Evolution Algorithm

compares Cr to the output of a uniform random number generator,
randj(0,1). If the random number is less than or equal to Cr, the trial pa-
rameter is inherited from the mutant, vi,g; otherwise, the parameter is cop-
ied from the vector, xi,g. In addition, the trial parameter with randomly
chosen index, jrand, is taken from the mutant to ensure that the trial vector
does not duplicate xi,g. Because of this additional demand, Cr only ap-
proximates the true probability, pCr, that a trial parameter will be inherited
from the mutant. Figure 2.2 plots the possible trial vectors that can result
from uniformly crossing a mutant vector, vi,g, with the vector xi,g.

xr1,g

xr2,g

F⋅(xr1,g-xr2,g)
xr0,g

x0

x1

xi,g

u''
i,g

u
'
i,g

vi,g=ui,g

Fig. 2.2. The possible additional trial vectors u′i,g , u″i,g when xi,g and vi,g are uni-
formly crossed

2.1.5 Selection

If the trial vector, ui,g, has an equal or lower objective function value than
that of its target vector, xi,g, it replaces the target vector in the next genera-
tion; otherwise, the target retains its place in the population for at least one

2.1 Overview 41

more generation (Eq. 2.7). By comparing each trial vector with the target
vector from which it inherits parameters, DE more tightly integrates re-
combination and selection than do other EAs:

() ()≤
=+ otherwise.

if

,

,,,

1,
gi

gigigi

gi

ff

x

xuu
x

(2.7)

Once the new population is installed, the process of mutation, recombina-
tion and selection is repeated until the optimum is located, or a pre-
specified termination criterion is satisfied, e.g., the number of generations
reaches a preset maximum, gmax.

2.1.6 DE at a Glance

Here are three different ways to describe the DE algorithm known as
“classic DE”.

Generate-and-Test

The simplicity of DE’s generate-and-test loop becomes apparent once Eqs.
2.5–2.7 are combined:

() ()

{ }

{ }

() ()≤
=

≠≠≠−∈
=

−=
−∈−=

=≤−⋅+
=

+ otherwise.

,if

210,1,...,1,02,1,0

,...,1,0

1,...,1,0

1,...,1,0;1,...,1,0

otherwise.

,or)1,0(randif,

,

,,,

1,

max

rand

,,

rand,2,,1,,0,

,,

gi

gigigi

gi

gij

jgrjgrjgrj

gij

ff

irrrNprrr

gg

Npi

DjDj

x

jjCrxxFx
u

x

xuu
x

(2.8)

C-Style Pseudo-code

Figure 2.3 presents C-style pseudo-code for classic DE. The vector indices
r0, r1 and r2 are all different and distinct from the target index, i. In addi-
tion, selection is delayed until the trial population is complete.

42 2 The Differential Evolution Algorithm

// initialize...

do // generate a trial population
{
 for (i=0; i<Np; i++) // r0!=r1!=r2!=i
 {
 do r0=floor(rand(0,1)*Np); while (r0==i);
 do r1=floor(rand(0,1)*Np); while (r1==r0 or r1==i);
 do r2=floor(rand(0,1)*Np); while (r2==r1 or r2==r0 or r2==i);

jrand=floor(D*rand(0,1));

 for (j=0; j<D; j++) // generate a trial vector
 {
 if (rand(0,1)<=Cr or j==jrand)
 {

uj,i=xj,r0+F*(xj,r1-xj,r2); //check for out-of-bounds ?

 }
 else
 {

uj,i=xj,i;

 }
 }
 }

 // select the next generation

 for (i=0; i<Np; i++)
 {
 if (f(ui)<=f(xi)) xi=ui;

 }
} while (termination criterion not met);

Fig. 2.3. Classic DE; 0 ≤ rand(0,1) < 1 so that indices never equal Np.

Flow Chart

Figure 2.4 shows a flow chart of DE. That r0, r1, r2 and i are distinct indi-
ces is not made explicit in this figure.

2.1 Overview 43

f(x1,g)

F
+

+

+ -

population
Px,g

1) Choose target vector and base vector
2) Random choice of two population members

3) Compute weighted
 difference vector

4) Add to base vector

objective function value f(xNp-1,g)

parameter vector xNp-1,g

x1,g

f(x2,g)

x2,g

f(x3,g)

x3,g

f(xNp-2,g)

xNp-2,g xNp-1,g

f(xNp-1,g)f(x0,g)

x0,g

f(v1,g)

mutant
population

Pv,g

v1,g

f(v2,g)

v2,g

f(v3,g)

v3,g

f(vNp-2,g)

vNp-2,g vNp-1,g

f(vNp-1,g)f(v0,g)

v0,g

select
trial or
target

f(x1,g+1)

x1,g+1

f(x2,g+1)

x2,g+1

f(x3,g+1)

x3,g+1

f(xNp-2,g+1)

xNp-2,g+1 xNp-1,g+1

f(xNp-1,g+1)f(x0,g+1)

x0,g+1

5) x0,g+1 = u0,g if f(u0,g) <= f(x0,g), else x0,g+1 = x0,g

new
population

Px,g+1

(=base vector)

(target vector)

crossover

u0,g

xr2,g
xr1,g

xr0,g

trial vector

Fig. 2.4. A flow chart of DE’s generate-and-test loop

2.1.7 Visualizing DE

The Difference Vector Distribution

Figure 2.5a shows the difference vectors formed by all possible pairings of
nine vectors. Transporting the difference vectors to a common origin more
clearly shows their distribution (Fig. 2.5b). Because all difference vectors
have both a negative counterpart and an equal chance of being chosen,
their distribution’s mean is zero.

44 2 The Differential Evolution Algorithm

x0

x1

All possible vector
differences for the
nine points of the
population.

0

1

2
3

4

5

6

8

8
x0

x1

Arranging vector
differences around
the origin shows the
difference vector distribution.

a) Vector differences b) Difference vector distribution

7

Fig. 2.5. Nine vectors a, and their corresponding difference distribution b

Scaling vector differences ensures that trial vectors do not duplicate ex-
isting points (Fig. 2.6a). In addition, scaling can shift the focus of the
search between local and global. Figure 2.6b illustrates that the difference
vector distribution contains a substantial number of vectors whose consid-
erable length reduces the probability that vectors will become trapped in a
local minimum.

x0

x1

0

1

2
3

4

5

6

7

8
Scaling the vector
differences by a factor F
prevents duplicating an
existing vector.

x0

x1

0

1

2
3

4

5

6

7

8

Perturbing an
outer point
potentially
moves the
corresponding
trial point far
from the current
region.

a) Effects of scaling b) Effects of large differences

Fig. 2.6. The effects of scaling a, and large vector differences b

Contour Matching

One of the biggest advantages that difference vectors afford is that both a
step’s size and its orientation automatically adapt to the objective function
landscape. The series of plots in Figs. 2.7–2.13 demonstrate this property

2.1 Overview 45

for the “peaks” function (Eq. 1.16). For clarity, the difference vector dis-
tribution plot only shows the difference vector endpoints.

As it evolves, the population coalesces around competing minima (Figs.
2.7–2.10). During this phase, the difference distribution is multi-modal,
like the function itself. It contains not only steps adapted to searching
within each basin, but also larger steps capable of transporting vectors be-
tween basins and beyond. Once the population settles into the optimal ba-
sin (Figs. 2.11–2.13), the difference vector distribution becomes uni-modal
and steps exhibit both a scale and an orientation that is appropriate for a
local search.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks function

-5 0 5
-5

0

5
Difference vector distribution

Fig. 2.7. Generation 1: DE’s population and difference vector distributions

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks function

-5 0 5
-5

0

5
Difference vector distribution

Fig. 2.8. Generation 6: The population coalesces around the two main minima

46 2 The Differential Evolution Algorithm

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks function

-5 0 5
-5

0

5
Difference vector distribution

Fig. 2.9. Generation 12: The difference vector distribution contains three main
clouds – one for local searches and two for moving between the two main minima.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks function

-5 0 5
-5

0

5
Difference vector distribution

Fig. 2.10. Generation 16: The population is concentrated on the main minimum.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks function

-5 0 5
-5

0

5
Difference vector distribution

Fig. 2.11. Generation 20: Convergence is imminent. The difference vectors auto-
matically shorten for a fine-grained, local search.

2.1 Overview 47

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks function

-5 0 5
-5

0

5
Difference vector distribution

Fig. 2.12. Generation 26: The population has almost converged.

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3
Peaks function

-5 0 5
-5

0

5
Difference vector distribution

Fig. 2.13. Generation 34: DE finds the global minimum.

2.1.8 Notation

The technical name for the method illustrated in this overview is
“DE/rand/1/bin” because the base vector is randomly chosen, 1 vector dif-
ference is added to it and because the number of parameters donated by the
mutant vector closely follows a binomial distribution. More often, how-
ever, this book refers to this method simply as “classic DE”. This version
will probably suffice for most applications, but a number of variations are
possible, each with its own strengths and weaknesses. The most successful
of these alternative strategies will be explored later in this chapter, but first
the next few sections examine the details missing from this brief overview.

48 2 The Differential Evolution Algorithm

2.2 Parameter Representation

DE encodes all parameters as floating-point numbers, regardless of their
type. Even integer and discrete variables are encoded as real values to add
diversity to their difference distributions. Specific advice for handling in-
teger and discrete variables is given in Sect. 4.2. The point being made
here is that encoding continuous parameters as floating-point numbers and
manipulating them with arithmetic operators offer several significant ad-
vantages over the traditional GA “bit flipping” approach to continuous pa-
rameter optimization. Advantages include:

• ease of use
• efficient memory utilization
• lower computational complexity – scales better on large problems
• lower computational effort – faster convergence
• greater freedom in designing a mutation distribution.

The next subsection exposes the shortcomings of the standard GA coding
scheme, while the subsequent subsection elaborates the advantages that
floating-point arithmetic confers on a real-parameter optimizer.

2.2.1 Bit Strings

Standard GA Encoding

Typically, GAs encode a continuous parameter, x, as an integer string of q
bits, ak, k = 0, 1, … q − 1, each of which is a coefficient for a power of 2:

()
.2

12

1

0

LU
L

−

=

⋅
−

−+=
q

k

k
kq

a
bb

bx
(2.9)

When decoded, integers are normalized by a factor of 2q − 1 and multiplied
by bU− bL so that values span the range between a parameter’s upper and
lower bounds, bU and bL, respectively. Assuming that equal resources are
devoted to each parameter, a vector of D parameters will require l = q⋅D
bits in all.

For functions with independent parameters, both theory and experiment
suggest that the optimal mutation rate, i.e., the probability that a bit should
be inverted, or “flipped”, is pm= 1/ l (Mühlenbein 1992; Potter and DeJong
1994). The problem with the GA approach is that even on uni-modal ob-
jective functions, the computational effort to optimize a parameter is a

2.2 Parameter Representation 49

function of l that depends on a parameter’s value. For example, if the ini-
tial parameter value is x = 15 (x = 01111 binary) and the optimal value is x
= 16 (x = 10000 binary), then 5 bits must simultaneously be flipped to
make the final improving move. When pm= 1/l, the probability of this event
is p = (1/l)5. Because this “Hamming cliff” prevents incremental improve-
ment, x = 15 is one of many local optima even if the objective function is
uni-modal. In effect, the function that maps bit strings to real-parameter
values is itself multi-modal (Bäck 1993).

By contrast, progress does not depend on simultaneously flipping multi-
ple bits if the optimum happens to be x = 0. Instead, inverting non-zero bits
in any sequence produces a series of parameter values each of which is
closer to x = 0 than the last. If the objective function is separable and uni-
modal, these intermediate steps constitute improving moves. In this very

special case, the computational complexity to optimize a parameter is con-
stant at O(l⋅ln(l)) (Salomon 1996b). The factor, ln(l), occurs because the
neighborhoods around parameters that are already optimized continue to
be re-sampled (Salomon 1997). In the worst case scenario, however, all q
bits must be inverted to make an improving move, so the upper bound on
the computational complexity for optimizing an independent parameter of
a uni-modal function becomes O(lq⋅ln(l)).

The requirement that all q bits simultaneously be inverted is also a de-
mand when the objective function is separable and multi-modal. For ex-
ample, it may be that two competing local minima are positioned at points
whose representations differ at each bit position. Since an improving move
from one local minimum to the other must simultaneously change all q

bits, the complexity is O(lq⋅ln(l)) (Salomon 1996b). That the computational
complexity to optimize an independent parameter is the same in the worst
case regardless of whether the function is uni- or multi-modal reflects the
aforementioned fact that the standard GA coding scheme imposes multi-
modality on even uni-modal objective functions (Bäck 1993).

Gray Codes

Gray codes eliminate Hamming cliffs by reassigning bit groupings to inte-
gers so that representations for adjacent integers differ by a single bit, i.e.,
so that the Hamming distance between consecutive integers is 1 (Wright
1991). As long as the objective function is both uni-modal and separable,
sequentially flipping single bits in Gray-coded variables can always pro-
duce monotonously decreasing objective function values regardless of both
the starting point and the optimal parameter value. Since it no longer mat-
ters what the optimal parameter value is, the complexity for optimizing a
separable, uni-modal function with Gray codes when pm= 1/l is constant at

50 2 The Differential Evolution Algorithm

O(l⋅ln(l)) (Salomon 1996b). Because of their constant low complexity,
Gray codes are more efficient than the standard GA representation when
the objective function is uni-modal (Bäck 1993). If, however, the objective
function is multi-modal, then all bits must be inverted simultaneously in
the worst case scenario, so the computational complexity again rises to
O(lq⋅ln(l)) – the same complexity demonstrated for standard GA coding
(Salomon 1996b).

2.2.2 Floating-Point

Unlike the standard GA representation in which all bits are potentially sig-
nificant, the floating-point format retains only a limited number of signifi-
cant digits. For example, the ANSI C float data type encodes a real num-
ber with q = 32 bits. Twenty-four bits are dedicated to precision, while the
remaining eight bits are assigned to an exponent that locates the decimal
point. By contrast, a fixed-point integer variable requires 256+ bits to span
as many orders of magnitude as the float data type. In the final answer,
most of the bits in this very long integer format will be either leading zeros
or bits of unneeded precision. By contrast, the floating-point format retains
only a limited number of significant bits while spanning a vast dynamic
range with minimal resources.

The floating-point format is convenient not only because it can effi-
ciently handle parameter values that span a wide dynamic range, but also
because most modern programming languages support common floating-
point formats. No special routines are needed to define, input, manipulate
or output a floating-point value. When representing continuous parameters
in floating-point, the encoding process is transparent to the user.

Logical Versus Arithmetic Operators

GAs typically operate on bit strings with logical operators like the XOR
(exclusive or) which has the effect of inverting specified bits. By contrast,
DE and other floating-point optimizers add a floating-point deviation to
one or more parameters. Compared to bit flipping, arithmetic provides two
benefits: it reduces the complexity of the algorithm and it provides greater
flexibility in designing a mutation distribution.

The most efficient way for an EA to optimize a function with independ-
ent parameters is to change one parameter at a time before evaluating the
result (Salomon 1996a). Typically, both standard and Gray-coded GAs
implement this strategy by setting pm= 1/l so that, on average, only one pa-
rameter value changes per function evaluation (Potter and DeJong 1994).

2.2 Parameter Representation 51

For EAs that add a small deviation to a floating-point parameter, the corre-
sponding mutation probability is pm= 1/D – a value which also, on average,
perturbs just one parameter before evaluating the result (Mühlenbein and
Schlierkamp-Voosen 1993; Salomon 1996a).

When the objective function is multi-modal, all bits in an independent

floating-point parameter may have to be set to the correct value to make
progress. If there are q bits in the floating-point representation, then the
probability of making progress in this worst case scenario is (1/2)q. While
this number may be very small, it is constant and independent of D. As a
result, the computational complexity for optimizing separable, multi-modal
functions with floating-point representations and arithmetic operators is
O(D⋅ln(D)) (Salomon 1996a). Compared to the O(lq⋅ln(l)) complexity for
optimizing an independent, Gray-coded parameter of a multi-modal func-
tion, the floating-point format representation is faster by a factor of up to
q⋅lq −1⋅(1 + ln(q)/ln(l)). The rules of complexity mathematics (Beckman
1980), however, replace leading constants, like q, with 1 and substitute 0
for terms like ln(q)/ln(l) that are negligible for large l. Under these rules,
the ratio of Gray to floating-point complexities reduces to lq −1 (Salomon
1996b).

Parameter dependence amplifies this disparity between the computa-
tional complexity of the Gray and floating-point approaches. For example,
if a multi-modal function has two parameters that depend on each other,
then progress in the worst case scenario will require flipping all bits in
both parameters simultaneously. The probability of this event is p = (1/l)2q

and the corresponding computational complexity is O(l2q⋅ln(l)). Under
similar circumstances, all bits in both parameters’ floating-point represen-
tations also must be changed. When pm= 1/D, this event occurs with a
probability of (1/D)2, so the computational complexity for optimizing two,
dependent, floating-point parameters of a multi-modal function is
O(D2⋅ln(D)). Under the rules of complexity mathematics, the gain over
Gray-coded parameters rises to l2(q −1).

Crafting a Mutation Distribution

Arguably the most important advantage that floating-point arithmetic con-
fers on a real-parameter optimizer is the freedom to decide how perturba-
tions are distributed. Because floating-point’s computational complexity
does not depend on the mutation operator’s probability density, distribu-
tions can be crafted to implement a particular search strategy (Salomon
1996b). For example, the Breeder Genetic Algorithm perturbs parameters
with non-adaptive step sizes that are distributed according to a power law

52 2 The Differential Evolution Algorithm

(Mühlenbein and Schlierkamp-Voosen 1993). Evolution Strategies (Bäck
and Schwefel) and Fast Evolution Strategies (Yao and Liu 1997) adap-
tively modify steps sampled from Gaussian and Cauchy distributions, re-
spectively. The same freedom that these floating-point optimizers enjoy
also allows DE to tap the pool of vector differences as its mutation distri-
bution.

2.2.3 Floating-Point Constraints

The number of bits that a floating-point format dedicates to an exponent
limits the minimum and maximum values that it can represent. These lim-
its are rarely exceeded in practical applications because physical properties
of such extreme magnitude are uncommon. Of greater consequence for DE
is the number of significant digits (precision) that a format supports. If the
objective function contains terms that differ by many orders of magnitude,
contributions from smaller terms will be lost if there are not enough sig-
nificant bits available. For example, the float data type holds about seven
decimal digits of precision. If two numbers differ by more than seven
decimal orders of magnitude, then the smaller contribution is not taken
into account.

.10200000.171200000001

,17

,102.1

10

10

xyx

y

x

=×→=+

=
×= (2.10)

For the same reason, the lack of precision can be a problem not only when
computing the objective function, but also when forming vector differ-
ences. Because DE relies on vector differences, the inability to record the
effect of small perturbations might cause DE to stagnate (Zimmons n.d.).

In most cases, the double format with 15 digits of decimal precision
will be enough. Because they evaluate high-order polynomials, however,
functions like the high-dimensional versions of the Chebyshev function
(see Appendix) require long doubles. Except for requiring additional
memory and bandwidth, there is little penalty for declaring long doubles
and their 19 digits of decimal precision because floating-point units com-
pute values to full precision by default.

2.3 Initialization 53

2.3 Initialization

In order for DE to work, the initial population must be distributed through-
out the problem space. One-point optimizers do not require this initial di-
versity and even the (1, λ)-ES begins with a single point. If, however, DE
is initialized with Np replicas of a single vector, uniform crossover and dif-
ferential mutation will only clone more replicas. Consequently, DE re-
quires a predefined probability distribution function, or PDF, to seed the
initial population. When specifying an initial distribution, steps must be
taken to ensure that its scale sufficiently broad.

2.3.1 Initial Bounds

As a matter of convenience, test function parameters are often initialized
with values that are constrained to lie between a single set of upper and
lower bounds. By contrast, bounds for parameters that define real-world
objective functions are seldom equal, often because the parameters they
delimit correspond to different physical or mathematical entities. In many
cases, the existence of natural physical limits or logical constraints makes
prescribing bounds for each parameter straightforward. For example, ordi-
nary optical glass can never have an index of refraction less than or equal
to 1, nor can a gear have less than one tooth. In cases like these where pa-
rameter limits are inviolable, initialization bounds should not only delimit
the initial population, but also constrain the subsequent search. Section
4.3.1 discusses several methods for keeping parameters constrained within
pre-specified bounds.

Far Initialization

When parameters exhibit no obvious limits, their upper and lower bounds,
bj,U and bj,L, respectively, should be set so that the initial bounding box
they define encompasses the optimum. If the optimum’s general location is
uncertain, then the possibility exists that it lies outside the initial bounding
box. Figure 2.14 shows an example of far initialization in which the upper
parameter limit has been reduced to the point where the initial bounding
box no longer contains the optimum, x*. In cases of far initialization,
bounds on otherwise unconstrained parameters must be ignored once the
population has been initialized so that DE can explore beyond the initial
bounding box.

Table 2.1 records the effect that far initialization has on DE’s ability to
discover the optima of ten common test functions (descriptions of test

54 2 The Differential Evolution Algorithm

functions can be found in the Appendix). Although each function has a dif-
ferent set of initialization bounds, in each case, these bounds define a D-
dimensional box that encloses the function’s global optimum.

x1

x0

b0,L

b1,L

b1,U

b0,U

x*

b1,Far

b0,Far

Fig. 2.14. Far initialization shrinks the initial bounding box so that it no longer
contains the optimum, x*.

For the results in Table 2.1, each parameter was initialized with a uni-
formly distributed random value from within a range that has been reduced
by a factor, h, when compared to the originally prescribed bounds:

().)1,0(rand L,U,L,0,, jjjjij bbhbx −⋅⋅+= (2.11)

After far initializing the population with the given value of h, bounds were
relaxed to their normal values to constrain the subsequent search.

For each of the functions in Table 2.1, the initial bounding box encloses
the optimum when h = 1. Setting h ≤ 0.1 far initializes the population by
restricting it to a corner of the original bounding box where it cannot sur-
round the optimum. Table 2.1 reports the average number of function
evaluations (“Evals.”) taken to find a point whose objective function value
differs from the optimum objective function value by less than a preset
minimum. Finding such a point within the maximum allowed number of
generations constitutes a success; otherwise, the trial is considered to be a
failure. (See the Appendix for details on the minimum function value to
reach.) Only “successes” contribute to the results in Table 2.1. The fraction

2.3 Initialization 55

of successful trials, P, records the impact of failures. Results are 100-trial
averages obtained using classic DE with F = Cr = 0.9 and r0 ≠ r1 ≠ r2 ≠ i

(distinct indices).

Table 2.1. The effects of far initializing DE with a uniformly random population

h = 1 h = 0.1 h = 0.01 Function D Np
Evals. P Evals. P Evals. P

Sphere 10 30 30,994.5 1 31,514.9 1 31,722.2 1
Ridge 10 30 48,520.2 1 48,825.5 1 48,820.2 1

Rosenbrock 10 30 59,643.4 1 59,721.9 1 60,315.4 1
Chebyshev 9 30 69,522.1 1 72,211.3 1 71,068.5 1

Ackley 10 30 48,385.2 1 49,853.3 0.90 – 0
Rastrigin 5 100 59,840.4 1 60,199.2 1 – 0
Schwefel 5 100 16,245.6 1 22,432.4 0.25 – 0

Griewangk 5 100 19,4202 0.98 19,5551 0.99 19,4921 0.99
Langerman 5 100 38,405.7 0.98 37,196.1 0.54 34,873.2 0.21

Michalewicz 5 100 27,749.5 1 29,291.6 0.95 32,061.6 0.96

As Table 2.1 shows, far initialization’s effect on the sphere, ridge,
Rosenbrock, Chebyshev, Michalewicz and Griewangk functions is mini-
mal. In most cases, far initialization penalizes these six functions with a
very slight increase in the average number of function evaluations and a
very slight decrease in the estimated probability of success. For both the
sphere and ridge functions, this result is not surprising. Both functions are
uni-modal and convex, so neither poses obstacles to the population’s ex-
pansion toward the minimum. (Pictures of the two-dimensional versions
for many of the test functions used in this book appear in the Appendix.)
Rosenbrock’s function is also uni-modal, but unlike the sphere it is non-
convex. At least in the case of Rosenbrock’s function, non-convexity does
not impede DE’s ability to locate the minimum when far initialized.

Unlike the sphere, ridge or Rosenbrock functions, the remaining func-
tions in Table 2.1 are all multi-modal. Optimal parameter values for the
Chebyshev function vary greatly in magnitude and restricting initial values
to a small range means that some parameter values must inflate many or-
ders of magnitude to be on par with their optimal values. Table 2.1 shows
that except for a slight increase in the number of function evaluations, di-
minishing the value of h did not significantly impact DE’s ability to con-
verge on the Chebyshev optimum. Similarly, far initialization did not sig-
nificantly affect DE’s performance on either Michalewicz’s or
Griewangk’s function.

DE became unreliable, however, when far initializing Langerman’s
function and failed altogether on the Ackley, Rastrigin and Schwefel func-

56 2 The Differential Evolution Algorithm

tions once h = 0.01. For these highly multi-modal functions, the entire ini-
tial population can land inside a single, non-optimal, local basin of attrac-
tion when h becomes too small. If competing basins are sufficiently far
apart, then classic DE cannot generate difference vectors large enough to
escape the local basin. Thus, it is important to use a bounding box of suffi-
cient size when initializing multi-modal functions with a uniform random
distribution.

Initializing with a Constant

Occasionally, it may prove productive to experiment with a design by
holding one or more of its parameters constant while optimizing the re-
maining variables. DE automatically leaves a parameter unchanged during
optimization if every vector is initialized with the same value for the given
parameter. When all vectors have the same value for a parameter, every
differential they combine to create for that parameter will be zero. Fur-
thermore, uniform crossover does not change parameter values, so a pa-
rameter initialized with a single constant value will never change.

2.3.2 Initial Distributions

DE can be initialized with either a uniform or a non-uniform distribution.
The decision regarding which to use depends on how much is known about
the location of the optimum. If the optimum’s location is fairly well
known, a Gaussian distribution may prove somewhat faster, although it
may also increase the probability that the population will converge prema-
turely. In general, uniform distributions are preferred, since they best re-
flect the lack of knowledge about the optimum’s location. The next section
looks at two common uniform distributions.

Uniform Distributions

Distributing initial points with random uniformity is not mandatory, but
experience has shown randj(0,1) to be very effective in this regard. In gen-
eral, any distribution that uniformly covers the search domain and contains
a degree of irregularity or randomness should serve well for initializing the
vector population. For example, Hammersley and Halton point sets are of-
ten used in the field of numerical integration (Halton and Weller 1964).
Based on prime numbers, these pseudo-random distributions are both uni-
form and irregular, but lack points in close proximity, i.e., they have a
minimum resolution that increases as the number of points in the sample
increases. Figure 2.15 gives C-style pseudo-code for computing Halton

2.3 Initialization 57

points in up to ten dimensions. The function, halton(i,j), takes the popula-
tion and parameter indices as input and returns a (rational) number belong-
ing to the interval [0,1).

halton(i,j)
{
 prime[10]=[2,3,5,7,11,13,17,19,23,29];

p1=prime[j];
p2=p1;

 sum=0;

 do
 {
 x=i%p1; // "%" is the modulo operator
 sum=sum+x/p2;
 i=floor(i/p1);

p2=p2*p1;
 }while (i>0);

 return(sum);
}

Fig. 2.15. C-style pseudo-code for generating Halton point sets, D ≤ 10

rand(0,1)

0

1

0 1

halton(i ,j)

0

1

0 1

Fig. 2.16. Two hundred points distributed with random uniformity (left) and ac-
cording to a two-dimensional Halton point set (right).

58 2 The Differential Evolution Algorithm

Figure 2.16 compares the uniform random and Halton distributions in
two dimensions. The Halton distribution is more even, but the random dis-
tribution displays a wider range of difference vector magnitudes.

Table 2.2 shows how the random and Halton distributions affect DE’s
performance by reporting the average number of function evaluations
(“Evals.”) taken to find a point whose objective function value differs from
the optimum objective function value by less than a preset minimum. Find-
ing such a point within the maximum allowed number of generations con-
stitutes a success; otherwise, the trial is considered to be a failure. (See
Appendix for details on the minimum function value to reach.) Only “suc-
cesses” contribute to the results in Table 2.2. The fraction of successful tri-
als, P, records the impact of failures. Results are 100-trial averages ob-
tained with classic DE, F = Cr = 0.9, distinct indices and with bound
constraints imposed. Results for the random uniform distribution have
been copied from Table 2.1 (h = 1).

Table 2.2. Comparing the effects of uniform initial distributions on performance

randj(0,1) halton(i,j)Function D Np
Evals. P Evals. P

Sphere 10 30 30,994.5 1 30,971.1 1
Ridge 10 30 48,520.2 1 48,346.8 1

Rosenbrock 10 30 59,643.4 1 59,406.2 1
Chebyshev 9 30 69,522.1 1 72,611.6 1

Ackley 10 30 48,385.2 1 48,354.7 1
Rastrigin 5 100 59,840.4 1 60,019.2 1
Schwefel 5 100 16,245.6 1 16,203.2 1

Griewangk 5 100 19,4202 0.98 18,8279 1
Langerman 5 100 38,405.7 0.98 39,610.2 0.99

Michalewicz 5 100 27,749.5 1 27,130.7 0.98

As Table 2.2 shows, it matters little whether the population is initialized
with randj(0,1), or according to

().),(halton L,U,L,0,, jjjjij bbjibx −⋅+= (2.12)

In every case, both the fraction of successful trials and the average number
of function evaluations they required were virtually the same regardless of
which uniform distribution initialized the population. To generate a differ-
ent point set, a different range of prime numbers should be used.

2.3 Initialization 59

Gaussian Distribution

Uniform distributions are reliable, but populations can also be non-
uniformly initialized. For example, Fig. 2.17 plots 200 points distributed
according to a two-dimensional multi-normal distribution whose mean
vector value is µ = 0.5 and whose covariance matrix is C = σ 2⋅I, where σ
= 0.5 and I is the identity matrix, i.e., N(0.5, 0.25⋅I). This choice centers
the (symmetrical) distribution in the bounding box and places standard de-
viates (along coordinate axes) on its surface. Unlike the Halton distribution
in Eq. 2.12, the multi-normal distribution, whose output is a vector, is
sampled only once per initial vector.

N(0.5,0.25*I)

0

0.5

1

0 0.5 1

Fig. 2.17. A two-dimensional Gaussian-distributed initial population with mean of
0.5 and a standard deviation of 0.5, i.e., N(0.5, 0.25⋅I)

Table 2.3 details how classic DE’s performs when the initial population
is distributed according to a multi-normal distribution. Unlike Eq. 2.12 in
which a new random value is generated for each parameter, the distribu-
tion used in both Fig. 2.17 and Table 2.3 generates a single instance of a
multi-normally distributed random vector for each initial point. In both
cases, the distribution’s mean vector is µ = (0.5, 0.5, ... 0.5) and its covari-
ance matrix is C = 0.25⋅I. A comparison with Table 2.2 shows that when

60 2 The Differential Evolution Algorithm

the population is not far initialized (h = 1), it makes little difference
whether the initial distribution is uniform or Gaussian. The sole exception
is Ackley’s function. Although initializing Ackley’s function with a Gaus-
sian distribution left convergence speed unchanged, it significantly de-
graded DE’s probability of success.

Once the population is far initialized (h ≤ 0.1), failures become more
likely. When compared with Table 2.1, the results in Table 2.3 show that a
population far initialized with a Gaussian distribution is less likely to be
successful on multi-modal functions than a uniformly distributed one. In
every case where uniform distributions failed, the Gaussian-distributed
population failed more often.

Table 2.3. Far initialization with a ten-dimensional multi-normal distribution

h = 1 h = 0.1 h = 0.01 Function D Np
Evals. P Evals. P Evals. P

Sphere 10 30 31,801.1 1 31,937.7 1 32,967.6 1
Ridge 10 30 48,483.9 1 48,919.4 1 49,569.9 1

Rosenbrock 10 30 60,198.4 1 60,897.4 1 61,056.4 1
Chebyshev 9 30 72,972.6 1 72,233.6 1 70,129.5 1

Ackley 10 30 48,472.5 0.02 – 0 – 0
Rastrigin 5 100 59,627.1 1 61,125.9 0.71 – 0
Schwefel 5 100 17,406.2 0.97 33,750.1 0.67 – 0

Griewangk 5 100 19,0872 1 19,6362 0.99 19,2462 0.99
Langerman 5 100 34,005.4 0.60 32,630.6 0.09 32,254.3 0.04

Michalewicz 5 100 28,219.8 0.96 31,005.8 0.98 30,828.1 0.73

Clustering the initial population significantly decreased success prob-
abilities not only for Ackley’s function, but also for the Rastrigin, Schwe-
fel and Langerman functions, although in each case the average number of
function evaluations was not seriously affected. This result reinforces the
idea that when the objective function is multi-modal, it is important to dis-
perse the initial population widely enough to contain the optimum. Results
also suggest that the penalty for expanding bounds is a small increase in
the average number of function evaluations but the reward is often a sig-
nificantly enhanced probability of success.

DE is based on evolution with vector differences, so it is not surprising
that the way in which differences are chosen can have an impact on the op-
timization process. The following section examines what happens when
the base and difference vectors are chosen both with and without restric-
tions.

2.4 Base Vector Selection 61

2.4 Base Vector Selection

There are four vector indices in classic DE’s generating equation (e.g., Eq.
2.8). The target index, i, specifies the vector with which the mutant is re-
combined and against which the resulting trial vector competes. The re-
maining three indices, r0, r1 and r2, determine which vectors combine to
create the mutant. Typically, both the base index, r0, and the difference
vector indices, r1 and r2, are chosen anew for each trial vector from the
range [0, Np − 1].

When indices are randomly selected, the possibility exists that some
vectors may be chosen repeatedly while others may be omitted altogether.
Both omitted and duplicated indices affect DE’s performance. Duplicating
an index can reduce DE’s novel search strategy to a conventional one,
while omitting an index may deprive a vector of the opportunity to serve as
a base vector. After presenting several alternative schemes for selecting
base vectors, this section explores the effects of degenerate vector combi-
nations.

2.4.1 Choosing the Base Vector Index, r0

Random Without Restrictions

The base index, r0, specifies the vector to which the scaled differential is
added. The classic version of DE employs a uniform distribution to ran-
domly select r0 anew for each trial vector. To ensure that the index is al-
ways less than Np, randi(0,1) must return a value that is strictly less than 1.

r0=floor(randi(0,1)*Np);

Fig. 2.18. Base vector selection without restrictions

While base index selection without restrictions (Fig. 2.18) treats all vec-
tors equally in a statistical sense, it may pick some vectors more than once
per generation, causing others to be omitted. Stochastic universal sampling
provides a more representative population sample.

Stochastic Universal Sampling

Randomly selecting the base vector without restrictions is known in EA
parlance as roulette wheel selection. Roulette wheel selection chooses Np

62 2 The Differential Evolution Algorithm

vectors by conducting Np separate random trials, much like Np passes at a
roulette wheel whose slots are proportional in size to the selection prob-
ability of the vector they represent. In many GAs, selection probabilities
are biased toward better solutions, meaning that better vectors are assigned
proportionally wider slots, but in classic DE, each vector has the same
chance of being chosen as a base vector, so all slots are of equal size, just
like a real roulette wheel.

0

DE GA

Roulette wheel selection: Do Np times

1 2 3 4

0 1 2 3 4

Stochastic universal sampling: Do once

0 1 2 3 4

0 1 2 3 4

Fig. 2.19. Stochastic universal sampling and roulette wheel selection compared.
The fraction of the space allotted to a vector in DE is constant, but in the GA it
depends on the vector’s objective function value.

Because samples drawn by roulette wheel selection suffer from a large
variance, the preferred method for sampling a distribution is stochastic
universal sampling because it guarantees a minimum spread in the sample
(Baker 1987; Eiben and Smith 2003). The relation of stochastic universal
sampling to roulette wheel selection is best illustrated if the ball used in
real roulette is replaced with a stationary pointer. Once the roulette wheel
stops, the vector corresponding to the slot pointed to is selected. Instead of
spinning a roulette wheel Np times to select Np vectors with a single
pointer, stochastic universal sampling uses Np equally spaced pointers and
spins the roulette wheel just once. In the GA, slot sizes are based on a vec-
tor objective function value, with better vectors being assigned more
space. In DE, each candidate has the same probability of being accepted,
so slots are of equal size. Consequently, each of the Np pointers selects one

2.4 Base Vector Selection 63

and only one vector regardless of how the roulette wheel is spun (Fig.
2.19)

The following vector selection methods adhere to stochastic universal
sampling as it applies to DE since all vectors serve as base vectors once
and only once per generation. Both methods described below also establish
the one-to-one correspondence needed to pair each target vector with a
unique base vector.

2.4.2 One-to-One Base Vector Selection

Permutation Selection

To ensure that each vector serves as a base vector just once per generation,
permutation selection draws consecutive base vector indices from an array
containing a random permutation of the sequence [0, 1,..., Np − 1]. In this
scheme, the (target) vector with index i is crossed with is the base vector
whose index is the ith element of the permutation. The permutation array
can be initialized with consecutive integers and r0 can be computed with a
single call to a uniform random number generator and one swap of array
elements. Another way to permute base vectors assigns to i the vector
whose index is the product, modulo Np, of i and an integer that is rela-
tively prime to Np. Details of both methods can be found in Sect. 5.2.

Random Offset Selection

The random offset method is another way to stochastically assign each tar-
get vector a unique base vector. Simpler than the permutation method, the
random offset method computes r0 as the sum, modulo Np, of the target
index and a randomly generated offset, rg. The modulo operator, %, in Fig.
2.20 divides the operand, (i + rg), by Np and returns the integral remainder.

r0=(i+rg)%Np;

Fig. 2.20. The base vector is the sum, modulo Np, of the target index, i, and the
randomly generated offset, rg (see Fig. 2.21).

rg=floor(randg(0,1)*Np);

Fig. 2.21. The random offset, rg, is chosen anew at the start of each generation.

64 2 The Differential Evolution Algorithm

Each of the Np possible values for rg defines a one-to-one mapping be-
tween target and base vectors. These Np rotational mappings are a subset
of the set of Np! permutations. The symbol, “!” is the factorial operator.
The value of n! is just the product of all of the positive integers less than or
equal to n. Figure 2.22 gives examples for each of the aforementioned base
vector assignment methods. The target index is the population’s running
index, i, so each method automatically ensures that each vector serves as a
target vector once per generation. Only the last two methods, however,
also ensure that each vector serves as a base vector once per generation.
permute[i] refers to the ith element of an array containing a randomly gen-
erated permutation of the sequence [0, 1,…, Np − 1] (Np = 7 in Fig. 2.22).

0

1

2

3

4

5

6

0

1

2

3

4

5

6

i r0

0 0

1

2

3

4

5

6

1

2

3

4

5

6

0 0

1

2

3

4

1

2

3

4

5

6

5

6

i ir0 r0

r0=floor(randi(0,1)*Np) r0=permute[i] r0=(i+rg)%Np, (rg=2)

Fig. 2.22. Three ways to stochastically pair base and target vectors

2.4.3 A Comparison of Random Base Index Selection Methods

Using the ten-dimensional sphere as a test function, Table 2.4 compares
the performance of the three stochastic base vector selection methods. (See
the Appendix for test function details.) As Table 2.4 shows, all vector se-
lection methods respond similarly when Np is increased. Before conver-
gence becomes regular, increasing Np not only improves the probability of
success, but also decreases the number of function evaluations needed to
reach the optimum. Once convergence becomes regular, however, addi-
tional increases in Np only marginally improve the probability of conver-
gence while the number of function evaluations begins to climb. As a re-
sult, each method exhibits an optimal population size for which the
number of function evaluations is a minimum. In the case of the ten-

2.4 Base Vector Selection 65

dimensional sphere, all three stochastic selection methods perform best
when Np = 9, (F = Cr = 0.9 and i ≠ r0 ≠ r1 ≠ r2), with each converging re-
liably in about 6000 function evaluations. Some performance disparities
arise, however, once degenerate vector combinations are allowed.

Table 2.4. When best efforts are compared, all the three stochastic selection
methods perform similarly. Results are 1000-trial averages of the number of func-
tion evaluations needed to reach the optimum to within a pre-specified limit and
within the maximum allowed number of generations (see the Appendix for the
function value to reach). P is the fraction of trials that were successful. For these
results, F = Cr = 0.9 and i ≠ r0 ≠ r1 ≠ r2.

r0 = floor(randi(0,1)⋅Np) r0 = permute[i] r0 = (i + rg)%Np
Np

Evals. P Evals. P Evals. P
5 36,616.0 0.001 17,929.0 0.004 – 0
6 14,215.0 0.074 16,804.2 0.309 17,627.9 0.583

7 12,917.2 0.889 10,017.1 0.961 9047.00 0.977

8 7097.05 0.982 6582.3 0.979 7086.11 0.995

9 6006.70 0.994 5954.05 0.995 5927.24 0.998
10 6039.08 0.996 5969.34 1.0 6669.14 1.0

11 6433.55 0.998 6431.55 0.999 6843.09 1.0

12 71,10.87 0.999 7195.95 1.0 8213.57 1.0

13 79,86.33 0.999 8031.48 1.0 8856.00 1.0

14 90,15.09 1.0 9040.13 1.0 10,509.7 1.0

15 10,095.4 1.0 10,214.1 1.0 11,557.2 1.0

2.4.4 Degenerate Vector Combinations

If indices are chosen without restrictions, there is no guarantee that i, r0, r1
and r2 will be distinct. When these indices are not mutually exclusive,
DE’s novel trial vector-generating strategy reduces to uniform crossover
only, duplication of the base vector, an alternative form of recombination,
or mutation only. These possibilities are explored below, first by looking at
the three degenerate combinations of indices that comprise the mutant vec-
tor, r0, r1 and r2, and then by considering the three interactions of the tar-
get index, i, with the mutant indices.

66 2 The Differential Evolution Algorithm

Degenerate Combinations of Mutant Indices: r0, r1, r2

r1 = r2: No Mutation. If r1 = r2, then the differential formed by the corre-
sponding vectors will be zero and the base vector, xr0,g, will not be mu-
tated:

.:)0(21 0,, grgirrr xv === (2.13)

When indices are chosen without restrictions, r1 will equal r2 on average
once per generation, i.e., with probability 1/Np. The probability that all
three indices will be equal is (1/Np)2, but either way, the result is the same:
a randomly chosen base vector that has not undergone mutation is recom-
bined with the target vector by means of conventional uniform crossover:

()=∨≤
==

otherwise.

;)1,0(randif

,,

rand0,,

,,,
gij

jgrj

gijgi
x

jjCrx
uu

(2.14)

Requiring the base vector to contribute a parameter when j = jrand en-
sures that the trial vector will not simply reproduce the vector with which
it is compared, i.e., the target vector, xi,g. If, however, Cr is greater than 0,
the possibility exists that the trial vector will duplicate the base vector.
When Cr = 1, and r1 = r2, duplication is a certainty:

grgigiCrrrr 0,,,:1)0(21 xvu ===∧== . (2.15)

More generally, the probability that the base vector will be duplicated is
the product of the probability that r1 = r2 and the probability that all pa-
rameters are inherited from the mutant, vi,g. Since Cr mediates a random
process having just two possible outcomes (mutant or target), the number
of parameters inherited from the mutant is governed by a binomial distri-
bution. Thus, the probability of inheriting x mutant parameters in n tries is

() ∏
=

− =−
−

==
n

k

xnx knCrCr
xnx

n
xXp

1

!,1
)!(!

!
)(.

(2.16)

Since one parameter is certain to be taken from the mutant, n = D − 1.
Thus, the probability, given Cr, that all D − 1 of the remaining parameters
will also be inherited from the mutant (x = D − 1) is

() () () 10!,1
!0)!1(

!1
1 101 ≡=−

−
−=−= −− DD CrCrCr

D

D
DXp .

(2.17)

2.4 Base Vector Selection 67

When difference indices are chosen without restrictions, the probability
that the base vector will not be mutated is 1/Np, making CrD –1/Np the
probability that a base vector will be duplicated.

r1 = r0 or r2 = r0: Arithmetic Recombination. Another special case oc-
curs when either of the difference indices, r1 or r2, equals the base index,
r0. When indices are chosen without restrictions, each coincidence occurs
on average once per generation. Equation 2.18 elaborates the two possibili-
ties that result when DE’s three-vector mutation formula (Eq. 2.5) reduces
to a linear relation between the base vector and a single difference vector:

()

().:02

,:01

0,1,0,,

2,0,0,,

grgrgrgi

grgrgrgi

Frr

Frr

xxxv

xxxv

−⋅+==

−⋅+== (2.18)

Each two-vector linear combination defines a line that connects the base
vector to one of the two difference vectors (Fig. 2.23). F plays the role of a
coefficient of combination that determines which point along the line is
targeted. In the parlance of evolutionary computation, this “line search” is
usually called either continuous or arithmetic recombination. This book
adopts the term “arithmetic recombination”. Section 2.6 explores this
process more thoroughly.

xr1,g (= xr0,g)

xr2,g (= xr0,g)

vi,g= xr0,g+F⋅(xr0,g-xr2,g)

vi,g= xr0,g+F⋅(xr1,g-xr0,g)

xr2,g

xr1,g

Fig. 2.23. Mutation degenerates into two-vector arithmetic recombination when
either r1 = r0 (left) or r2 = r0 (right).

Degenerate Combinations Involving the Target Index, i

r0 = i: Mutation Only. If the base index, r0, is not different from the tar-
get index, i, then crossover reduces to mutation of the target vector. In this
scenario, Cr plays the role of a mutation probability:

68 2 The Differential Evolution Algorithm

() ()=∨≤−⋅+
=

otherwise.

,)1,0(randif

,,

rand,2,,1,,,

,,
gij

jgrjgrjgij

gij
x

jjCrxxFx
u

(2.19)

When base vector indices are randomly selected without restrictions, these
degenerate vector combinations occur with probability 1/Np.

i = r1 or i = r2. Each of the coincidental events, i = r1 and i = r2, occurs
with probability 1/Np when indices are chosen without restrictions. Neither
coincidence reduces DE’s generating process to a conventional one; mu-
tants are still three-vector combinations and crossover recombines distinct
base and target vectors (assuming r0 ≠ i).

Table 2.5 summarizes the possible degenerate vector combinations that
can occur when difference indices are chosen without restrictions, i.e., in-
dex = floor(randi(0,1)⋅Np).

Table 2.5. First-order degenerate combinations

Event Degenerate process Prob. Result
Uniform crossover 1/Np vi,g = xr0,g

r1 = r2
Duplication of base vector CrD −1/Np ui,g = xr0,g

r0 = r1 Intermediate recombination 1/Np vi,g = xr0,g + F⋅(xr0,g − xr2,g)

r0 = r2 Intermediate recombination 1/Np vi,g = xr0,g + F⋅(xri,g − xr0,g)

i = r0 Differential mutation 1/Np vi,g = xi,g + F⋅(xr1,g − xr2,g)

i = r1 None 1/Np vi,g = xr0,g + F⋅(xi,g − xr2,g)

i = r2 None 1/Np vi,g = xr0,g + F⋅(xr1,g − xi,g)

Higher Order Degenerate Combinations

The above index pairings are first-order degenerate combinations in which
only two of four indices are coincident. If indices are chosen without re-
strictions, the same index may be chosen more than twice. In practice, the
effects of higher order degenerate combination are small because their
probability is inversely proportional to powers of Np ≥ 2.

2.4.5 Implementing Mutually Exclusive Indices

Enforcing i ≠ r0

If base indices are chosen randomly, as they are in classic DE, then r0 = i
can be prevented by using a “do–while” loop to reselect r0 until it no
longer equals the target vector index (Fig. 2.24).

2.4 Base Vector Selection 69

do
{

r0=floor(randi(0,1)*Np);

}while(r0==i);

Fig. 2.24. To ensure that base and target vectors are different, r0 should be rese-
lected.

Similarly, if base vectors are the elements of a permutation, then r0 can
be redrawn from the remaining list of unused indices, except when i is the
last element of the permutation. In the random offset method, choosing rg

from the more restricted range [1, Np − 1], ensures that r0 = i does not oc-
cur.

Mutually Exclusive Indices: i ≠ r0 ≠ r1 ≠ r2

Once the base vector has been determined, difference indices can be cho-
sen. Perhaps the simplest way to implement mutually exclusive indices is
to use a pair of “do–while” loops (Fig. 2.25) to reselect any difference in-
dex that happens to equal the target, base or a previously chosen difference
index.

do
{

r1=floor(randi(0,1)*Np);

}while(r1==i || r1==r0); // "||" is "or"
do
{

r2=floor(randi(0,1)*Np);

}while(r2==i || r2==r0 || r2==r1);

Fig. 2.25. Given r0 ≠ i, distinct indices should be selected with a pair of do–while
loops.

Distinct difference indices can be taken from arrays of random permuta-
tions of the sequence [0, 1,…, Np − 1]. Methods for generating random
permutations are presented in Sect. 5.2 and as an option in the Matlab code
on this book’s companion CD-ROM.

70 2 The Differential Evolution Algorithm

2.4.6 Gauging the Effects of Degenerate Combinations: The
Sphere

Table 2.6 calls upon the ten-dimensional sphere to reveal how the presence
of degenerate combinations affects both the speed and probability with
which each of three stochastic base index selection methods converges.
Because it is simple, the sphere provides a good way to interpret the effect
of degenerate vector combinations. Performance is measured at the value
of Np that minimizes the average number of function evaluations. The first
row of results, labeled “All”, shows the combined effect of all degenerate
combinations (any r0, r1, r2). For the final row of results, labeled “None”,
indices are mutually exclusive (i ≠ r0 ≠ r1 ≠ r2) and degenerate combina-
tions are forbidden. The middle rows record what happens when only the
designated index coincidence is permitted.

Table 2.6. DE’s performance is influenced by the way in which trial vector indi-
ces are chosen. Here, the effects of degenerate vector combinations on the three
base index selection schemes are compared. Results are 1000-trial averages, with
F = Cr = 0.9. The value of Np is that which yields the answer in the fewest num-
ber of function evaluations, while P is the corresponding probability of success.
Data for the last row “None”, has been copied from Table 2.4.

r0 = floor(randi(0,1)⋅Np) r0 = permute[i] r0 = (i + rg)%NpAllowed
event Np Evals. P Np Evals. P Np Evals. P
All 14 6479.79 0.992 14 6359.32 0.996 13 6549.55 1.0

r1 = r2 13 6585.71 0.797 14 6522.19 0.881 13 6568.55 0.993

r0 = r1 9 6388.09 0.967 9 6341.93 0.976 9 6371.36 0.994

r0 = r1 13 5832.56 1.0 13 5743.42 1.0 13 5769.72 1.0

i = r0 9 6067.18 0.991 9 5940.59 0.993 10 10,829.5 1.0

i = r1 9 6009.60 0.992 9 6007.01 0.998 9 6204.13 0.999

i = r2 9 5955.17 0.992 9 5847.14 0.998 9 5729.59 1.0

None 9 6006.70 0.994 9 5954.05 0.995 9 5927.24 0.998

All: Any r0, r1 and r2

The first row of data summarizes the combined influence of all degenerate
combinations, including higher order degenerate combinations. Although
the large optimal population size helps to keep convergence probability
competitive, it also slows convergence speed.

2.4 Base Vector Selection 71

r1 = r2

Except for the anomalous behavior of the random offset method when r0 =
i, all three base index selection methods exhibit their worst performance
when equal difference indices are allowed (r1 = r2). At Cr = 0.9, a signifi-
cant fraction of these events (about 39%) duplicate base vectors. Re-
evaluating duplicated vectors wastes time and accepting them reduces the
population’s effective size. Indeed, Table 2.6 shows that when r1 = r2 is
allowed, all three base index selection methods require relatively large
populations. In this case, increasing Np to compensate for duplicated en-
tries slows convergence without making it reliable.

r0 = r1

Because difference vector xr2,g is preceded by a minus sign, r0 = r1 places
the recombinant farther away from xr2,g than was xr1,g whenever F > 0 (re-
fer back to Fig. 2.23). For the sphere, accepting this recombinant slows
convergence and compromises reliability. This form of recombination also
tends to slow convergence on multi-modal functions, but its effect on the
probability of convergence will not always be detrimental.

r0 = r2

By contrast, all three base index selection methods performed best when
they allowed r0 = r2 to transform differential mutation into arithmetic re-
combination. This is because when 0 < F < 2, r2 = r0 produces a recombi-
nant that lies closer to xr1,g than was xr2,g. This contractile mapping im-
proves optimization speed even though Np must be increased to
compensate for the additional convergence “pressure”. Allowing this index
combination typically speeds optimizations of multi-modal functions as
well, but unlike the case of the sphere, it is less common that convergence
probability will also improve.

i = r0

A careful examination of Table 2.6 shows that the random offset method
(last column) exhibits the best probability of convergence under all cir-
cumstances. In addition, its speed of convergence is competitive except for
the case i = r0, when the number of function evaluations balloons to nearly
twice that of the other two methods. It may seem curious that permitting
the combination r0 = i affects the performance of the random offset
method so much more than it does the random selection method, even
though r0 = i occurs on average once per generation in both cases. The

72 2 The Differential Evolution Algorithm

performance disparity arises because when the random offset equals zero
(rg = 0), an entire generation of target–base pairings is turned into degener-
ate combinations, whereas unrestricted random selection spreads them uni-
formly over the generations. When allowed, the same “identity mapping”
of target and base vectors also occurs in the permutation method, but its ef-
fect is negligible since it occurs on average only once every Np! genera-
tions.

i = r1 and i = r2

The influence of i = r1 and i = r2 is more difficult to analyze than that of
the corresponding pair of events r0 = r1 and r0 = r2, but it mirrors their
behavior, with one event speeding convergence (i = r2) and the other re-
tarding it (i = r1). Although its convergence speed distinguishes i = r1
from i = r2, both events have little effect on either convergence probability
or optimal population size when compared to the case of mutually exclu-
sive indices (i.e., “None”).

None

Excluding all degenerate target, base and difference vector combinations,
i.e., i ≠ r0 ≠ r1 ≠ r2, enables DE to achieve both good convergence speed
and probability with a relatively small population. Imposing restrictions
eliminates the function-dependent effects of degenerate search strategies
and ensures that both crossover and differential mutation play a role in the
creation of each trial vector.

The effect that degenerate vector combinations have on DE’s perform-
ance depends in some degree on the objective function. For the hyper-
sphere, however, only i = r0 dramatically affected DE’s performance. In
practice, even these first-order degenerate combinations play only a lim-
ited role in the optimization process simply because they become increas-
ingly infrequent as the population grows.

2.4.7 Biased Base Vector Selection Schemes

In GAs, better vectors are more likely to be chosen for recombination
(Holland 1973). Similarly, some versions of DE select the base vector
based on its objective function value. For example, the algorithm
DE/best/1/bin (Storn 1996) always selects the best-so-far vector (best) as
the base vector, adds a single (1) scaled vector difference to it, then creates
a trial vector by uniformly crossing (bin) the resulting mutant with the tar-

2.4 Base Vector Selection 73

get vector. In this algorithm, the base vector always has the lowest objec-
tive function value in the current population

() ().),1,...,1,0(if,best0 ,,best gig ffNpir xx ≤−∈∀= (2.20)

When compared to random base vector selection at the same Np, best-so-
far base vector selection usually speeds convergence, reduces the odds of
stagnation and lowers the probability of success. Chapter 3 examines this
trade-off between speed and reliability when the performance of
DE/rand/1/bin and DE/best/1/bin are compared.

Two alternative base vector selection schemes have been proposed that
bias solutions toward better vectors without creating the intense selection
pressure that the “best” method applies. In Price (1997), a base vector’s
objective function value must be less than or equal to that of the target vec-
tor, xi,g:

() ().if,better0 ,,better gig ffr xx ≤= (2.21)

The other method, DE/target-to-best/1/bin (called “rand-to-best” in (Storn
1996)), uses arithmetic recombination (see Sect. 2.6.3) to generate a base
vector that lies on a line between the target vector and the best-so-far vec-
tor:

() [] .constant1,0,,,best,,0 =∈−⋅+= kk giggigr xxxx (2.22)

The constant, k, in Eq. 2.22 controls the bias toward the best-so-far solu-
tion.

Compensating for Lost Diversity

Compared to random base vector selection, setting r0 = best lowers the di-
versity of the pool of potential trial vectors. Increasing the population size
is both a simple and effective way to enhance the diversity of the pool of
potential trial vectors, but several other schemes have also been proposed.
One idea was to expand the set of vector differences by adding two differ-

ence vectors together (Price 1996; Storn 1996). Because they are larger
than their single difference counterparts, differentials composed of two dif-
ferences typically require a smaller F to match the convergence rate that
one-difference differentials produce. Except for a few early successes on
relatively simple functions, this method has not shown much promise, per-
haps because adding difference vectors destroys the correlation that the ob-
jective function’s topography imparts to the one-difference vector differen-
tials (see contour matching in Sect. 2.17).

74 2 The Differential Evolution Algorithm

Making F a random variable is another way to enhance the pool of po-
tential trial vectors. This technique, which is covered extensively in Sect.
2.5.2, has proven useful in cases where stagnation threatens, or when con-
vergence is very slow. In particular, R. Storn has found randomizing the
scale factor, F, to be crucial when designing digital filters (Sect. 7.8).

2.5 Differential Mutation

Most dictionaries define mutation as an alteration or change. In the context
of genetics and EAs, however, mutation is also seen as change with a ran-
dom element. Thus, real-valued EAs typically simulate the effects of muta-
tion with additive increments that are randomly generated by a predefined
probability distribution function, or PDF. DE, however, uses a uniform
PDF not to generate increments, but to randomly sample vector differ-
ences:

()2121, rrrr xxx −=∆ . (2.23)

In a population of Np distinct vectors, there will be Np⋅(Np − 1) non-
zero vector differences and Np null differences having zero magnitude giv-
ing a total of Np2 vector differences. Figure 2.26 pictures an arbitrary
population of 5 vectors and the sheaf of 20 non-null difference vectors that
they generate.

x0,g

x1,g

x2,g

x3,g

x4,g

Fig. 2.26. The figure on the right displays the sheaf of 20 vector differences gen-
erated by the population of 5 vectors shown on the left. Here, differentials have
been scaled by half (F = 0.5), and transported to a common origin. Note that the
distribution is symmetric about zero.

The distribution of difference vectors will depend on the distribution of
vectors and this will be different for each objective function. Each distribu-

2.5 Differential Mutation 75

tion, however, will be symmetric about zero because every pair of vectors
gives rise to two opposite but equal difference vectors, since reversing the
order of the vectors in the differential reverses the sign of the differential:

() () grrgrgrgrgrgrr 1,2,1,2,2,1,2,1, xxxxxx ∆−=−−=−=∆ . (2.24)

Since each difference vector can be paired with a differential of equal
value but opposite sign, and since all vector differences are equally prob-
able, both the sum and average over all Np2 difference vectors are zero.
Equation 2.25 sums the Np2 vector differences (including the Np cases
when i = k and ∆x = 0) and normalizes the result. The brackets, , indicate
that ∆x is an (ensemble) average taken over all population members, not an
expectation or a time average:

() 0
1 1-

0,
,,2

=−=∆
=

Np

ki

gkgig Np
xxx .

(2.25)

2.5.1 The Mutation Scale Factor: F

Limits on F

Upper. The stated range for F is (0,1), although 1.0 is an empirically de-
rived upper limit in the sense that no function that has been successfully
optimized has required F > 1. This is not to say that solutions are not pos-
sible when F > 1, but only that they tend to be both more time consuming
and less reliable than if F < 1. When F = 1 exactly, otherwise distinct vec-
tor combinations become indistinguishable:

.1when
)(

)(

2,g0,1,

2,1,0,

2,1,0, =
−⋅+

−⋅+
=−+ F

F

F

grrgr

grgrgr

grgrgr
xxx

xxx
xxx

(2.26)

This discontinuity at F = 1 reduces the number of mutants by half and can
result in erratic convergence unless Cr < 1, since Cr = 1 further restricts
the pool of possible trial vectors by not crossing mutant and target parame-
ters.

Lower. In general, selection tends to reduce the diversity of a population,
whereas mutation increases it. To avoid premature convergence, it is cru-
cial that F be of sufficient magnitude to counteract this selection pressure.
Zaharie (2002) recently demonstrated the existence of what is effectively a
lower limit for F, finding that if F is too small, the population can con-

76 2 The Differential Evolution Algorithm

verge even if selection pressure is absent. In her study, Zaharie measured
population diversity as the variance of its parameter values. Because all
variables are independent in the absence of selection pressure, population
diversity can be measured by tracking the variance of a single parameter of
the population. In Eq. 2.27, the subscript, “x”, in Px,g is set in italics to em-
phasize that the variance and mean are computed using one parameter

from each vector in the population (the particular parameter is not speci-
fied):

() −

=

−

=

=−=
1

0
,

1

0

2
,g,

1
;

1
)P(Var

Np

i

gig

Np

i
ggix x

Np
xxx

Np
.

(2.27)

Using a methodology pioneered by H.-G. Beyer (1999), Zaharie com-
puted the expected variance of DE’s mutant and trial populations given the
variance of the population. The goal was to determine which combinations
of DE control parameters were likely to result in premature convergence
due solely to the inability of the algorithm to generate a trial population as
diverse as the population. To simplify her analysis, Zaharie dropped DE’s
usual demand that base and target vectors be different, although the re-
quirement that base and difference vectors be distinct was retained. By
dropping the demand that at least one trial parameter be inherited from the
mutant, Zaharie also assumed that Cr is a true crossover probability, pCr. In
order to compute the expected population variance, Zaharie further modi-
fied the standard DE algorithm by multiplying F by a Gaussian random
variable, ξj, that is chosen anew for each parameter

() ()1,0N,
~

;
~

2,,1,,0,,,, ≈⋅=−⋅+= jjjgrjgrjjgrjgij FFxxFxv ξξ . (2.28)

With these caveats, Zaharie determined that the expected variance of the
mutant population is related to the variance of the population by the for-
mula:

()() ()gxgv
Np

Np
FE ,

2
, PVar

1
2PVar

−+= .
(2.29)

If this mutant population is then crossed with the original population, the
expected trial population variance becomes:

()() ()gx
CrCr

Crgu
Np

p

Np

p
pFE ,

2
2

, PVar1
2

2PVar ++−= .
(2.30)

Consequently, DE control parameter combinations that satisfy the equa-
tion:

2.5 Differential Mutation 77

0
2

2 2 =+−
Np

p

Np
F Cr (2.31)

can be considered to be critical since they result in a population whose
variance remains constant except for random fluctuations. When selection
is “turned off”, Eq. 2.31 predicts that F will display a critical value, Fcrit,
such that the population variance decreases when F < Fcrit and increases
when F > Fcrit. Solving Eq. 2.31 for F gives Fcrit as

Np

p

F

Cr−
=

21

crit .

(2.32)

Thus, Fcrit establishes a lower limit for F in the sense that smaller values
will induce convergence even on a level objective function landscape. Fig-
ure 2.27 confirms the prediction by Zaharie that F = 0.1341 is a critical
value when Np = 50 and pCr= 0.2.

0

10

20

30

40

50

60

0 20 40 60 80 100

generations

<
V

a
r(

P
x

,g
)>

F=0.3

F=0.2

F=0.1341

F=0.1

Fig. 2.27. The evolution of the variance of a single parameter is displayed for four
different values of F. Note that F ~ 0.134 is critical in the sense that the variance is
nearly constant. Results are for evolution on a flat surface, i.e., all trial vectors are
accepted (no selection pressure). These results are 100-trial averages and were
generated using Zaharie’s modified version of DE, with Np = 50 and pCr = 0.2.

78 2 The Differential Evolution Algorithm

Objective function landscapes are seldom flat. In practice, F must be
larger than Fcrit to counteract the additional reduction in variance that se-
lection induces. For example, Zaharie empirically examined three test
functions using Np = 50, pCr = 0.2 and found that F ~ 0.3 was the smallest
reliable scale factor and that Fcrit= 0.1341 was too small to forestall prema-
ture convergence.

Figure 2.28 illustrates the effect of this additional selection pressure
produced by the 30-dimensional Rastrigin function on the population’s
variance over time at several different values for F.

0

1

2

3

4

5

6

7

8

9

0 50 100 150

Generations

V
a
ri

a
n

c
e
 <

(P
x

,g
)>

F=0.7

F=0.5
F=0.3

F=0.1

Fig. 2.28. Even though F is above the critical value, the population variance still
decreases over time due to the selection pressure exerted by the objective function,
in this case the thirty-dimensional Rastrigin function. Results are 100-trial aver-
ages obtained with Zaharie’s version of DE, with Np = 50 and pCr = 0.2.

A DE control parameter study by Gamperle et al. (2002) explored DE’s
performance on two of the same test functions that Zaharie used and con-
cluded that F < 0.4 was not useful. In Ali and Törn (2000), C–Si clusters
were optimized with F never falling below F = 0.4. On the other hand,
Chakraborti et al. (2001; Sect. 7.1) had success minimizing the binding en-
ergy of Si–H clusters using values for F ranging from 0.0001 to 0.4, with F
= 0.2 often proving effective. Such low values for F, however, appear to be
atypical. The lower limits suggested by Zaharie and Gamperle et al. more

2.5 Differential Mutation 79

accurately reflect the norm. Zaharie concluded that for the test functions
examined, modifying vector differences with a Gaussian distribution did
not significantly alter DE’s performance compared to when F is held con-
stant. The next section tests this claim and examines several other methods
for transforming F into a random variable.

2.5.2 Randomizing the Scale Factor

When compared to the ES, DE shifts the responsibility for adapting step
sizes from the mutation distribution’s pre-factors to the distribution itself.
More specifically, the ES adapts pre-factors (strategy parameters) and mul-
tiplies them by the output from a stationary, multi-dimensional PDF,
whereas DE multiplies the constant pre-factor, F, by a sample vector dif-
ference from an adaptive distribution. Whereas the ES “strategy” parame-
ters adapt to the absolute step size, F only affects the relative step size
since the distribution of vector differences is itself adaptive. Thus, F can
be kept constant during optimization without compromising DE’s ability to
generate steps of the required size. Indeed, keeping F constant has proven
effective in the sense that no function that has been solved has required F
to be a random variable. Nevertheless, randomizing F offers potential
benefits.

Transforming F into a random variable effectively broadens the spec-
trum of vector differentials beyond the possibilities allowed for by com-
bining vectors. Such an enhanced distribution of differentials might be use-
ful if the population is small and/or symmetrically distributed, since
without access to a mutation distribution of sufficient diversity, DE can
stagnate. When stagnant, DE can no longer find improved solutions be-
cause no combination of vector and vector difference leads to a better solu-
tion. Instead of coalescing to a single solution, a stagnant population of
vectors remains static while still distributed throughout the problem space.
The case explored by Lampinen and Zelinka (2000) is hypothetical and
subsequent attempts to induce stagnation in test functions with classic DE
have been unsuccessful. Nevertheless, randomizing the scale factor is a
way to increase the pool of potential trial vectors and minimize the risk of
stagnation without increasing the population size.

Transforming F into a random variable also makes the analysis of DE
dynamics tractable. By invoking the normal (Gaussian) distribution, Za-
harie succeeded not only in predicting critical control parameter combina-
tions, but also in constructing a limited convergence proof (Zaharie 2002).
Zaharie based her proof on the general EA convergence criteria set forth
by G. Rudolph (1996). Briefly, an evolutionary search algorithm can be

80 2 The Differential Evolution Algorithm

proven to converge to within ε > 0 of the global optimum in the long-time
limit if its operators fulfill two (sufficient, but not necessary) conditions:

1. The transition probability, through mutation, between any two points in
the problem space is strictly positive.

2. Selection is elitist, i.e., that the best-so-far solution is always retained.

DE selection is elitist because the population’s current best vector can only
be replaced by a better vector. By multiplying F by a normally distributed
variable, Zaharie ensured that the unbounded, multi-normal distribution
could access any point given enough time. The possibility does exist, how-
ever, that all members of a population may have the same value for one or
more parameters, in which case no new possibilities for that parameter are
generated. Zaharie considers this set to be of zero measure and that it has
no impact on the proof that DE is convergent when mutation is augmented
by a Gaussian random variable.

Converting F into a random variable, however, involves both selecting a
PDF and deciding how often it should be sampled. Zaharie, for example,
sampled a zero-mean, normally distributed random variable anew for each
parameter, but this is not the only possibility. The next two subsections
explore how both the sampling frequency and PDF affect the optimization
process.

PDF Sampling Frequency: Dither and Jitter

In Zaharie’s version of DE, Fj is a normally distributed random variable
that is generated anew for each parameter. For convenience, the practice of
generating a new value of F for every parameter is called jitter and it is
signified by subscripting F with the parameter index, j. Alternatively,
choosing F anew for each vector, or dithering, is indicated by subscripting
F with the population’s running index, i. Dithering scales the length of
vector differentials because the same factor, Fi, is applied to all compo-
nents of a difference vector (Fig. 2.29). As such, dithering does not dra-
matically depart from traditional DE in which each component of a differ-
ential is scaled by the same constant, F. Jitter, however, multiplies each
component of the difference vector by a different scale factor, Fj, and this
changes not only the scale of the differential, but also its orientation. The
rotation that it introduces makes jitter a fundamentally different process
than classic DE mutation with F = constant.

When Cr = 0, only one trial vector parameter is inherited from the mu-
tated base vector, so it impossible to distinguish jitter from dither, since in

2.5 Differential Mutation 81

both cases only a single instance of F as a random variable occurs per trial
vector. In order to compare how jitter and dither affect the optimization
process, it is necessary to plot DE’s performance versus Cr.

∆x1

x1

x0∆x0Fi∆x0

Fi∆x1

∆x1

x1

x0∆x0F0∆x0

F1∆x1

Fig. 2.29. Dithering (left) scales vector differentials, while jitter (right) both scales
and rotates them.

0

1000

2000

3000

4000

5000

6000

7000

8000

0 0,2 0,4 0,6 0,8 1

Cr

E
v
a

ls
.

Constant Dither Jitter

0

5

10

15

20

25

0 0,2 0,4 0,6 0,8 1

Cr

N
p

Constant Dither Jitter

Fig. 2.30. The graph on the left illustrates how implementing jitter and dither with
the N(0,1) PDF affects convergence speed compared to holding F constant. Plot-
ted as a function of Cr is the minimum number of function evaluations required to
optimize the ten-dimensional hyper-sphere. The graph on the right plots the corre-
sponding optimal Np at which the minimum number of evaluations occurred. For
example, at Cr = 0.8, the graph on the left shows that jitter took a little more than
3000 evaluations, while the graph on the right shows that the population used to
produce this result was Np = 8 (at Cr = 0.8). Results are 1000-trial averages
which, except for the indicated randomization method, were obtained with F =
0.9, r0 = randi(0,1)⋅Np, except r0 ≠ r1 ≠ r2 ≠ i (i.e., classic DE).

Using the normal (Gaussian) PDF, N(0,1), to drive dither and jitter, Fig.
2.30 plots both the minimum number of function evaluations and the cor-

82 2 The Differential Evolution Algorithm

responding optimal population size at which the minimum occurred versus

Cr for each of the three methods when applied to the ten-dimensional hy-
per-sphere objective function. An inspection of the graphs in Fig. 2.30 re-
veals that:

• As expected, both jitter and dither exhibit the same number of function
evaluations and the same optimal population size (Np = 7) when Cr =
0.

• At Cr = 0.2 (Zaharie’s choice), all three methods require about the
same number of function evaluations, with both jitter and dither also
having the same optimal population size (Np = 8).

• Over the range of Cr, jitter was the fastest technique and the optimal
population size was virtually constant at Np = 8.

• In terms of the number of function evaluations, F = constant and dither
perform similarly, but dither requires a larger population.

The data in Fig. 2.30 casts suspicion on Zaharie’s contention that multi-
plying each component of a differential by a normally distributed variable
does not affect DE’s performance. Even for a function as simple as the hy-
per-sphere, classic DE with its constant F and Zaharie’s method of jitter
perform similarly only when Cr = 0.2 and this performance discrepancy
grows as Cr increases.

Not shown in Fig. 2.30 is the fact that all trials conducted with both
dither and jitter at their optimal Np were successful, but convergence was
less than perfect when F was kept constant, as Table 2.7 shows. A slight
increase in Np, however, would put the convergence probability on a par
with that of dither and jitter, but then the average number of function
evaluations would also increase.

Table 2.7. The fraction of trials that were successful when optimizing the ten-
dimensional hyper-sphere using classic DE and F = constant = 0.9. By contrast, all
trials with dither and jitter were successful at the specified optimal Np.

Cr 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P 0.966 0.884 0.95 0.931 0.916 0.881 0.865 0.957 0.971 0.991 1

Also not shown in Fig. 2.30 are the data points associated with Cr = 1.
These points are not plotted in Fig. 2.30 simply because the large values
for dither and F = constant would overwhelm the data for Cr ≤ 0.9. In-
stead, Table 2.8 reports both the average minimum number of function
evaluations and the population size at which this minimum occurred for
each of the three methods when Cr was set equal to 1. When compared to

2.5 Differential Mutation 83

trials using Cr ≤ 0.9, all three methods required significantly larger popula-
tions to offset the loss of diversity that occurs when Cr = 1, exactly. In this
case, the penalty for enlisting larger populations is slower convergence.

Table 2.8. When Cr = 1, both the optimal population size and the number of func-
tion evaluations balloon for both dither and F = constant and even jitter takes
twice as long to converge as it does when Cr = 0.9. Results are 1000-trial averages
for the ten-dimensional hyper-sphere using classic DE except for the indicated
randomization method using a normal distribution: N(0,1).

Process Evaluations Np

F=constant 49,809.5 41
Dither 33,640.1 109

Jitter 6037.11 13

The hyper-ellipsoid (Eq. 2.33) poses a stiffer challenge to optimization
algorithms because unlike the symmetrical hyper-sphere, the optimal step
size depends on the direction in which the step is taken:

−

=

=
1

0

2
ellipsoid 2)(

D

j

j
j xf x .

(2.33)

Figure 2.31 shows a single contour of constant function value for the two-
dimensional version of this function.

x0

x1
fellipse(x)=constant

x*
(√2,0)

(0,1)

Fig. 2.31. The ellipse is a single contour of the two-dimensional version of the el-
lipsoidal function described by Eq. 2.33. The optimum, x*, is located at the origin,
(0,0). The principal axes of the ellipse are aligned with the coordinate axes. Tak-
ing large steps along x0 and smaller steps along x1 efficiently optimizes this func-
tion.

84 2 The Differential Evolution Algorithm

0

2000

4000

6000

8000

10000

0 0.2 0.4 0.6 0.8 1

Cr

E
v

a
ls

.

Constant Dither Jitter

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

Cr

N
p

Constant Dither Jitter

Fig. 2.32. The graph on the left illustrates the effects of jitter, dither and F = con-
stant by plotting, as a function of Cr, the minimum number of function evaluations
needed to optimize the ten-dimensional hyper-ellipsoid. The graph on the right
plots the corresponding optimal Np at which the minimum number of evaluations
occurred. For example, at Cr = 0.9, the graph on the left shows that jitter took
about 4000 function evaluations when using the population indicated in the graph
on the right at Cr = 0.9, i.e., Np = 8. Results are 1000-trial averages, F = 0.9 and
classic DE except for randomizing F with a normal distribution N(0,1).

Figure 2.32 profiles how both jitter and dither influence DE’s ability to
optimize the ten-dimensional hyper-ellipsoid. Except for requiring roughly
15% more function evaluations, the performance profiles for the hyper-
ellipsoid are virtually indistinguishable from those generated for the hyper-
sphere.

Before taking these profiles to be universal, it is instructive to perform
the same experiment, except that this time, trial vectors are evaluated in a
coordinate system that has been rotated 45° with respect to the principal
axes of the ellipse (Fig. 2.33).

In two dimensions, this rotated version of the ellipse defined by Eq. 2.33
is

() ()2
110

2
0ellipse 2 xxxxf +−=x . (2.34)

As a result of this rotation, the ellipse, which is separable as defined in
Eq. 2.33, becomes nonlinear, i.e., parameters become dependent. The
cross-term, x0x1, in Eq. 2.34 embodies this parameter dependence (see
Sects. 1.2.3 and 2.6.2). Even though rotation does not alter the objective
function’s topography, the parameter dependence that it induces compro-
mises DE’s efficiency in the presence of jitter.

2.5 Differential Mutation 85

x0

x1
fellipse(x)=constant

x*
(1,0)

(0,1)

Fig. 2.33. Once rotated, the parameters of the ellipse function become dependent.
An efficient search of the long axis along the diagonal now requires that large
steps in both coordinate directions occur simultaneously, i.e., that they be corre-
lated.

As Fig. 2.34 illustrates, transforming the hyper-ellipsoid from a separa-
ble function into one with dependent parameters via a coordinate system
rotation dramatically alters the performance profiles of all three methods.
In particular, the data plotted in Fig. 2.34 show that:

• In contrast to results for the separable hyper-ellipsoid, the fastest solu-
tions now occur at high Cr.

• Jitter is now the worst performing method even though population
sizes remain relatively small.

• F = constant is the fastest method except when Cr = 1, in which case
dithering is faster.

At Cr < 0.5, the fastest run-times begin to occur at population sizes that
are too small to produce reliable convergence. To be fair, the number of
function evaluations for different methods must be compared at the same
probability of convergence. In previous examples, convergence probabili-
ties were so close to 1 that the small differences between them did not
compromise the validity of the performance comparisons. A method for
evaluating algorithm performance that gives proper weight to convergence
probabilities will be presented in Chap. 3 when several version of DE are
tested. For now, higher run-times and worse convergence probabilities
make it easy to say that DE’s performance on the parameter-dependent (ro-
tated) hyper-ellipsoid deteriorates at low Cr.

86 2 The Differential Evolution Algorithm

0

50000

100000

150000

0 0,2 0,4 0,6 0,8 1

Cr

E
v

a
ls

.

Constant Dither Jitter

0

20

40

60

80

100

120

0 0,2 0,4 0,6 0,8 1

Cr

N
p

Constant Dither Jitter

Fig. 2.34. Once rotation induces parameter dependence in the ten-dimensional hy-
per-ellipsoid, the three techniques become inefficient at low Cr. Population sizes
used to produce the graph on the left are plotted in the graph on the right at the
corresponding value of Cr. For example, jitter still uses small populations but is
slow nonetheless. Despite using large populations, dither is more efficient than jit-
ter when Cr > 0.6 and more efficient than F = constant = 0.9 when Cr = 1. Keep-
ing F constant, however, uses relatively small populations and gives the overall
fastest result at Cr = 0.9. All results are 1000-trial averages with classic DE, ex-
cept for the indicated randomization scheme. For this experiment, the PDF was the
normal distribution, N(0,1).

 Since it was the fastest method when the hyper-ellipsoid was separable
and was competitive with both dither and F = constant on the rotated hy-
per-ellipsoid at Cr = 1, jitter would seem to be a good strategy as long as
Cr is chosen wisely. The case of the Chebyshev polynomial, however,
suggests differently (see the Appendix for a function description). Like the
rotated hyper-ellipsoid, the Chebyshev polynomial fitting problem is a
function with dependent parameters that requires correlating step sizes that
differ greatly in magnitude from one parameter to the next. Unlike the hy-
per-ellipsoid, the Chebyshev function is multi-modal. Figure 2.35 com-
pares the number of function evaluations taken by dither to those needed
by F = constant to find the coefficients of the nine-dimensional Chebyshev
polynomial.

The results in Fig. 2.35 are remarkably similar to those displayed by
dither and F = constant for the rotated hyper-ellipsoid in Fig. 2.34, except
that now dither gives the overall fastest solution (when Cr = 1). Missing
from Fig. 2.35 are the results for jitter. Like the case of the rotated hyper-
ellipsoid, jitter was most effective when Cr = 1, but unlike the case of the
rotated hyper-ellipsoid, run-times at this optimal crossover setting were not

2.5 Differential Mutation 87

0

50000

100000

150000

200000

250000

300000

0 0.2 0.4 0.6 0.8 1

Cr

E
v

a
ls

.

Constant Dither

Fig. 2.35. Dither and F = constant perform similarly on the nine-dimensional
Chebyshev function, with dither converging in fewer function evaluations than F
= constant at Cr = 1. Results for jitter are not shown, as run-times were in excess
of 6 million function evaluations and convergence was erratic even for large popu-
lations. Results are 100-trial averages with Np = 40. Both dither and jitter (not
shown) used the normal PDF; otherwise, the algorithm was classic DE.

competitive with those turned in by either dither or F = constant. Not only
was convergence erratic even with large populations, but the number of
function evaluations taken by successful trials never averaged less than 6
million, making jitter over 100 times slower than either dither or F = con-
stant. Clearly, these results refute Zaharie’s contention that DE’s perform-
ance is not significantly affected by transforming F into a Gaussian ran-
dom variable that is sampled anew for each parameter.

Although jitter is effective on separable functions, its poor performance
on non-separable, multi-modal functions makes it a questionable strategy
for non-linear global optimization with DE unless the deviations it gener-

ates are very small, e.g., d = 0.001 in the case of uniform jitter (see next
subsection). The next subsection explores this possibility with some alter-
natives to the Gaussian PDF.

Other Distributions

The effectiveness of both jitter and dither can be improved by moderating
the amount of variation in Fj and Fi, respectively. The problem with Za-
harie’s formulation in this regard is that as the standard deviation, σ, of the
normal (Gaussian) distribution approaches zero, so does Fj (or Fi):

88 2 The Differential Evolution Algorithm

() 0lim);,0(N 0 =⋅= → jjj FFF σσ (2.35)

To circumvent this difficulty, F can be multiplied by a PDF whose aver-
age value is 1, not 0. This way, both dither and jitter revert to the F = con-
stant model as the amount of variation, e.g., σ, approaches zero. Further-
more, the order in which difference vectors are chosen determines the sign
of a differential, so a PDF need only generate positive values in order to
scale differential magnitudes. A normal distribution can be given an aver-
age value of 1 simply by adding one to the zero mean normal PDF, N(0,1),
but the resulting distribution will still generate both positive and negative
values. The traditional PDF for perturbing scale factor magnitudes is the
log-normal distribution.

Log-normal. In the ES, not only are the objective function variables mu-
tated and recombined, but so too are the components of the adaptive corre-
lation matrix. Of the correlation matrix’s D2 components, D are scale fac-
tors while the remaining D⋅(D − 1) are rotation angles. Although the ES
perturbs rotation angles with normally distributed random variables, it
turns to the log-normal PDF to mutate the strategy parameters that regulate
step sizes (Bäck 1996). An instance of a log-normal random variable for

DE can be computed as

−=
2

)1,0(exp
ττ jj NFF .

(2.36)

The factor, τ, controls the spread of the distribution while the termτ/2 is
an empirically derived factor that normalizes the expected value of the dis-
tribution to 1.0. When τ = 0, the average value of the log-normal PDF is
the constant value 1, so all Fj = F. In this model, the distribution’s variance
can be controlled independently of F. Figure 2.36 shows how the spread of
the log-normal distribution affects DE’s ability to optimize both the rotated
hyper-ellipsoid and the Chebyshev polynomial fitting problem.

In both plots, jitter requires an increasing number of function evalua-
tions as τ increases. For the Chebyshev polynomial fitting problem, this
increase is explosive. By contrast, dither actually shows a slight decrease

in the number of function evaluations when compared to F = constant,
with the best performance occurring near τ = 0.4. The improvement
amounts to roughly 10% for the rotated hyper-ellipsoid and just over 40%
for the Chebyshev problem.

2.5 Differential Mutation 89

10-D Rotated Hyper-ellipsoid

F =0.9, Cr =0.9

0

10000

20000

30000

40000

50000

60000

0 0.2 0.4 0.6 0.8 1

τ

E
v
a
ls

.

Dither Jitter

9-D Chebyshev

F =0.9, Cr =1

0
25000
50000
75000

100000
125000
150000
175000
200000

0 0.2 0.4 0.6 0.8 1

τ

E
v

a
ls

.
Dither Jitter

Fig. 2.36. Jitter performs worse as the variance of the log-normal distribution is
increased from zero. By contrast, dither is faster than F = constant (τ = 0) on both
the rotated hyper-ellipsoid (while τ > 0.6) and the Chebyshev problem (while τ ≤
0.9). In both cases, the fastest convergence occurs near τ = 0.4. Data points are
1000-trial averages for the rotated hyper-ellipsoid and 100-trial averages for the
Chebyshev problem. Results were obtained using classic DE except for the indi-
cated randomization method with a log-normal PDF. Np = 40.

Uniform. The uniform distribution can also be transformed into a PDF
whose average value is F and whose spread is an independent variable.
Equation 2.37 illustrates one possibility:

()() FddFF jj 2,5.01,0rand <−⋅+= . (2.37)

To keep Fi positive, d must be less 2F. Like τ in the log-normal PDF, d
controls the amount of variation in the uniform PDF. The log-normal PDF,
however, occasionally generates both very large and very small perturba-
tions, both of which can degrade DE’s performance because they tend to
slow progress toward the optimum. The uniform distribution with d ~ F ef-
fectively eliminates these extremes. Figure 2.37 compares DE’s perform-
ance on both the rotated hyper-ellipsoid and Chebyshev polynomial fitting
problem as a function of the spread, d.

Figure 2.37 shows that as long as d < 0.1, jitter remains competitive, al-
though once d > 0.2, its performance quickly deteriorates. It should be em-
phasized, however, that a very small amount of jitter can prove useful,
sometimes providing solutions that would otherwise be impossible with F
= constant.

90 2 The Differential Evolution Algorithm

10-D Rotated Hyper-ellipsoid

F =0.9, Cr =0.9

0

10000

20000

30000

40000

50000

60000

0 0,5 1 1,5 2

d

E
v
a
ls

.

Dither Jitter

9-D Chebyshev

F =0.9, Cr =1

0

50000

100000

150000

200000

0 0.5 1 1.5 2

d

E
v

a
ls

.
Dither Jitter

Fig. 2.37. The profiles generated by the uniform and log-normal PDFs are very
similar. Jitter’s performance worsens as the variation increases and dither con-
verges faster than F = constant (d = 0) when 0 < d < 1.4. Dither’s best perform-
ance in this case occurs when d = 0.9 (not plotted). Results are 1000-trial averages
for the rotated hyper-ellipsoid and 100-trial averages for the Chebyshev problem.
In both cases, all trials were successful. The algorithm was classic DE except for
the specified randomization technique with the uniform PDF. Np = 40.

In particular, experiments with the digital filter design program FIWIZ
(Sect. 7.8). have shown that uniform jitter on the order of d = 0.001 is of-
ten indispensable. In addition, jitter can reduce the size of the population
that DE needs to solve a given problem.

Dither’s performance changes little when log-normal noise replaces the
uniform PDF. The slightly larger optimal population size posted by the
log-normal PDF suggests that the small steps present in the log-normal
PDF but excluded by the uniform PDF only marginally inflate the optimal
population size. The similarly of the two results also suggests that the very
large steps generated when τ = 0.4 are too infrequent to have much impact
on convergence speed.

Power Law. Just as choosing a PDF complicates the optimization task, so
too does having to decide what level of variability is suitable for the nor-
mal, log-normal and uniform models. One PDF that avoids this difficulty
is based on a power law. An instance of a power law variable can be gen-
erated by raising a uniformly distributed random value, rand(0,1), to the
power, q, where q = (1/F) − 1:

()() () 1
1

,1,0rand,1,0randpow −===
F

qqF
q

jjj .
(2.38)

2.6 Recombination 91

This distribution has F as its average value and when F is between 0 and 1,
Fj will also lie in this interval. For example, when F = 0.5 and q = 1, the
distribution is uniform between (0,1). As F approaches either 1 or 0, the
amount of variation decreases so that when F = 1 all Fj = 1 and when F = 0
all Fj = 0. When F > 1, q is negative and all Fj are greater than 1. Table 2.9
reports DE’s performance on both the rotated hyper-ellipsoid and the Che-
byshev polynomial fitting problems when Fj is a random variable distrib-
uted according to the power law in Eq. 2.38.

Table 2.9. At F = 0.9, the power law distribution has a small variance, so results
for jitter and dither on the ten-dimensional rotated hyper-ellipsoid are close to
those for Fi = constant. Nevertheless, the variation is large enough to inflate jitter’s
function evaluations to twice that of dither in the case of the Chebyshev polyno-
mial fitting problem. Results are 1000-trial averages for the rotated hyper-ellipsoid
and 100-trial averages for the Chebyshev function. The algorithm was classic DE
except for the stated randomization method using a power law PDF. All trials
were successful (P = 1.0).

Function Rotated hyper-ellipsoid
Cr = 0.9

Chebyshev
Cr = 1

Process Np Evals. P Np Evals. P
F = constant = 0.9 16 23,208.2 1.0 36 43,608.8 1.0

Dither 16 23,060.5 1.0 34 35,966.8 1.0
Jitter 15 25,212.4 1.0 22 70,358.4 1.0

In both cases, dither’s fast convergence did not require a compensating
increase in population size. Jitter, although competitive on the rotated hy-
per-ellipsoid, took twice as many function evaluations to solve the Cheby-
shev problem as did dither, even though it operated with a smaller popula-
tion. Still, this is much faster than the 6 million function evaluations that
jitter took when driven by the normal PDF, N(0,1). In this model, the
amount of jitter cannot be chosen independently of F. For example, using a
very small amount of jitter will require F to be very close to 1.

2.6 Recombination

Recombination randomly exchanges or merges parameters from two or
more vectors to create one or more trial vectors. Discrete recombination,
also known as crossover, is an operation in which trial vector parameters
are copied from randomly selected vectors. Since it only copies informa-
tion, crossover can be applied to binary, real-valued or even symbolic data.
By contrast, continuous or arithmetic recombination expresses trial vectors

92 2 The Differential Evolution Algorithm

as linear combinations of vectors, so it is inapplicable to symbolic data and
inappropriate for binary variables. Both crossover and arithmetic recombi-
nation have a variety of implementations. Those with particular relevance
to DE are described below.

2.6.1 Crossover

It was originally thought that crossover could exponentially increase the
probability of above-average parameter groupings (alleles) while exponen-
tially decreasing the likelihood of less than average groupings (Holland
1973). More recent analysis shows that growth is not exponential because
the selective advantage of a parameter grouping decreases as it becomes
more prevalent (Macready and Wolpert 1998). Empirical evidence also ex-
ists suggesting that (uniform) crossover does not decrease the time com-
plexity of an EA but merely speeds convergence by a constant factor
(Mühlenbein and Schlierkamp-Voosen 1993). Nevertheless, crossover
plays a significant role in most EAs.

Global discrete recombination refers to the case where both vectors are
chosen anew for each trial parameter (Bäck and Schwefel 1993). The ES
globally recombines its strategy variables, but like DE and most GAs, it
crosses objective function parameters from just two vectors (dual cross-

over). Both DE and ES also use crossover to create a single trial vector,
whereas most GAs cross two vectors to produce two trial vectors, often by
one-point crossover.

12 26 51 8 30 50 75 95

12 26 51 13 44 11 54 39

7 104 68 13 44 11 54 39

crossover point

Vector 1

Vector 2

Trial

Fig. 2.38. One-point crossover. Each string represents a vector of parameters. In
this figure, D = 8 and values are integral, although real-valued or symbolic data
could also have been used. Each vector contributes a contiguous series of parame-
ter values to the trial vector. The crossover point is randomly chosen. In this case,
it occurs between the third and fourth parameters.

2.6 Recombination 93

One-Point Crossover

There are several ways to assign donors to trial parameters. For example,
one-point crossover randomly selects a single crossover point such that all
parameters to the left of the crossover point are inherited from vector 1,
while those to the right are copied from the vector 2 (Fig. 2.38) (Holland
1995). GAs often construct a second trial vector by reversing the roles of
the vectors, with vector 2 contributing the parameters to the left of the
crossover point and vector 1 supplying all trial parameters to the right of
the crossover point.

N-Point Crossover

N-point crossover randomly subdivides the trial vector into n + 1 partitions
such that parameters in adjacent partitions are inherited from different vec-
tors. If n is odd (e.g., one-point crossover), parameters near opposite ends
of a trial vector are less likely to be taken from the same vector than when
n is even (e.g., n = 2) (Eshelman et al. 1989). This dependence on parame-
ter separation is known as representational or positional bias, since the
particular way in which parameters are ordered within a vector affects al-
gorithm performance. Studies of n-point crossover have shown that re-
combination with an even number of crossover points reduces the repre-
sentational bias at the expense of increasing the disruption of parameters
that are closely grouped (Spears and DeJong 1991). To reduce the effect of
their individual biases, DE’s exponential crossover employs both one- and
two-point crossover.

Exponential Crossover

DE’s exponential crossover achieves a similar result to that of one- and
two-point crossover, albeit by a different mechanism. One parameter is ini-
tially chosen at random and copied from the mutant to the corresponding
trial parameter so that the trial vector will be different from the vector with
which it will be compared (i.e., the target vector, x i,g). The source of sub-
sequent trial parameters is determined by comparing Cr to a uniformly dis-
tributed random number between 1 and 0 that is generated anew for each
parameter, i.e., randj(0,1). As long as randj(0,1) ≤ Cr, parameters continue
to be taken from the mutant vector, but the first time that randj(0,1) > Cr,
the current and all remaining parameters are taken from the target vector.
The example in Fig. 2.39 illustrates a case in which the exponential cross-
over model produced two crossover points.

94 2 The Differential Evolution Algorithm

12 26 51 8 30 50 75 95

7 104 68 8 30 50 54 39

7 104 68 13 44 11 54 39

Vi,g

Xi,g

Ui,g

0 1 2 3 4 5 6 7j =

jrand

Start r2≤Crr1≤Cr

r3>Cr

Fig. 2.39. Exponential crossover. Starting at the randomly chosen parameter in-
dex, jrand (= 3), trial parameters are inherited from the mutant, vi,g, as long as
randj(0,1) ≤ Cr (e.g., j = 4, 5). The first time that randj(0,1) > Cr, all the remain-
ing trial parameters (e.g., j = 6, 7, 0, 1, 2) are inherited from the target vector, xi,g.
Indices are computed modulo D = 8.

Figure 2.40 describes the process in C-style pseudo-code. Parameter in-
dices are computer modulo D. The exponential method’s name reflects the
fact that the number of inherited mutant parameters is an exponentially dis-
tributed random variable. For example, the probability that the initial, ran-
domly chosen parameter is the trial vector’s only mutant parameter is
equal to the chance that the first comparison of randj(0,1) and Cr results in
a failure, i.e., that randj(0,1) > Cr. Thus, the odds of crossover resulting in
exactly one mutant parameter are

.1)1(Crxp −== (2.39)

jr=floor(rand(0,1)*D); // 0<=jr<D
j=jr;
do
{
 uj,i=vj,i; // Child inherits a mutant parameter

 j=(j+1)%D;// Increment j, modulo D
}while(rand(0,1)<Cr && j!=jr); // Take another mutant parameter?
while(j!=jr) //Take the rest, if any, from the target
{
 uj,i=vj,i;

 j=(j+1)%D;
}

Fig. 2.40. C-style pseudo-code for DE’s exponential crossover scheme

2.6 Recombination 95

Similarly, the probability that two mutant parameters are inherited is the
same as the chance that there will be one success before the first failure:

() .1)2(CrCrxp ⋅−== (2.40)

In general, the probability that the trial vector will inherit exactly n mutant
parameters is

() .1)(11 nnn CrCrCrCrnxp −=⋅−== −− (2.41)

Summing these terms gives the cumulative distribution function. Once
summed, only the first and last terms remain, since consecutive contribu-
tions contain identical terms of opposite sign that cancel. As a result, the
probability that n or fewer parameters are inherited from the mutant is

.1)(
1

1 n
n

k

kk CrCrCrnxp −=−=≤
=

−
(2.42)

One way to eliminate any representational bias associated with the
crossover process is to shuffle the vector indices, perform crossover and
then un-shuffle the trial vector indices (Caruana et al. 1989). Alternatively,
the representational bias inherent in n-point crossover can be eliminated if
donors are determined by D independent random trials. This alternative,
known as uniform crossover, is the discrete recombination method that DE
employs most often.

Uniform (Binomial) Crossover

G. Syswerda defined uniform crossover as a process in which independent
random trials determine the source for each trial parameter (Syswerda
1989). Crossover is uniform in the sense that each parameter, regardless of
its location in the trial vector, has the same probability, pCr, of inheriting its
value from a given vector. For this reason, uniform crossover does not ex-
hibit a representational bias. Syswerda’s original definition also allows for
the possibility that donors are chosen with different probabilities, but pCr =
0.5 is the most commonly cited value (both donors are equally probable).

When the vectors being crossed are randomly chosen from the same
population, pCr and 1 − pCr create the same pool of trial vectors. For exam-
ple, both pCr = 0.3 and pCr = 0.7 produce a vector that on average inherits
30% of its parameters from one vector and 70% from another. In particu-
lar, when two vectors, A and B, are crossed with pCr = 0.3, trial vectors
will inherit, on average, 30% of their parameters from A and 70% from B.
It is equally probable, however, that B will be drawn first and A second, in
which case trial vectors inherit, on average, 30% of their parameters from

96 2 The Differential Evolution Algorithm

B and 70% from A. These trial vectors could also have been generated by
taking A first, B second and pCr = 0.7. Reversing the roles of the donor
vectors has the same effect as using 1 − pCr instead of pCr. Since the order
in which vectors are chosen is random, pCr potentially generates the same
population as does 1 − pCr. DE on the other hand crosses vectors from dif-
ferent populations and their order of crossover is not random. In DE, each
value of Cr ~ pCr generates a different trial population.

As with exponential crossover, DE’s version of uniform crossover be-
gins by taking a randomly chosen parameter from the mutant so that the
trial vector will not simply replicate the target vector. Comparing Cr to
randj(0,1) determines the source for each remaining trial parameter. If
randj(0,1) ≤ Cr, then the parameter comes from the mutant; otherwise, the
target is the source. Figure 2.41 illustrates the process.

12 26 51 8 30 50 75 95

7 26 68 8 30 11 54 95

7 104 68 13 44 11 54 39

Vi,g

Xi,g

Ui,g

0 1 2 3 4 5 6 7j =

jrand

Start

r2>Cr

r1≤Cr

r3>Crr7>Crr5>Cr

r6≤Cr r4≤Cr

Fig. 2.41. Uniform crossover. Once an initial, randomly chosen parameter is in-
herited from the mutant (e.g., jrand = 3), D − 1 independent trials are conducted to
determine the source of the remaining parameters. If randj(0,1) ≤ Cr, the mutant
donates a parameter value; otherwise, parameters are copied from the target.

The number of inherited mutant parameters follows a binomial distribu-
tion, since parameter origins are determined by a finite number of inde-
pendent trials having two outcomes with constant probabilities. In particu-
lar, the odds of successfully inheriting only one parameter from the mutant
is the probability that there will be D − 1 “failures” occurring with prob-
ability 1 − Cr

() .1)1(1−−== D
Crxp (2.43)

More generally, the probability, given D, that exactly n parameters are
inherited from the mutant is

2.6 Recombination 97

()

()
() () .

!!1

!1
where

,1);(

11

1
11

nDn

D
C

CrCrCDnxp

n-D-

nDn
nD

−⋅−
−≡

−⋅⋅== −−
−−

(2.44)

The term D – 1Cn – 1 represents the number of combinations of D − 1 items
taken n − 1 at a time. Summing the first n terms of Eq. 2.44 gives the prob-
ability that the trial vector will inherit at least n mutant parameters. Unlike
exponential crossover, the cumulative binomial distribution does not re-
duce to a simple expression. Because the distribution of inherited mutant
parameters is binomial, most DE literature refers to this method as “bino-
mial crossover” to distinguish it from exponential crossover.

Lampinen and Zelinka (2000) have shown that the number of possible
trial vectors, ntrial, that can be created with DE’s uniform (binomial) cross-
over is

()
()+−⋅⋅

=+−⋅⋅

=+−

=

otherwise.232

0if23

1if23

23

23

23

trial

NpNpNpNp

CrNpNpNpNpD

CrNpNpNp

n

D

(2.45)

Although the number of possible trial vectors is constant when 0 < Cr <
1, uniform crossover suffers from a distribution bias because not all con-
figurations are equally likely (Spears and DeJong 1991). DE does not
eliminate distribution bias but relies on Cr to provide the means for con-
trolling it. At one extreme, Cr ~ 0 minimizes disruption by incrementally
altering just a few parameters of a vector at a time, while at the other ex-
treme, Cr ~ 1 favors exploration by drawing most trial vectors directly
from the mutant population. The next section examines the conditions un-
der which reinforcement and incremental change are useful and in what
contexts exploration becomes crucial.

2.6.2 The Role of Cr in Optimization

Despite mediating a crossover process, Cr can also be thought of as a mu-

tation rate, i.e., the (approximate) probability that a parameter will be in-
herited from a mutant. In DE, the average number of parameters mutated
for a given Cr depends on the crossover model (e.g., exponential or bino-
mial) but in each, a low Cr corresponds to a low mutation rate. Many GAs
recommend a mutation rate of 1/D, meaning that, on average, only one

98 2 The Differential Evolution Algorithm

trial parameter is mutated (Potter and DeJong 1994). Indeed, Zaharie’s re-
sults for Rastrigin, Griewangk and the sphere, as well as those for the sim-
ple hyper-ellipsoid in Fig. 2.33, consistently found low Cr to be the most
effective values. Similarly, optimizing the extensive test beds in Storn and
Price (1997) showed that all functions could be solved with either 0 ≤ Cr ≤
0.2 or 0.9 ≤Cr ≤1. The reason for the bifurcation of the crossover control
space was not at first appreciated until it was realized that functions solv-
able with low Cr were inevitably decomposable, while those requiring Cr

~ 1 were not.

Limitations of a Low Mutation Rate

As Sect. 1.2.3 mentioned, a decomposable function can be written as a
sum of D one-dimensional functions (not necessarily all the same)

() ().
1

0

−

=

=
D

j

jj xff x
(2.46)

Decomposability simplifies the task of optimization because each parame-
ter can be optimized independently, allowing the task of optimizing a sin-
gle D-dimensional function to be broken up into D one-dimensional prob-
lems. Once the optima of the D one-dimensional functions have been
located, they can be combined to specify the optimum of the original D-
dimensional function

() () () .1,...,1,0),()(min,,...,, **
1

*
1

*
0

* −=== − Djxfxfxxxff jjjjDx (2.47)

For such functions, changing just one parameter (e.g., Cr = 0) before each
evaluation can be viewed as a single step in an independent, one-
dimensional optimization. If the parameter being modified is randomly se-
lected, then the D one-dimensional optimizations proceed as arbitrarily se-
quenced tasks (Salomon 1996a).

Any decomposable uni- or multi-modal function can be optimized in
linear time, O(D), but randomly interleaving the order in which these one-
dimensional optimization tasks are executed causes EAs to incur an addi-
tional penalty of ln(D), raising their total computational complexity for de-
composable functions to O(D⋅ln(D)) (Salomon 1996a). Thus, DE and other
GAs with low mutation rates should not be expected to compete with dedi-
cated decomposable function solvers. Such was the case at the First Inter-
national Contest of Evolutionary Optimizers, held in Kyoto, Japan, where
DE finished behind a method that exploited the fact that the contest func-
tions were decomposable (Storn and Price 1996). Even so, the ln(D) pen-
alty incurred by EAs when using low mutation rates on decomposable

2.6 Recombination 99

functions is not prohibitive. Once parameters become dependent, however,
the penalty incurred by algorithms using low mutation rates does become
prohibitive.

Salomon provides two reasons why a low mutation rate is an ill-advised
strategy when optimizing parameter-dependent functions (Salomon 1996).
The first reason, mentioned briefly in conjunction with the rotated ellipse
of Sect. 2.5.2, is illustrated by Fig. 2.42. The picture on the left shows con-
tours of an elliptical objective function whose principal axes are parallel to
the coordinate axes. Any trial vector that is interior to the contour on
which xi resides constitutes an improving move. If only one parameter is
changed per evaluation, then xi can move at most ∆x0 in the x0 direction or

∆x1 in the x1 direction before it produces an unacceptable result. For this
ellipse, these intervals are large enough to permit the optimum to be lo-
cated in just two moves, first to either xi + 0.5⋅∆x0 or to xi + 0.5⋅∆x1, and
then to x* on the next move.

x0

x1

∆x0

∆x1

x i

x*

x0

x1

∆x0

∆x1

x i

x*

Fig. 2.42. When the principal axes of the ellipse are aligned along coordinate axes,
improvement intervals are large compared to those available once the coordinate
axes have been rotated by 45°. In the figure on the left, a single pair of moves exe-
cuted in either order would be able to reach the minimum, but in the figure on the
right it takes at least three moves parallel to the coordinate axes to reach the opti-
mum.

By contrast, rotation shortens the improvement intervals to the point
where the optimum can no longer be reached in just two consecutive
moves if each step is taken parallel to a coordinate axis. These additional
steps slow convergence and raise the algorithm’s time complexity above
O(D⋅lnD). Both the dimension and eccentricity of the hyper-ellipsoid ex-
acerbate this performance loss. Indeed, the experiments in Sect. 2.5.2 con-

100 2 The Differential Evolution Algorithm

firmed Salomon’s predictions that low Cr, though efficient on the decom-
posable ellipse, is inefficient on its rotated, non-decomposable counterpart.

As the example of the rotated ellipse in Fig. 2.42 demonstrates, a low-
Cr DE strategy can suffer a loss of performance even if the function is uni-
modal. Salomon’s second reason for not using low mutation rates applies
only to multi-modal functions whose local minima are not aligned with the
coordinate axes. Figure 2.43 shows the contours of a hypothetical multi-
modal function having two local optima located on a diagonal. The only
way to reach the optimum at x* from inside the penultimate basin of at-
traction is by moving in both the (positive) x0 and x1 directions simultane-

ously. Since the current vector is in a local optimum, no single move paral-
lel to a coordinate axis will be acceptable and improving moves into a
basin of equal or lower function value will have components in both axes.

x*

x1

x0

Fig. 2.43. Multi-modal functions with dependent parameters pose additional chal-
lenges to low-Cr strategies. The only improving move out of the penultimate basin
of attraction requires making changes in both coordinates simultaneously.

Salomon has shown that at O(DD) = O(exp(D⋅ln(D))), a low mutation rate
can actually take longer than a random search to optimize a parameter-
dependent, multi-modal function (Salomon 1997). Time complexity of this
order is prohibitive in all but the most trivial cases.

In summary, the role of Cr is to provide the means to exploit decom-
posability, if it exists, and to provide extra diversity to the pool of possible
trial vectors, especially near Cr = 1. In the general case of parameter-

2.6 Recombination 101

dependent functions, Cr should be close to 1 so that the performance losses
associated with using a low mutation rate are minimized.

Rotational Invariance

An algorithm whose performance depends on the objective function being
aligned with a privileged coordinate system is a poor choice in general be-
cause it is unlikely that the optimal orientation will be known in advance.
What is needed instead is a search algorithm that is rotationally invariant –
one whose performance does not depend on the orientation of the coordi-
nate system in which the objective function is evaluated. For classic DE,
this means that Cr = 1, i.e., mutation only and no crossover.

That crossover is not rotationally invariant can be seen in Fig. 2.44,
which plots the trial vectors generated by a pair of vectors both before and
after a coordinate rotation. Although rotation leaves the position of the
vectors with respect to one another unaltered, trial vector placement rela-
tive to the vector population depends on the angle of rotation. Since each
angle samples different regions of the objective function, performance is
rotation dependent.

x1

x0

x1'

x0'

xa

xb

u

u

u'

u'

Fig. 2.44. Crossover is not a rotationally invariant process. The trial vectors de-
rived by crossover from vectors xa and xb change from u to u´ as the coordinate
system is reoriented.

102 2 The Differential Evolution Algorithm

10-D Hyper-ellipsoid h

0

250000

500000

750000

1000000

1250000

0 10 20 30 40 50

Rotation angle (degrees)

F
u

n
c
ti

o
n

 e
v
a
lu

a
ti

o
n

s

Cr=1

Cr=.8

Cr=.6

Cr=.4

Fig. 2.45. The average number of function evaluations to solve the ten-
dimensional hyper-ellipsoid is a function of the angle between the hyper-
ellipsoid’s principal axes and the axes of the coordinate system in which it is
evaluated. Only when Cr = 1 (mutation only) is the algorithm’s performance inde-
pendent of the rotation angle. Results are 100-trial averages obtained with classic
DE (DE/rand/1/bin) and F = 0.9.

Figure 2.45 shows how the time taken by classic DE to optimize the ten-
dimensional hyper-ellipsoid depends on the orientation of the hyper-
ellipsoid’s principal axes with respect to the coordinate system axes in
which the trial vector is evaluated. Only when Cr = 1 is the number of
function evaluations independent of the coordinate system orientation.

Without crossover, classic DE operates by mutation alone. Setting Cr =
1, however, ensures that mutation is rotationally invariant only if jitter is
absent. For example, Fig. 2.46 shows the regions where jitter relocates the
head of a difference vector when Fj = F + d⋅(randj(0,1) − 0.5) where d =
0.5. Because it permits each differential component to be perturbed inde-
pendently, jitter is an angle-dependent search. The relatively large random
deviation illustrated in Fig. 2.46 is necessary to clearly illustrate jitter’s ro-
tational dependence, but in practice, such a large value for d would seri-
ously degrade DE’s performance on epistatic objective functions. In prac-
tice d should be much smaller, e.g., d = 0.001.

2.6 Recombination 103

x1

x0

x1'

x0'
xr2

xr1

Fig. 2.46. Jitter is not a rotationally invariant process because components of the
differential are altered independently. Dashed boxes outline the areas in which jit-
ter with Fj = 0.5 + 0.5⋅randj(0,1) can place the head of the difference vector, xr1 −
xr2. As the coordinate axes are reoriented, the range of possibilities changes.

Figure 2.47 shows that even with a mutation-only strategy, DE’s per-
formance is rotationally dependent if jitter is present (top line). The magni-
tude of the dependence increases as the magnitude of jitter’s deviation in-
creases. On the other hand, dither, like the F = constant model profiled in
Fig. 2.45, is rotationally invariant as the lower line in Fig. 2.47 shows. The
middle line shows that when jitter is very small (e.g., d = 0.001), the pen-
alty for rotational invariance is also small.

Salomon’s warnings notwithstanding, DE performs well on parameter-
dependent multi-modal functions in practice as long as rotationally invari-
ant processes are the dominant strategies, e.g., when Cr is “close” to 1,
say, Cr = 0.98, and when jitter’s PDF has a “small” variance, e.g., d =
0.001 in Eq. 2.37.

The value of such a small value for jitter appears to be that the diversity
it adds to the pool of trial vectors lowers the odds that DE will stagnate,
particularly when Np is relatively small. This added diversity seems to be
of particular benefit to the algorithm DE/best/1/bin, for which reliance on
the best-so-far vector as a base vector lowers diversity in the pool of possi-
ble trial vectors. In addition, jitter with a suitable PDF makes DE provably
convergent. It should be emphasized, however, that jitter’s practical value
is still a matter of debate.

104 2 The Differential Evolution Algorithm

10-D Hyper-ellipsoid h

60000

70000

80000

90000

100000

0 10 20 30 40 50

Rotation angle (degrees)

F
u

n
c
ti

o
n

 e
v
a
lu

a
ti

o
n

s

Jitter, d=0.2 Jitter, d=0.001 Dither, d=0.2

Fig. 2.47. When using jitter, DE’s performance on the ten-dimensional hyper-
ellipsoid depends on the orientation of the coordinate system relative to the princi-
pal axes of the hyper-ellipsoid. Plotted are the number of function evaluations that
DE needed to optimize the ten-dimensional hyper-ellipsoid using both jitter and
dither in a mutation-only strategy (Cr = 1). Unlike jitter, dither is rotationally in-
variant, but when the level of variation in jitter is very small (d = 0.001), rotation
does not significantly affect run-times. Results were obtained using Np = 50, Cr =
1 and classic DE except that Fi = 0.9 + d⋅(randi(0,1) − 0.5) with d = 0.2 for dither
and Fj = 0.9 + d⋅(randj(0,1) – 0.5) with both d = 0.2 and d = 0.001 for jitter.

If a strictly rotationally invariant scheme is demanded, then Cr = 1 and
the pool of potential trial vectors is limited to the mutant population. With-
out crossover or jitter, the only rotationally invariant way to increase the
pool of potential trial vectors is by increasing Np or by using dither. If,
however, dither’s PDF has a high proportion of small perturbations, then
optimal population sizes may be larger than if no dithering is used at all.
Alternatively, certain forms of arithmetic recombination – unlike discrete
recombination – can add diversity and complement the mutation search
strategy without becoming rotationally dependent.

2.6.3 Arithmetic Recombination

Although crossover creates new combinations of parameters, it leaves the
parameter values themselves unchanged. Continuous or arithmetic recom-

bination, however, operates on individual trial parameter values by ex-

2.6 Recombination 105

pressing them as linear combinations of parameters. Arithmetic recombi-
nation’s global variant selects both vectors anew for each parameter of a
recombinant vector, wi,g (Bäck and Schwefel 1993), but most EAs select
just one set of vectors for all parameters of wi,g:

().010 ,gr,gri,gri,g k xxxw −+= (2.48)

The coefficient of combination, ki, can be a constant (e.g., ki = 0.5 is uni-

form arithmetic recombination (Eiben and Smith 2003)), or a random vari-
able (e.g., rand(0,1)). More generally, if ki is either constant or a random
variable that is sampled anew for each vector, then the resulting process is
called line recombination (Eq. 2.48) (Mühlenbein and Schlierkamp-
Voosen 1993). If, however, the coefficient of combination is sampled
anew for each parameter, then the process is known as intermediate re-

combination (Mühlenbein and Schlierkamp-Voosen 1993):

().121 ,gj,r,gj,rj,gj,rj,i,g xxkxw −+= (2.49)

Not all sources agree on this terminology. For example, in ES terminol-
ogy, the coefficient of combination is chosen anew for each parameter
only in the global version, i.e., when vectors are also chosen anew for each
parameter (Bäck and Schwefel 1993). This book equates intermediate re-
combination with the two-vector linear combination in Eq. 2.49, where kj

is a random variable that is sampled anew for each parameter, but vectors
are chosen once per trial vector. If kj is allowed to assume values outside
the range (0,1), then the process is called extended intermediate recombi-

nation (Mühlenbein and Schlierkamp-Voosen 1993).
Figure 2.48 compares the regions searched by discrete, line and inter-

mediate recombination when the coefficient of combination is distributed
with random uniformity between 0 and 1. The two vectors occupy oppos-
ing corners of a hypercube whose remaining corners are the trial vectors
created by discrete recombination. Line recombination, as its name sug-
gests, searches along the axis connecting vectors, while intermediate re-
combination explores the entire D-dimensional volume contained within
the hypercube.

Since the hypercube’s corners are the possible outcomes of discretely
recombining two vectors, intermediate recombination, like both jitter and
crossover, is not a rotationally invariant process. Rotation relocates the hy-
percube’s corners, which in turn redefine the area that intermediate recom-
bination searches. On the other hand, line recombination is rotationally in-
variant. Given that both differential mutation and line recombination are
rotationally invariant schemes for adding a weighted vector difference to

106 2 The Differential Evolution Algorithm

an existing vector, the question arises: what real difference is there be-
tween the two operations?

discrete

discrete
xb

xa

line random
intermediate

x0

x1

Fig. 2.48. Domains of the possible recombinant vectors generated using discrete,
line and intermediate recombination. The coefficient of combination is drawn
from the interval [0,1].

Distinguishing Line Recombination from Differential Mutation

Why should some vector differences be associated with recombination and
the others not? The reason is that the presence of the base vector in recom-
bination differentials constitutes a bias that makes recombination’s dynam-
ics different from those of differential mutation. For example, shifting the
base vector’s position with respect to the population does not influence its
mutation differentials, but it does alter the size and orientation of its re-
combination differentials. Figure 2.49 shows that if the base vector moves
from the population’s outer boundary to a more central position, its re-
combination differentials will become shorter and more symmetrically dis-
tributed, whereas mutation differentials – defined by the remaining vectors
whose positions are unchanged – are unaffected.

Recombination’s positional dependence allows trial vectors to be delib-
erately placed into the population in locations that mutation can reach only
by chance. For example, ki = 0.5 (Eq. 2.48) places the trial vector midway
between the base vector and the vector xr1. Moreover, ki = 1 reduces re-

2.6 Recombination 107

combination to a replacement operation by placing the trial vector at xr1.
By contrast, non-zero mutation differentials place trial vectors on, between
or in relation to other vectors only by chance, not by intention.

Old base vector

New base vector

Fig. 2.49. Recombination differentials change in response to a shift in the base
vector’s position relative to the population.

When a trial vector is a linear combination of only two vectors, the dif-
ferential’s dependence on the base vector is inevitable. For example, let u
be a trial vector that is a linear combination of two, randomly chosen vec-
tors

.1100 rr kk xxu ⋅+⋅= (2.50)

To prevent trial vectors from expanding (k0 + k1>1) or contracting (k0 + k1 <
1) over the course of many generations due only to the generating process
itself, the coefficients k0 and k1 are subject to a normalization constraint

that requires their sum to equal 1. For a linear combination of m vectors,

).2(,1

,1

10

1

0

==+

=
−

=

mkk

k

m

i

i

(2.51)

Substituting 1 − k1 for k0 in Eq. 2.50 yields the familiar formula for line re-
combination in which the base vector, xr0, also appears in the difference

term:

).(

,)1(

0110

1101

rrr

rr

k

kk

xxx

xxu

−⋅+=

⋅+⋅−= (2.52)

108 2 The Differential Evolution Algorithm

Once three vectors are linearly combined, however, the positional bias
inherent in two-vector combinations can be eliminated. For example, a
mutant is a three-vector linear combination that is subject to two con-
straints. The normalization constraint, k0+ k1+ k2 = 1, eliminates one of the
three coefficients of combination (k0) and reduces the expression for a
general linear combination of three vectors to

).()(0220110 rrrrr kk xxxxxu −⋅+−⋅+= (2.53)

Imposing the mutation constraint

),3(,

,0

21

1

1

=−=

=
−

=

mkk

k
m

i

i

(2.54)

both eliminates a second coefficient (k1) and removes xr0 from the differ-
ence term

vxxxu =−⋅+=)(2120 rrr k . (2.55)

Satisfying Eq. 2.54 cancels out the base vector’s contribution to the m − 1
differential terms. The one remaining coefficient of combination, k2, is the
mutation scale factor, F. Like the increments generated by a PDF, the mu-
tation differentials contain no reference to the vector they modify.

Two-vector line recombination’s positional dependence complements a
mutation-driven search, but the existence of only Np − 1 possible recombi-
nation axes limits its explorative power. More than two vectors can be re-
combined and elevating line recombination to a three-vector process places
it on an equal footing with differential mutation as both consist of a linear
combination of three vectors.

Three-Vector Recombination

Equation 2.51 appears to be missing the differential mutation operator be-
cause it expresses a trial vector as the sum of the base vector and two re-
combination differentials that contain the base vector. The reciprocal roles
played by recombination and mutation in three-vector linear combinations
become clearer once Eq. 2.53 is rewritten with a change of variables that
decomposes any normalized, three-vector linear combination into separate
recombination and mutation components, K and F, respectively. First, let

2.6 Recombination 109

.
2

)(

,
2

)(

2

1

FK
k

FK
k

−≡

+≡
(2.56)

Replacing k1 and k2 in Eq. 2.53 with the expressions in 2.56 yields

).(
2

)(
)(

2

)(
02010 rrrrr

FKFK
xxxxxu −⋅−+−⋅++=

(2.57)

Multiplying out the expressions in Eq. 2.57 and collecting terms reorgan-
izes Eq. 2.53 into a recombination term that contains the base vector and a
mutation term from which the base vector is absent:

).(
2

)2(
2

210210 rrrrrr

FK
xxxxxxu −⋅+−+⋅+=

(2.58)

The change of variables laid out in Eq. 2.56 defines a 45° rotation of the
K–F plane with respect to the k1–k2 plane (Fig. 2.50). The mutation con-
straint, k1= −k2, defines a mutation axis, F, that passes through the origin
and has a slope of −1, while the recombination constraint, k1= k2, defines a
recombination axis, K, that also passes through the origin but has a slope
of +1. The advantage of the K–F decomposition is that it permits two
search processes with different dynamics to be controlled independently.

The coordinates, (k1,k2), locate the trial vector, u, relative to the base
vector xr0 using two-vector recombination differentials as basis vectors.
Coordinate k1 measures the distance of the trial vector from the base vector
in the direction of the differential (xr1 − xr0), while k2 measures the distance
from xr0 in the direction of the differential (xr2 − xr0). Similarly, K and F
measure the distance of the trial vector from the base vector along the di-
rection of the three-vector recombination and mutation axes, respectively.

The medial line (the K–axis in Figs. 2.50 and 2.51) plays an important
role in the two-dimensional version of the Nelder–Mead algorithm. As
Sect. 1.2.3 explained, the Nelder–Mead strategy tests a point located on the
axis defined by the vector being modified (the worst vector in Nelder–
Mead, but xr0 in this case) and the centroid of a simplex consisting of D
additional vectors. When D = 2, this axis is a medial line that passes
through not only the centroid, but also the average position of xr1 and xr2.

110 2 The Differential Evolution Algorithm

k2

k1

k1=
k2 k1= -k2

K

F

(0,1)

(1,0)

corresponds to xr2

corresponds to xr0 corresponds to xr1

corresponds to u

Fig. 2.50. Decomposing the position of a trial vector into separate mutation and
recombination components in the K–F plane (refer to Eqs. 2.51 and 2.56). The ro-
tation angle between the k1–k2 and K–F coordinate systems is 45°.

Figure 2.51 illustrates some of the important features of the K–F plane.
Coordinates are given as (K,F) where K and F are a vector’s coordinates
along the recombination and mutation axes, respectively. The base vector,
xr0, corresponds to the origin, (K,F) = (0,0). The remaining two vectors
correspond to (0.5,0.5) and (0.5, −0.5). Together, the three vectors form an
inverted triangle whose sides and their extensions constitute the three axes
along which three-vector combinations reduce to two-vector line recombi-
nation. This triangle of vectors is inscribed inside a larger triangle whose
vertices are the three mutation points (0,1), (0, −1) and (1,0) corresponding
to the vectors xr0 + xr1 − xr2, xr0 + xr2 − xr1 and xr1 + xr2 − xr0, respectively.

Only the order in which vectors are combined distinguishes these three
strategies and as long as vectors are randomly selected, the three mutation
points are dynamically indistinguishable, i.e., the three strategies cannot be
distinguished based on their performance. Similarly, the sides of this larger
triangle represent the three possible mutation axes and its three medial
lines represent the three possible recombination axes. The figure is bilater-
ally symmetric (left and right sides are mirror images, with the mirror
aligned on the K axis) about the vertical recombination axis because xr1 −
xr2 = − (xr2 − xr1). The centroid of both the large and small triangles lies at
(1/3,0).

2.6 Recombination 111

K

k2 k1

F

(K,F)=(1,0)

(0.5,0.5)(0.5,-0.5)

(0,-1) (0,1)

(0,0)

corresponds to a mutation point: xr0+xr1-xr2: (0,1)
 xr0+xr2-xr1: (0,-1)
xr1+xr2-xr0: (1,0)

corresponds to a vector: xr0: (0,0), xr1: (0.5,0.5), xr2: (0.5,-0.5)

2-vector recombination

3-vector recombination (medial line)

mutation axis

Fig. 2.51. The K–F plane exhibits three axes along which two-vector recombina-
tion produces trial vectors. Squares plot the three dynamically equivalent mutation
points. The vertical axis measures the component along the medial axis while the
horizontal mutation axis measures the component in the direction of the difference
vector xr1 − xr2. Note that the coordinate values are expressed in the K–F coordi-
nate system. Note also that the vectors that correspond to these points are also
mentioned. As an example, the point (1,0) corresponds to the vector xr1 + xr2 − xr0.

Because they represent varying fractions of recombination and muta-
tion, points in the K–F plane also represent different search strategies. For
example, classic DE with Cr = 1 includes all the points on the mutation
axis where trial vectors are pure mutants, whereas those that lie along the
medial axes are pure three-vector recombinants similar to those produced
by the two-dimensional Nelder–Mead algorithm. Off-axis points possess
attributes of vectors that have been subjected to both differential mutation
and three-vector line recombination. For optimization, the most important
questions regarding K and F are whether they are correlated and whether
successful strategies consistently cluster around landmarks in the K–F

112 2 The Differential Evolution Algorithm

plane. The phase portrait is designed to provide insights into these ques-
tions.

2.6.4 Phase Portraits

Phase portraits are a visual aid for exploring relationships between control
parameters, in this case K and F. Each point, (K,F), in the K–F plane lo-
cates a point representing a trial vector generating strategy that is iterated
over many generations. If the point at (K,F) is plotted when the strategy it
represents is successful within the allotted number of generations, then a
“portrait” forms revealing the location of effective control variable combi-
nations for the given test function. Rosenbrock’s function, for example,
displays the portrait in Fig. 2.52.

5-D Rosenbrock, Np = 50 h

gmax = 10000

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

F

K

Fig. 2.52. The phase portrait for the five-dimensional generalized Rosenbrock
function. Points were sampled with random uniformity, i.e., F = 8⋅(rand(0,1) −
0.5) and K = 8⋅(rand(0,1) − 0.5). The function rand(0,1) lacks a subscript to indi-
cate that a single value is generated anew for each optimization run. One optimi-
zation was run for each point. If the optimization was successful within the allot-
ted number of generations and with the chosen population size, the point was
plotted. Results were obtained with DE/rand/1/bin, Cr = 1 and i ≠ r0 ≠ r1 ≠ r2.

Regions that are most densely populated correspond to strategies that have
the highest probability of convergence. Points in the central triangular void
are strategies that converged prematurely for the given Np, while those in
the vacant space surrounding the portrait did not converge within the al-
lowed number of generations.

2.6 Recombination 113

5-D Rosenbrock, Np = 50

gmax = 5000

-4

-2

0

2

4

-4 -3 -2 -1 0 1 2 3 4

F

K

5-D Rosenbrock, Np = 50

gmax = 2500

-4

-2

0

2

4

-4 -3 -2 -1 0 1 2 3 4

F

K

5-D Rosenbrock, Np = 50

gmax = 1250

-4

-2

0

2

4

-4 -3 -2 -1 0 1 2 3 4

F

K

5-D Rosenbrock, Np = 50

gmax = 625

-4

-2

0

2

4

-4 -3 -2 -1 0 1 2 3 4

F

K

5-D Rosenbrock, Np = 50

gmax = 312

-4

-2

0

2

4

-4 -3 -2 -1 0 1 2 3 4

F

K

5-D Rosenbrock, Np = 50

gmax = 156

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

F

K

Fig. 2.53. Reducing the maximum allowed number of generations reveals that the
fastest solutions are the most interior ones. The three clusters represent symmetric
solutions.

114 2 The Differential Evolution Algorithm

The distribution of successful strategies highlights several important
features of the K–F plane shown in Fig. 2.51. For example, the distribution
of successful strategies is bilaterally symmetric about the vertical recombi-
nation axis. In addition, the six spikes correspond to the three cases of two-
vector line recombination. Their presence in Rosenbrock’s portrait shows
that even two-vector line recombination is sufficient to solve this uni-
modal function if the coefficient of combination (e.g., k1 in Eq. 2.50) is
large enough.

By successively halving the maximum allowed number of generations,
gmax, in successive portraits, Fig. 2.53 shows that the solutions obtained by
two-vector recombination are relatively time consuming and that the fast-
est solutions are the most interior ones.

Figure 2.54 shows the final Rosenbrock portrait in Fig. 2.53 at expanded
scale with medial lines and lines of two-vector recombination drawn for
reference.

5-D Rosenbrock, Np=50

gmax=156

-1

-0,5

0

0,5

1

-1 -0,5 0 0,5 1

F

K

Fig. 2.54. Clusters for Rosenbrock’s functions are bisected by a medial line and
constrained by the lines of two-vector recombination.

2.6 Recombination 115

Even though they possess very different topography, many other func-
tions display portraits similar to Rosenbrock’s. As Fig. 2.55 shows, the
phase portraits for the hyper-ellipsoid, Ackley, Whitley and Lennard-Jones
functions all look remarkably similar to Rosenbrock’s portrait when gmax=
5000.

5-D Hyper-ellipsoid, Np=50

g max=5000

-2

-1

0

1

2

-2 0 2

F

K

5-D Ackley, Np=50

g max=5000

-2

-1

0

1

2

-2 0 2

F

K

5-D Whitley, Np=50

g max=5000

-2

-1

0

1

2

-2 0 2

F

K

12-D Lennard-Jones,

Np=100

g max=5000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 0 2

F

K

Fig. 2.55. Despite having radically different topographies, these functions produce
portraits similar to Rosenbrock’s.

Other portraits, such as those of the Chebyshev and Hilbert functions in
Fig. 2.56, produce images similar to plots of Rosenbrock’s fastest strate-
gies. In each case there are three clusters centered on a medial line that are
constrained by the lines representing two-point recombination.

Not all functions conform to this pattern and some have portraits with
clusters that lie predominantly along either the mutation axis or the three-

116 2 The Differential Evolution Algorithm

vector recombination axis. Figure 2.57 shows that most of the successful
strategies for the Shekel and odd square functions lie on the mutation axis.

9-D Chebyshev, Np =50

g max=5000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 0 2

F

K

9-D Hilbert, Np =100

g max=5000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 0 2

F

K

Fig. 2.56. Portraits for both the Chebyshev and Hilbert functions are almost indis-
tinguishable from Rosenbrock’s innermost strategies.

5-D Shekel, Np =400

g max=2500

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 0 2

F

K

5-D Odd Square, Np =400

g max=5000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 0 2

F

K

Fig. 2.57. Solutions for both the Shekel and odd square functions lie almost en-
tirely on the mutation axes. Recombination is effective on the Shekel function as
long as K is close to 1, but it is an ineffective strategy when applied to the odd
square.

2.6 Recombination 117

At the other extreme, Griewangk’s function shows a distribution of
points centered on the medial lines that has only a few outlying points ap-
proaching the mutation axis, most notably near F = 1 and F = 0.5.

5-D Griewangk,Np=200

gmax=5000

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1 0 1 2

F

K

Fig. 2.58. Although a few cluster points intersect the mutation axes, the most ro-
bust strategies lie on the medial axes.

These phase portraits show that mutation and recombination differen-
tials do indeed have different effects on the optimization dynamic. For
functions like the odd square, mutation is the only viable option, while for
those like Griewangk, recombination is a better strategy. Reliance on the
wrong operation is likely to result in poor performance for a significant
number of functions, but many functions are generic, meaning that either
mutation or recombination makes an effective strategy. Given the range of
behaviors displayed in the phase portraits, what is the best strategy in gen-
eral?

2.6.5 The Either/Or Algorithm

All portraits in the previous section displayed clusters of successful strate-
gies that were bisected by either a recombination or a mutation axis. In the
generic case, both axes intersected clusters. Furthermore, there was no case
in which a cluster only occupied the spaces between axes. Because these
isolated, off-axis clusters are not observed, the best strategy for locating a
central cluster point is to look along the mutation axis, the recombination
axis, or both, but not between them. Compared to searching the entire two-

118 2 The Differential Evolution Algorithm

dimensional K–F plane, a dual-axis search reduces the effort to find a suc-
cessful strategy because it restricts the search to a pair of one-dimensional
axes.

The simplest way to implement a dual-axis search is to define a muta-
tion probability such that trial vectors that are pure mutants occur with
probability pF and those that are pure recombinants occur with probability
1 − pF :

()
()−+⋅+=

<−⋅+=
=

otherwise.2

,)1,0(randif

,0,2,1,0,

,2,1,0,

,
grgrgrgrgi

Figrgrgrgi

gi
K

pF

xxxxw

xxxv
u

(2.59)

This scheme accommodates functions that are best solved by either muta-
tion only (pF = 1) or recombination only (pF = 0), as well as generic func-
tions that can be solved by randomly interleaving both operations (0 < pF <
1). Figure 2.59 gives pseudo-code for this “either/or” algorithm.

...

if (randi(0,1)<PF) // mutate or recombine ?

{

ui=xr0+F*(xr1-xr2); // mutate

}

else

{

ui=xr0+K*(xr1+xr2-2*xr0); // recombine

}

...

Fig. 2.59. Pseudo-code for creating a trial vector with the “either/or” algorithm.
From experience K = 0.5⋅(F + 1) can be recommended as a good first choice for K
given F.

2.7 Selection

There are primarily two stages in the evolutionary process where selection
can be applied to a population. Some GAs (Goldberg 1989) employ parent
selection to decide which vectors will undergo recombination. Typically,
vectors with the best function values are assigned the highest selection

probability, making them the most likely to be chosen for mating. This
strategy mimics the one employed by breeders and botanists who try to

2.7 Selection 119

improve traits by selectively breeding individuals with superior character-
istics. In practice, methods for assigning selection probabilities involve ad-
ditional assumptions about how to map objective function values to a set
of probabilities. Instead of selecting mates based on objective function
value, both ES and classic DE select mates with equal probability. In the
ES, each vector has the same chance to be chosen for mutation and/or re-
combination. Similarly, classic DE randomly selects base vectors without
regard for their objective function values (see Sect. 2.4).

In contrast to parent selection, survivor selection, also called replace-

ment, chooses the next generation of vectors from the current generation of
vectors and trial vectors. Most EAs apply selection pressure either when
choosing vectors to recombine or when choosing survivors. GAs typically
bias selection in favor of better vectors, whereas DE, ES and other EAs,
however, combine randomly chosen vectors and apply selection pressure
only when picking survivors. Using both parent (base vector) and survivor
selection can cause premature convergence to a local optimum.

The remainder of this section is primarily concerned with survivor se-
lection and it will be convenient for the following discussion to assume
that the current and trial populations can have different sizes. In keeping
with the naming traditions established by the ES community, µ will denote
the size of the current population and λ will represent the size of the trial
population.

2.7.1 Survival Criteria

In some algorithms, age alone determines which individuals survive. Here,
age distinguishes vectors in the current population from those in the
(younger) trial population. More often, however, both a vector’s objective
function value and the luck of the draw are also factors. The simple GA,
however, determines survivors by their age alone.

Age Only

The simple GA replaces µ vectors with λ = µ trial vectors without regard
to whether the trial vectors actually have lower function values than those
in the current generation (Goldberg 1989). This age-based replacement

scheme only works if parent selection is driven by an objective function-
based criterion. Without the feedback that an objective function-based par-
ent selection rule provides, there is no bias to drive the population toward
better solutions. For example, the (1,1)-ES with its age-based selection is
nothing more than a random walk in which each trial vector replaces the

120 2 The Differential Evolution Algorithm

current vector regardless of its objective function value (Bäck et al. 1993).
Similarly, age-based replacement is unsuitable for classic DE because its
parent selection scheme, i.e., random base vector selection, does not
choose vectors based on objective function value.

Objective Function Value Only

When only trial vectors are allowed to advance, there is no guarantee that
the best-so-far solution will not be lost. Retaining the best-so-far solution
is known as elitism and part of the task of proving that an algorithm will
converge to the global optimum in the long-time limit is proving that it is
elitist (Rudolph 1996). For this reason, and because of the speed improve-
ment that it offers, most EAs, including DE, evolutionary programming
(EP) and some versions of ES and genetic programming (GP) (Koza
1992), include the current population when determining the membership of
the next generation. For example, the (µ + λ)-selection scheme (see Sect.
1.2.3) ranks all vectors in both the current and trial populations from best
to worst and then populates the next generation with the best µ individuals.
Similarly, EP tournament selection (see subsection 2.7.2) compares the ob-
jective function value of vectors randomly chosen from the current and
trial populations. In both cases, a vector’s age is irrelevant and the best-so-
far result is always retained.

Age and Objective Function Value

In ES (µ, λ)-selection (see Sect. 1.2.3), age dictates that only trial vectors
can survive, while objective function values determine which trial vectors
are among the µ best. Using objective function values to pick the µ best
survivors from a pool of λ trial vectors biases evolution toward better solu-
tions, unlike the simple GA in which µ = λ trial vectors survive regardless
of their objective function values. Since surviving trial vectors can over-
write better current vectors, (µ, λ)-selection is not elitist. Forgetting prior
results, however, allows the population both to escape local optima and to
track dynamic ones. In addition, (µ, λ)-selection lessens the chance that ES
“strategy” parameters will prematurely adapt to a good but sub-optimal so-
lution (Bäck and Schwefel 1995).

As the next section shows, both age and objective function value also
play a role in DE selection. Age is a factor because trial vectors can only
compete against members of the current population, while their objective
function values determine which vector survives. The DE scheme is elitist
since the best vector in the current and trial populations always survives.

2.7 Selection 121

2.7.2 Tournament Selection

In general, any parent selection scheme can also be adapted for survivor
selection, but in practice nearly all EAs, including DE, determine survivors
by some form of tournament selection or ranking, which is a special case
of tournament selection. The next subsection explores DE selection in the
context of the tournament survivor selection method employed by the EP
algorithm (Fogel et al. 1966; Fogel 1991).

In EP-style tournament selection, each vector competes against T oppo-
nents drawn at random from a selection pool of Ns vectors (Saravanan and
Fogel 1997). In deterministic tournaments, vectors are assigned a “win”
for each pair wise competition in which they have the lower objective
function value (in non-deterministic tournaments, the best vector wins with
a user-defined probability). The µ vectors that accumulate the most wins
populate the next generation.

The main control variable in tournament selection is the tournament
size, T, where 2 ≤ T ≤ Ns. A typical tournament size for the EP algorithm
is T = 10. DE, however, conducts Np, binary tournaments (T = 2) in which
only two individuals compete. In general, the selection pressure increases
as T increases, i.e., increasing T speeds convergence, so compared to EP
tournament selection (T = 10), DE selection is gentler. DE’s lower selec-
tion pressure helps avoid premature convergence without the introduction
of variation operators to enhance the diversity of the pool of potential trial
vectors.

Ranking (e.g., (µ + λ)-selection in which both the current and trial popu-
lations are sorted based on objective function value) is a special case of EP
tournament selection for which T = Ns. For example, if one vector is better
than another, the better vector will win all the same tournaments that the
inferior vector wins plus the tournament with the inferior vector itself.
Since better vectors always have more wins than inferior vectors, conduct-
ing T = Ns tournaments for each vector ensures that ranking vectors by the
number of wins also ranks them by objective function value. In practice,
ranking is accomplished more efficiently by sorting the population from
best to worst based on objective function value and then taking the top µ
individuals. Efficient sorting reduces the computational complexity of the
each-against-all tournament process from O(Ns2) to O(Ns⋅log(Ns)) (Blahut
1984).

Tournament selection is very versatile because it only depends on know-
ing which of two solutions that have been paired for competition is better.
Because it only depends on the difference between objective function val-
ues, tournament selection is unaffected when a constant is added to every

122 2 The Differential Evolution Algorithm

vector’s objective function value (transposition) (Eiben and Smith 2003).
By contrast, fitness proportional selection selects an individual with a
probability based on its function value (Holland 1992)

()
()

−

=

=
1

0

µ

i

i

i
i

f

f
P

x

x (2.60)

and adding a constant to each vector’s objective function value will change
its fitness proportional selection probability.

Tournament selection is also well suited for co-evolutionary optimiza-
tion tasks in which the quality of a given solution is defined only in the
context of its performance with respect to the rest of the population. For
example, it is difficult to rate an arbitrary checkers strategy, but it is a sim-
ple matter to determine which of two strategies is better by actually using
them to play one or more games against each other. Similarly, tournament
selection is the most effective way to evolve solutions to “subjective” ob-
jective functions, like those used in evolutionary art. In such environments,
it is easier to decide, for example, which of two pictures is more pleasing
than it is to decide how pleasing a picture is in an absolute sense. In addi-
tion, tournament selection permits the concept of Pareto-dominance to be
implemented for both constraint functions and for multi-objective optimi-
zations (see Sects. 4.3 and 4.6).

A single competition in an EP tournament might select two current
population vectors, a current and a trial vector, or two trial vectors to com-
pete against one another. DE, however, restricts tournament selection to
this last possibility in which each competition pits a trial vector against a
vector in the current population (the target) with the additional proviso that
the target and trial vectors are also related by crossover. The next subsec-
tion explores this special class of deterministic, binary tournaments, known
as one-to-one selection for the way in which population and trial vectors
are paired for competition.

2.7.3 One-to-One Survivor Selection

Besides pairing competitors based on age, DE’s one-to-one replacement
scheme differs from EP tournament selection in other ways. For example,
an EP-style binary tournament conducts 2Np competitions by pairing each
vector in the current population and each trial vector with a randomly se-
lected competitor. Each vector competes once in its own tournament and

2.7 Selection 123

possibly one or more times as a competitor in another vector’s tournament.
Consequently, not every vector that wins advances and not every vector
that loses fails to advance. For example, a very good vector will lose if it is
chosen as a competitor in the best vector’s tournament. If, however, an av-
erage competitor is chosen to compete in the very good vector’s tourna-
ment, then the very good vector will win. Even though it loses in competi-
tion with the best vector, the very good vector still wins its own
tournament, giving it the same chance to enter the next generation as the
best vector because both vectors won their tournaments and scored one
win apiece. Furthermore, it is possible for more than Np vectors to win
their tournaments depending on how competitors are chosen, in which case
all winning vectors cannot advance. For example, although improbable,
every member of the current population and every member of the trial
population might randomly pick the very worst vector in the combined
populations as a competitor. In that case, there would be 2Np − 1 vectors
with one win and one vector with no wins. In such cases, the best vector
can be lost unless steps are taken to preserve it.

By contrast, DE’s one-to-one selection holds only Np “knock-out” com-
petitions. Any vector that loses the single competition in which it competes
is eliminated and vectors that win are assured of a spot in the next genera-
tion. This form of binary, deterministic, one-to-one tournament selection in
which competitors are chosen from different populations is not unique to
DE. Like DE, the Particle Swarm Optimization (PSO) algorithm also con-
ducts Np competitions that compare the trial vector with population index i
to the best performing vector at population index i (Kennedy and Eberhart
1995). In DE, the best performing vector at the ith position is just the ith

vector in the current population, i.e., the target vector xi,g. In both DE and
PSO, the trial vector replaces the best-so-far vector with the same index
only if it has an equal or lower objective function value.

Comparing each trial vector to the best performing vector at the same
index ensures that both DE and PSO retain not only the best vector at each
index, but also the very best-so-far solution at any index. Even so, a trial
vector that is better than most of the current population will be rejected if
its target is even better. Trial vectors that are worse than the worst vector
in the current population, however, are never accepted.

124 2 The Differential Evolution Algorithm

2.7.4 Local Versus Global Selection

Local Selection

When an objective function is known to exhibit multiple global optima,
some algorithms subdivide the selection pool into subpopulations. Each
subpopulation evolves in isolation to prevent the entire population from
coalescing about a single optimum. Selection is local because survivors
can only replace members of the same subpopulation. For example, in the
simple GA with a (µ, λ) survivor selection scheme, age determines the in-
teracting subpopulation, or selection neighborhood, because only trial vec-
tors are allowed to compete. In general, the smaller the selection neighbor-
hood is, the lower the selection pressure will be. Just as increasing λ or T
increases selection pressure, increasing the size of the population from
which the base vector is drawn speeds convergence.

If DE’s base and target vectors are the same, vectors evolve in isolation
as though there were Np subpopulations. Selection will be local because
each population vector will be compared to a mutated version of itself. Al-
though the mutation differential is still drawn from the population at large,
there is no interaction with other population members – no comparisons to
solutions evolving in other parts of the solution space.

Global Selection

When seeking a single, global optimum, care must be taken to ensure that
information about the best solutions can reach all members of the popula-
tion. If base vectors are randomly chosen, then each vector in the current
population is compared to and possibly crossed with the mutated version
of another vector. Compared to local selection, global selection speeds
convergence and minimizes the risk of stagnation.

2.7.5 Permutation Selection Invariance

When base vectors are the elements of a random permutation of the se-
quence (0, 1,…, Np − 1), the roles played by the base vector and survivor
selection become interchangeable. If a permutation of the sequence (0,
1,…, Np − 1) indexes base vectors, then each vector in the current popula-
tion serves as a base vector once per generation (Sect. 2.4.2). Each vector
in the current population also serves as a target vector once per generation.
As such, it makes no difference whether the random permutation indexes

2.7 Selection 125

either base vectors or target vectors. Either way, each vector in the current
population vector is mutated, then matched by permutation to a vector with
which it is both crossed and compared and which it potentially replaces.
For example, the first expression in Eq. 2.61 shows the traditional DE ap-
proach in which permuted indices, permute[i], select the base vector, while
the running index, i, points to the target vector. The second expression
shows the situation reversed, in which the running index specifies the base
vector and the ith permutation entry locates the target vector. For clarity,
Eq. 2.61 expresses this symmetry as a vector relationship (Cr = 1):

() ().vs.vs. 21permute[i]21permute[i] rrirri FF xxxxxxxx −+⇔−+ (2.61)

These two approaches based on the permutation selection method give
identical results, i.e., optimizer performance is the same regardless of
which method is employed. In both cases, each vector in the current popu-
lation is mutated and then crossed with and compared to another vector in
the current population not assigned to any other mutant. As such, random
assignments derived from permutations can be performed either during
parent (base vector) selection (left side of Eq. 2.61), or when selecting a
target vector with which to cross and compete (right side of Eq. 2.61).

The “urn” permutation algorithm (see Sect. 5.2) helps illustrate the
symmetry between these two selection options. For example, let urn 1 hold
Np marbles, each of which is numbered with a unique vector index, i ∈ [0,
Np − 1]. Urn 2 also contains Np marbles numbered 0 through Np − 1, but
this time, numbers indicate a vector in the current population that has been
mutated. Permutation selection matches vectors in the current population
with mutants for crossing and competing by drawing a marble (at random
and without replacement) from each urn. Once all marbles have been ran-
domly paired this way, the final mapping between population and mutant
indices will define a permutation. It does not matter to which urn the role
of the permutation is assigned, just as it does not matter whether targets or
mutants have their indices permuted.

2.7.6 Crossover-Dependent Selection Pressure

Because DE selection compares each trial vector to the vector in the cur-
rent population with which it is crossed, replacing a vector in the current
population can change the population’s composition by as little as one pa-
rameter (Cr = 0), or by as many as D (Cr = 1). If, unlike DE, each vector

126 2 The Differential Evolution Algorithm

in the current population is compared to and replaced by a trial vector with
whom it shares no common parameters, then the composition of (one
member of) the vector in the current population changes by D parameters.
Similarly, when (µ + λ)-selection replaces a vector in the current popula-
tion with a trial vector, the two vectors usually share no parameter values
in common. By contrast, the number of parameters changed when classic
DE accepts a trial vector is a function of Cr.

Figure 2.60 compares the selection pressure exerted by classic DE and
two other selection schemes, both of which change D parameters each time
they replace a vector in the current population. Classic DE (DE/rand/1/bin)
generated the trial vectors in each case and algorithms differed only in how
they selected survivors. Data points were only plotted if all 20 trials were
successful. The top line shows that classic DE selection is the slowest of
the three schemes when Np = 60, although it is the only method whose se-
lection pressure is gentle enough to prevent premature convergence at
small values of Cr. The middle line corresponds to a selection scheme that
pairs vectors in the current population and trial vectors with a random
permutation. This use of random permutation to pair vectors and trial vec-
tors is distinctly different from the permutation selection method described
in Sect. 2.7.5. Instead of drawing vectors from the first urn and mutants
from the second, this selection method draws completed trial vectors that
have already been crossed with another vector from the second urn. As
such, vectors in the current population and the trial vectors that compete
against them share no parameters through crossover. Its greater rate of
convergence in Fig. 2.60 shows that in the case of the hyper-ellipsoid, ac-
cepting D new parameters per trial vector creates more selection pressure
than does classic DE selection, except at Cr = 1 where both algorithms
change the current population by D parameter values for each trial vector
accepted. The (µ + λ)-selection scheme (bottom line) generates the highest
selection pressure because it not only changes D parameters per accepted
trial vector, it also uses T = Np tournaments instead of just T = 2.

2.7 Selection 127

10-D hyper-ellipsoid, Np =60

0

20000

40000

60000

80000

100000

0 0.2 0.4 0.6 0.8 1

Cr

E
v

a
lu

a
ti

o
n

s

Fig. 2.60. Classic DE selection (top line) is weaker than (µ + λ)-selection (bottom
line) but both share a similar profile. Pairing target and trial vector (not mutant)
adversaries with a random permutation provides an intermediate level of selection
pressure (middle line). DE/rand/1/bin (Np = 60, F = 0.9) generated trial vectors,
but survivors were selected by the indicated selection method. Data points are 20-
trial averages.

2.7.7 Parallel Performance

Not all survivor selection methods are equally well suited to parallel im-
plementations. For example, (µ + λ)-selection is time consuming when
implemented as tournament selection without replacement. If instead, (µ +
λ)-selection is done by sorting, it becomes difficult to implement effi-
ciently in parallel because some comparisons must be performed before
others. DE, however, is ideally suited for parallel computing, primarily be-
cause each vector in the current population competes in a single tourna-
ment against a trial vector that belongs to an intermediate population. Sec-
tion 5.1 describes several schemes for distributing DE across a network of
processors. In addition, Sect. 7.6 describes how DE was implemented in

128 2 The Differential Evolution Algorithm

parallel to perform image registration. In that application, performance
scaled quasi-linearly.

2.7.8 Extensions

The presence of constraint functions and multiple objectives in an optimi-
zation task make it difficult to compare solutions based on a single objec-
tive function value. For this reason, J. Lampinen (2002) has extended DE’s
selection criteria so that solutions can be compared based on the notion of
Pareto-dominance (Sect. 4.6). Instead of replacing a vector in the current
population with a trial vector whose objective function value is equal or
lower, Lampinen’s method replaces a vector in the current population
when the trial vector dominates it. Lampinen’s method is easy to apply to
problems with multiple constraints (Sect. 4.3), those with multiple objec-
tives (Sect 4.6) and multi-objective problems with multiple constraints
(Sect 4.6). Among its principal advantages are that objectives and con-
straints do not need to be weighted. Details on Lampinen’s method can be
found in the sections indicated above.

In summary, DE’s one-to-one selection offers numerous advantages be-
yond its simplicity. It does not require mapping objective function values
to selection probabilities. It is elitist, easy to implement in parallel, com-
pensates for increased acceptance rates at low Cr and has all the traditional
advantages of tournament selection’s versatility which include invariance
to objective function transposition. DE selection is also flexible, allowing
either target or base indices to be randomly specified by permutations, or
the criterion of “less than or equal” to be replaced by “Pareto-dominant”
when problems have multiple objective and/or multiple constraints.

2.8 Termination Criteria

Sometimes it is obvious when an optimization should be halted. For exam-
ple, in constraint satisfaction problems (Sects. 4.3 and 4.5) the optimiza-
tion is over when all constraints are satisfied, i.e., when a feasible vector is
found. In multi-objective optimization (Sect. 4.6), however, objectives of-
ten conflict. Satisfying one objective leaves another unfulfilled, so it is not
always clear when to stop searching for a better compromise. This section
briefly describes some halting criteria and the scenarios in which they are
appropriate.

2.8 Termination Criteria 129

2.8.1 Objective Met

In some optimization tasks, the objective function’s minimum value is al-
ready known. For example, the goal when designing telescope optics is to
reduce the geometric spot size of a star’s image to a point. The wave na-
ture of light, however, renders meaningless any improvement beyond cer-
tain well-known limits. Consequently, an optical system optimization can
be halted when spot sizes fall below the limits set by the wave nature of
light. The same is true of other error functions for which the tolerable error
is given. This is also the method used when working with test functions
whose minima are known. If the best-so-far vector’s objective function
value is within a specified tolerance of the global minimum, the optimiza-
tion halts.

2.8.2 Limit the Number of Generations

Usually, the objective function minimum is not known in advance. Even
for many test functions, only the best-known results are reported. In these
cases, optimizations can be terminated after gmax generations. When testing
optimizers with functions whose optima are known, setting gmax may halt
optimizations that do not reach the objective function minimum within the
specified tolerance. Finding a value of gmax that is large enough to give an
optimizer enough time to find the optimum, but not so long that a second
trial would be a better way to invest computer time, involves some guess
work.

Alternatively, an optimization can be halted when ∆gmax generations
have passed without a trial vector being accepted. Again, some experimen-
tation may be needed to find a good value for ∆gmax. Long periods without
improvement are perhaps more common in DE than other EAs, so it is im-
portant that ∆gmax not be set too low.

2.8.3 Population Statistics

An optimization can also be terminated when a population statistic reaches
a pre-specified value. For example, an optimization can be halted when the
difference between the population’s worst and best objective function val-
ues falls below some predetermined limit. This method needs to be applied
with caution because it can cause an optimization to halt prematurely. For
example, if the optimization is halted when the difference between the
population’s worst and best objective function values is less than, e.g.,

130 2 The Differential Evolution Algorithm

1.0×10−6, the population’s best objective function value might not yet be
within 1.0×10−6 of the minimum value. Thus, the interruption is premature
because DE may still be making progress even though the range of objec-
tive function values is small. When using this criterion, it is usually a good
idea to make the difference between the population’s worst and best objec-
tive function values several orders of magnitude lower than the tolerance
set for locating the optimum. The same advice applies when monitoring
the standard deviation of population vectors or the longest vector differ-
ence as termination criteria.

2.8.4 Limited Time

Sometimes only a limited amount of time is available for an optimization.
In such cases, the optimization must terminate regardless of the state of the
population or the number of generations. For example, in on-line optimiza-
tion, only a small amount of time may available to adjust manufacturing
process parameters (e.g., Sect. 7.12). Similarly, it may be that computer
time is limited or simply that a deadline must be met. Monitoring and
manual intervention can help determine whether the available time is best
spent completing an ongoing optimization or running a new trial.

2.8.5 Human Monitoring

Because of the inherent uncertainties in knowing when an optimization is
over, it usually helps to personally monitor time-consuming optimization
tasks. The feedback from the best objective function value, number of trial
vectors accepted per generation, the distribution of the population, etc.,
usually makes it clear when no more improvement is possible or when
time might be better spent running a new trial. In addition, human monitor-
ing allows the optimization to be altered in response to perceived opportu-
nities.

2.8.6 Application Specific

Finally some applications will have their own termination criterion. In evo-
lutionary art, for example, an optimization to find the most pleasing picture
might end when interest in the exhibit wanes, or when a certain group of
people have participated.

References 131

References

Ali MM, Törn A (2000) Optimization of carbon and silicon cluster geometry for
Tersoff potential using differential evolution. In: Floudas CA, Pardalos PM
(eds) Optimisation in computational chemistry and molecular biology. Kluwer
Academic, Dordrecht, pp 1–15

Bäck T (1993) Optimal mutation rates in genetic search. In: Forrest F (ed) Pro-
ceedings of the fifth international conference on genetic algorithms. Morgan-
Kaufmann, San Mateo, CA, pp 2–8

Bäck T (1996) Evolutionary algorithms in theory and in practice. Oxford Univer-
sity Press

Bäck T, Schwefel H-P (1993) An overview of evolutionary algorithms for pa-
rameter optimization. Evolutionary Computation 1(1):1–23

Bäck T, Schwefel H-P (1995) Evolution strategies I: variants and their computa-
tional implementation. In: Periaux J, Winter G (eds) Genetic algorithms in en-
gineering and computer science. Wiley, Chichester, Chap. 6

Bäck T, Rudolph G, Schwefel H-P (1993) Evolutionary programming and evolu-
tion strategies: similarities and differences. In: Fogel DG, Atmar W (eds) Sec-
ond annual conference on evolutionary programming, February. Evolutionary
Programming Society, La Jolla, CA, pp 11–22

Baker JE (1987) Reducing bias and inefficiency in the selection algorithm. In:
Grenfenstette JJ (ed) Proceedings of the first international conference on ge-
netic algorithms and their applications. Lawrence Erlbaum, Hillsdale, NJ, pp
14–21

Beckman FS (1980) Mathematical foundations of programming. Addison-Wesley,
Reading, MA

Beyer HG (1999) On the dynamics of EAs without selection. In: Banzaf W,
Reeves C (eds) Foundations of genetic algorithms. Morgan Kaufmann, San
Mateo, CA, pp 5–26

Blahut RE (1984) Fast algorithms for digital signal processing. Addison-Wesley,
Reading, MA, p 329

Caruana RA, Eshelman LJ, Schaffer JD (1989) Representation and hidden bias II:
eliminating defining length bias in genetic search via shuffle crossover. In:
Sidharan NS (ed) Eleventh international joint conference on artificial intelli-
gence, Morgan Kaufmann, San Mateo, CA, vol 1, pp 750–755

Chakraborti N, Misra K, Bhatt P, Barman N, Prasad R (2001) Tight-binding calcu-
lations of Si–H clusters using genetic algorithms and related techniques: stud-
ies using differential evolution. Journal of Phase Equilibria 22(5):525–530

Eiben AE, Smith JE (2003) Introduction to evolutionary computing. Springer,
Berlin Heidelberg New York

Eshelman LJ, Caruana RA, Schaffer JD (1989) Biases in the crossover landscape.
In: Schaffer JD (ed) Proceedings of the third international conference on ge-
netic algorithms. Morgan Kaufmann, San Francisco, pp 10–19

Fogel DB (1991) System identification through simulated evolution: a machine
learning approach to modeling. Ginn Press, Needham Heights, MA

132 2 The Differential Evolution Algorithm

Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated
evolution. Wiley, New York

Gamperle G, Mueller SD, Koumoutsakos P (2002) A parameter study for differen-
tial evolution. In: Grmela A, Mastorakis NE (eds) Advances in intelligent sys-
tems, fuzzy systems, evolutionary computation. WSEAS Press, Athens, pp
293–298

Goldberg DE (1989) Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, Reading, MA

Halton J, Weller G (1964) Algorithm 247: radical inverse quasi-random point se-
quence. Communications of the ACM, 7(12):701–702

Holland, JH (1973) Genetic algorithms and the optimal allocation of trials. SIAM
Journal of Computing 2:88–105

Holland J (1992) Adaptation in natural and artificial systems. MIT Press, Cam-
bridge, MA. First edition 1975, The University of Michigan Press, Ann Arbor

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of
the international conference on evolutionary computation, Perth, Australia.
Invited paper

Koza J (1992) Genetic programming: on the programming of computers by means
of natural selection. MIT Press, Cambridge, MA

Lampinen J (2002) Multi-constrained nonlinear optimization by the differential
evolution algorithm. In: Rajkumar Roy, Mario Köppen, Seppo Ovaska, Take-
shi Furuhashi, Frank Hoffmann (eds) Soft computing and industry: recent ad-
vances. Springer, Berlin Heidelberg New York, pp 305–318 (Proceedings of
the 6th online world conference on soft computing in industrial applications
(WSC6), September 10–24, 2001. Available at:

 http://vision.fhg.de/wsc6)
Lampinen J, Zelinka I (2000) On stagnation of (the) differential evolution algo-

rithm. In: Ošmera P (ed) Proceedings of MENDEL 2000, sixth international
Mendel conference on soft computing, June 7–9, Brno, Czech Republic. Brno
University of Technology, Faculty of Mechanical Engineering, Institute of
Automation and Computer Science, Brno, pp 76–83. Available at:

 http://www.lut.fi/~jlampine/MEND2000.ps
Macready WG, Wolpert DH (1998) Bandit problems and the explora-

tion/exploitation tradeoff. IEEE Transactions on Evolutionary Computing
2(1):2–22

Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs,
3rd edn. Springer, Berlin Heidelberg New York

Mühlenbein H (1992) How genetic algorithms really work I: mutation and hill
climbing. In: Schwefel H-P, Männer R (eds) Proceedings of the second inter-
national conference on parallel problem solving from nature, Springer, Berlin
Heidelberg New York, pp 15–26

Mühlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the breeder
genetic algorithm. Evolutionary Computation 1(1):25–50

Peitgen H-O, Saupe D (eds) (1998) The science of fractal images. Springer, Berlin
Heidelberg New York

References 133

Potter MA, DeJong KA (1994) A cooperative co-evolutionary approach to func-
tion optimization. In: Davidor Y, Schwefel H-P, Männer R (eds) Proceedings
of parallel problems solving from nature 3. Springer, Berlin Heidelberg New
York, pp 249–257

Price KV (1996) Differential evolution: a fast and simple numerical optimizer. In:
Smith MH, Lee MA, Keller J, Yen J (eds) Proceedings of the 1996 biennial
conference of the North American fuzzy information processing society –
NAFIPS, June 19–22, Berkeley, CA, USA. IEEE Press, New York, pp 524–
527

Price KV (1997) Differential evolution vs. the functions of the second ICEO. In:
Proceedings of the 1997 IEEE international conference on evolutionary com-
putation, Indianapolis, Indiana, USA. IEEE Press, New York, pp 153–157

Rudolph G (1996) Convergence of evolutionary algorithms in general search
spaces. In: Proceedings of the third IEEE conference on evolutionary compu-
tation, IEEE Press, New York, pp 50–54

Saravanan N, Fogel DB (1997) Multi-operator evolutionary programming: a pre-
liminary study on function optimization. In: Angeline PJ, Reynolds RG,
McDonnell JR, Eberhart R (eds) Evolutionary programming 6: sixth interna-
tional conference, Indianapolis, Indiana, USA, April. Springer, Berlin Heidel-
berg New York, pp 215–221

Salomon R (1996a) Re-evaluating genetic algorithm performance under coordi-
nate rotation of benchmark functions: a survey of some theoretical and practi-
cal aspects of genetic algorithms. Biosystems 39(3):263–278

Salomon R (1996b) The influence of different coding schemes on the computa-
tional complexity of genetic algorithms in function optimization. In: Voigt H-
M, Ebeling E, Rechenberg I, Schwefel H-P (eds) Proceedings of the fourth in-
ternational conference on parallel problem solving from nature, Springer, Ber-
lin Heidelberg New York, pp 227–235

Salomon R (1997) Raising theoretical questions about the utility of genetic algo-
rithms. In: Proceedings of the sixth international conference on evolutionary
programming. Lecture notes in computer science, vol 1213. Springer, Berlin
Heidelberg New York, pp 275–284

Spears WM, DeJong KA (1991) An analysis of multi-point crossover. In: Rawlins
G (ed) Foundations of genetic algorithms. Morgan Kaufmann, San Francisco,
pp. 301–315

Storn R (1996) On the usage of differential evolution for function optimization.
In: Smith MH, Lee MA, Keller J, Yen J (eds) Proceedings of the 1996 bien-
nial conference of the North American fuzzy information processing society –
NAFIPS, June 19–22, Berkeley, CA, USA. IEEE Press, New York, pp 519–
523

Storn R, Price KV (1996) Minimizing the real functions of the ICEC’96 contest by
differential evolution. In: Proceedings of the 1996 IEEE international confer-
ence on evolutionary computation, Nagoya, Japan. IEEE Press, New York, pp
842–844

134 2 The Differential Evolution Algorithm

Storn R, Price KV (1997) Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimiza-
tion 11:341–359

Syswerda G (1989) Uniform crossover in genetic algorithms. In: Schaffer JD (ed)
Proceedings of the third international conference on genetic algorithms. Mor-
gan Kaufmann, San Francisco, pp 2–9

Wright AH (1991) Genetic algorithms for real parameter optimization. In: Raw-
lins GJE (ed) Foundations of genetic algorithms. Morgan-Kaufmann, San
Mateo, CA, pp 205–218

Yang J-M, Chen Y-P, Horng J-T, Kao C-M, Chen Y-P, Horng J-T, Kao C-Y
(1997) Applying family competition to evolution strategies for constrained
optimization. In: Angeline PJ, Reynolds RG, McDonnell JR, Eberhart R (eds)
Evolutionary programming 6: sixth international conference, Indianapolis,
Indiana, USA, April. Springer, Berlin Heidelberg New York, pp 201–211

Yao X, Liu Y (1997) Fast evolution strategies. In: Angeline PJ, Reynolds RG,
McDonnell JR and Eberhart R (eds) Proceedings of the sixth international
conference on evolutionary programming, Springer, Berlin Heidelberg New
York, pp 151–161

Zaharie D (2002) Critical values for the control parameters of differential evolu-
tion algorithms. In: Matoušek R, Ošmera P (eds) Proceedings of MENDEL
2002, 8th international conference on soft computing, June 5–7, 2002, Brno,
Czech Republic. Brno University of Technology, Faculty of Mechanical En-
gineering, Institute of Automation and Computer Science, Brno, pp 62–67

Zimmons P (n.d.) Polynomial fitting with differential evolution. Available at:
http://www.cs.unc.edu/~zimmons/cs258/poly.html

3 Benchmarking Differential Evolution

3.1 About Testing

Testing can be a valuable tool for understanding how and why an algo-
rithm performs as it does. For example, testing can measure how an algo-
rithm’s performance depends on objective function characteristics like di-
mension, number of local minima, degree of parameter dependence,
dynamic range of parameters, constraints, quantization, noise, etc. Testing
can also show which control parameter combinations are the most effec-
tive. This knowledge can be particularly useful, since finding an effective
set of control parameter combinations is itself a multi-objective optimiza-
tion problem in which fast and reliable convergence are conflicting objec-
tives. In addition, test functions are a convenient way to compare one algo-
rithm’s performance to that of another. Furthermore, testing can lead to
new insights that can be exploited to enhance an optimizer’s performance.

Despite its value, testing can be misleading if results are not correctly
interpreted. For example, the dimension of some test functions can be arbi-
trarily increased to probe an algorithm’s scaling behavior. In all but the
simplest cases, however, changing an objective function’s dimension also
changes its other characteristics as well (e.g., number of local minima, dy-
namic range of optimal function parameter values, etc.). Thus, an algo-
rithm’s response to a change in test function dimension must be under-
stood in the context of the accompanying alterations to the objective
function landscape.

Test beds that consist entirely of separable functions are another exam-
ple in which test functions provide misleading clues about an algorithm’s
versatility. For many years, most of the functions used for testing GAs
were separable (see Sect. 1.2.3). Consequently, GAs with low mutation
rates performed well on these early test beds, leading to high expectations
for their success as numerical optimizers. It is now clear that these early
successes do not extend to parameter-dependent functions because GAs
are limited by their lack of a scheme for correlating mutations (see Sects.
1.2.3 and 2.6.2) (Salomon 1996).

136 3 Benchmarking Differential Evolution

Ensuring that test bed functions are sufficiently diverse is just one chal-
lenge to creating a valid benchmark against which algorithms can be com-
pared. Benchmarking is further complicated by the fact that a fair compari-
son must take into account not only an algorithm’s speed and probability
of convergence, but also the effort required to tune its control parameters.
For example, in the First International Contest on Evolutionary Optimiza-
tion (1st ICEO), probability and speed of convergence were combined into
a single performance measure, but control parameter tuning was not con-
sidered (see Sect 3.2 for a description of this method) (Bersini et al. 1996).
In the 2nd ICEO, “crafting effort” was taken into account so that given two
algorithms with comparable speed and probability of convergence, the al-
gorithm that required less tuning scored better (e.g., Price (1997), Yen and
Lee (1997)).

Even if tuning issues can be overcome, it is sometimes hard to define a
problem without favoring one approach over another. For example, float-
ing-point optimizers require less computational effort to compute the op-
tima of real-valued functions than do GAs using bit-strings (see Sect. 2.2).
In addition, there can be other important factors that determine an opti-
mizer’s true value, like the computer resources that it requires. Further-
more, the lack of a sufficiently detailed account of the testing procedure
can also lead to test results being misinterpreted.

Perhaps most importantly, the test bed has been shown to have funda-
mental limits as a benchmarking tool. In their landmark paper on the “No
Free Lunch” (NFL) theorem, Wolpert and Macready (Wolpert and
Macready 1997) proved that all optimizers meeting certain criteria perform
the same on average if the sample of test functions over which their per-
formance is averaged is large enough. In other words, if algorithm A out-
performs algorithm B on one test bed, then there will be another test bed
on which algorithm B outperforms algorithm A by a similar margin. For
example, in the 1st ICEO, an optimizer specifically designed for separable
functions won because the contest functions were separable. If the contest
functions had been non-separable, this same method would have per-
formed dismally and the second place method based on Latin squares
might have won. If the test functions had been both high-dimensional and
non-separable, the third place DE algorithm might have won because high-
dimensional Latin squares are computationally expensive. Even when test-
ing versions of DE, no single algorithm always wins.

The NFL theorem assumes that optimizers have no special knowledge
about the objective function, i.e., that they are “black-box” algorithms.
Special knowledge might be that the function is separable, symmetric, uni-
modal, etc. Restated, the NFL theorem says that if one optimizer consis-
tently outperforms another, then it must be using special knowledge about

3.2 Performance Measures 137

the objective functions. This observation has encouraged the development
of memetic algorithms, i.e., EA-based optimizers that include one or more
phases of problem-specific heuristics and local optimization (Moscato
1989).

Although DE begins with no knowledge about an objective function, the
population soon “learns” about the function by distributing itself along the
function’s contours. As the simple experiments with the hyper-ellipsoid in
Sect. 2.6 suggest, a function’s contours contain some of the most useful in-
formation for an optimizer because they usually reveal the best step size
and orientation. DE exploits this knowledge and adapts step sizes accord-
ingly. The question regarding DE’s performance then becomes, “How
prevalent are functions for which contour matching is an effective strat-
egy?” Based on the many objective functions to which DE has been ap-
plied, most practical problems seem to have a structure that contour match-
ing can exploit, even though DE is ultimately no better than a random walk
when averaged over the universe of functions. Of course, knowing how
DE works makes it easy to invent infinitely many functions for which con-
tour matching is counterproductive, but, in practice, contour matching
seems to be far more of a benefit than a drawback. The next section de-
scribes the criteria used in this chapter to measure optimizer performance.

3.2 Performance Measures

There are several ways to measure an algorithm’s performance. The
convergence or progress plot graphs the current best vector’s objective
function value as a function of time, i.e., as a function of the number of ei-
ther generations or function evaluations. Rather than plotting a single
trial’s progress, it is better to conduct a series of trials and then plot the
mean best objective function value. Alternatively, a progress plot can track
the distance of the best-so-far vector from the optimum as a function of
time. For this type of plot, the location of the global optimum must already
be known. Again, the multi-trial average better represents the optimizer’s
performance than does the result of a single trial.

By themselves, progress plots do not give a complete picture of an
optimizer’s abilities. For example, if only one of ten trials becomes stuck
in a local optimum, then the plot of the best vector’s average performance
can make it look as though none of the trials were successful. In practice,
an algorithm’s best performance is often more important than is its average
or worst performance. For example, many design optimizations conduct
multiple trials just to find the best solution possible.

138 3 Benchmarking Differential Evolution

To better estimate an algorithm’s ability to locate the true global opti-
mum, a trial can be classified as a “success” when the best vector’s objec-
tive function value falls below a predetermined limit known as the value-

to-reach, or “VTR”. Trials that do not reach the VTR within a predeter-
mined maximum number of evaluations, Emax, are treated as “failures”.
The VTR must be set low enough so that any vector with an objective
function value that is less than or equal to the VTR falls within the basin of
attraction to which the global minimum belongs. Consequently, this
method is feasible only when a test function’s global optimum is already
known. In addition, this method presumes that once the population begins
to inhabit the basin of attraction occupied by the global optimum, any fur-
ther progress will be easy enough that a local optimizer can be used if need
be. With the VTR and Emax as criteria for success, one can estimate the
speed and the probability with which an optimizer locates the basin of at-
traction to which the global optimum belongs.

Ideally, an optimizer should be both fast and reliable, but high speed and
high probability of convergence are usually conflicting objectives. Forcing
an algorithm to converge more quickly usually increases the odds that it
will prematurely converge. Just as conflicting objectives make it hard to
decide which compromise solution to a multi-objective optimization prob-
lem is best, determining which one of two algorithms performs best, even
on a single function, is difficult because high speed and high reliability are
conflicting performance measures. One algorithm can be fast but unreli-
able, while the other might be very slow, but far more likely to succeed. To
resolve this dilemma, the creators of the 1st ICEO proposed a combined
measure, the “expected number of (function) evaluations per success”, or
ENES. The ENES is the total number of function evaluations taken over t
trials, divided by the number of successful trials, s (Eq. 3.1). In Eq. 3.1, Ek

is the number of objective function evaluations taken by the kth trial.

=

=

>⋅=
tk

k

k s
s 1

0,E
1

ENES .
(3.1)

If no trials are successful, the ENES is not defined.
The total number of function evaluations over t trials has two compo-

nents: the total number of evaluations (up to and including Emax) taken by
successful trials and Emax evaluations for all those trials that end in failure.
Since Emax is manually set, the ENES does not always reflect the true per-
formance of an algorithm. This study resolves the conflict between speed
and reliability by measuring algorithm speed at a constant success prob-
ability. In particular, control parameter combinations are sought that can
produce the lowest average (number of function) evaluations per success

3.3 DE Versus DE 139

(AES) in ten consecutive successful trials. The AES is not explicitly de-
pendent on Emax, but setting Emax too low will prematurely terminate poten-
tially successful trials. On the other hand, comparatively large values for
Emax do not affect the AES like they do the ENES.

In the 2nd ICEO, contestants were allowed to tune their algorithms to
solve each function, but a penalty was imposed based on how diverse the
final set of control parameters was. For example, there was no penalty if a
single set of control parameters was used for each function, whereas using
different control parameter settings for each function incurred the highest
penalty. This study takes a different approach that is based on phase por-
traits, primarily because F, Cr and PF can be limited to the range [0, 1] and
sampled uniformly. If successful random control parameter combinations
are plotted as points, a phase portrait emerges that shows not only which
combinations are effective, but also how difficult it is to find them. By
contrast, the entropy-based diversity measure used in the 2nd ICEO relies
on the skill of a researcher to find an effective set of control parameters
and provides no clues about how hard this decision was for a particular
function.

The next section compares four versions of DE, first using phase por-
traits both to find reliable control parameter combinations and to provide a
measure of an algorithm’s speed, then using progress plots of the mean
best vector’s performance. The progress plots show DE’s time-dependent
behavior and demonstrate that it has no trouble driving objective function
values below the VTR. Together with the control parameter plots, a fairly
clear picture of each algorithm’s strengths and weaknesses emerges.

3.3 DE Versus DE

3.3.1 The Algorithms

This section compares four versions of DE that differ only in how new so-
lutions are generated:

• DE/rand/1/bin (classic DE)
• DE/best/1/bin, with uniform jitter, d = 0.001
• DE/target-to-best/1/bin, K = F

• DE/rand/1/either-or, K = 0.5⋅(F+1)

In this shorthand notation, the first term after “DE” specifies how the base
vector is chosen. For example, “best” means that the base vector is the cur-

140 3 Benchmarking Differential Evolution

rent-best-so-far vector. Similarly, “rand” means that base vectors are ran-
domly chosen, while “target-to-best” means that base vectors are chosen to
lie on the line defined by the target vector and the best-so-far vector. The
number that follows indicates how many vector differences contribute to
the differential. In each case above, only one vector difference is used. The
three DE versions that use uniform crossover are appended with the addi-
tional term “bin” for “binomial” (distribution). The term “either-or” indi-
cates that trial vectors are either three-vector recombinants or randomly
chosen population vectors to which a randomly chosen vector difference
has been added. Pseudo-code for the three versions that use uniform cross-
over appears in Fig. 3.1, while pseudo-code for the DE/rand/1/either-or al-
gorithm is given in Fig. 3.2. In all four versions, base, target and difference
vector indices are all distinct.

 ...
 for (j=0; j<D; j++)
 {
 if (randj(0,1)<=Cr or j==jrand)

 {
 if (DE/rand/1/bin; classic DE)
 {
 uj,i=xj,r0+F*(xj,r1-xj,r2);

 }
 if (DE/best/1/bin, uniform jitter, d=0.001)
 {
 Fj=F+0.001*(randj(0,1)-0.5);

 uj,i=xj,best+Fj*(xj,r1-xj,r2);

 }
 if (DE/target-to-best/1/bin, K=F)
 {
 uj,i=xj,i+F*(xj,best-xj,i)+F*(xj,r1-xj,r2);

 }
 }
 else uj,i=xj,i;

 }
 ...

Fig. 3.1. The generating loop for DE/rand/1/bin, DE/best/1/bin (with uniform jit-
ter) and DE/target-to-best/1/bin. In each case, base, difference and target indices
are distinct (not shown).

3.3 DE Versus DE 141

 ...
 if (randi(0,1)<PF)

 {
 for (j=0; j<D; j++)
 {

ui=xr0+F*(xr1-xr2);

 }
 }
 else
 {
 for (j=0; j<D; j++)
 {

ui=xr0+0.5*(F+1)*(xr1+xr2-2*xr0);

 }
 }
 ...

Fig. 3.2. Pseudo-code for the generating loop for the DE/rand/1/either-or algo-
rithm used in these experiments

Each algorithm is initialized with a uniformly distributed random popu-
lation that is restricted to a region of the search space by a set of initial pa-
rameter bounds that is provided along with each function. Once the opti-
mization begins, however, bounds are not enforced. In addition, all four
algorithms employ classic DE selection.

To be fair, each algorithm is permitted two control parameters, either F
and Cr, or F and PF, in addition to Np. To comply with this restriction, K =
F in DE/target-to-best/1/bin and K = 0.5⋅(F + 1) in DE/rand/1/either-or.
Both values have some limited empirical support. In DE/target-to-
best/1/bin, increasing F as the base point approaches the best-so-far vector
helps counteract the increased convergence pressure that relying on the
best-so-far vector creates. Evidence for the validity of the relation K =
0.5⋅(F + 1) is visible in the phase portraits for DE/rand/1/either-or in
Sect. 3.3.3 where it can be seen that the left side of the distribution of
points representing effective control parameter combinations is usually
vertical. Deviations from this relation between F and K cause the left side
of the distribution to slope in phase portraits for DE/rand/1/either-or.

142 3 Benchmarking Differential Evolution

3.3.2 The Test Bed

Table 3.1 shows that the test bed chosen for this chapter consists of two
uni-modal and eight multi-modal, unconstrained functions. Using uncon-
strained test functions helps simplify the comparison because there are no
bound resetting methods or constraint handling techniques to complicate
the analysis. Functions are formally defined in the Appendix, as are several
additional functions that are available for experimentation with the soft-
ware that accompanies this book. In addition, the Appendix also lists each
function’s optimal value, f(x*), and a value for ε such that VTR = f(x*) + ε.
The Appendix also lists initial parameter bounds for each function.

Table 3.1. Test bed functions

Function D Modality Separable? Comments
Hyper-ellipsoid 10 uni-modal yes hard when rotated

Rosenbrock 10 uni-modal no a 2nd ICEO function
Ackley 10 multi-modal yes common in literature

Chebyshev 9 multi-modal no a 2nd ICEO function
Griewangk 10 multi-modal no gets easier at high D
Rastrigin 10 multi-modal yes highly multi-modal

Mod. Langerman 10 multi-modal no a 2nd ICEO function
Shekel 10 multi-modal yes a 2nd ICEO function
Whitley 10 multi-modal no Whitley’s F8F2

Lennard-Jones 15 multi-modal no many-body problem

To ensure that all test functions exhibit parameter dependence, all trial
vectors are evaluated in a coordinate system that is rotated 45° with respect
to the coordinate system in which the functions are defined. In two dimen-
sions, the rotation routine aligns the +x0 axis to the diagonal between the
+x0 and +x1 axes. In three dimensions, the +x0 axis is rotated to align with
the diagonal that lies between the +x0, +x1 and +x2 axes, and so on for
higher dimensions. This technique for transforming separable functions
into parameter-dependent ones was pioneered by Ralf Salomon and is de-
scribed in Salomon (1996). The next subsection presents a series of phase
portraits to show which algorithms and control parameter settings are ef-
fective on these test bed functions.

3.3.3 Phase Portraits

To create a phase portrait, the two-dimensional control space (excluding
Np) for each algorithm was subdivided into a ten-by-ten grid and ten
points were randomly chosen from within each grid square. A point was

3.3 DE Versus DE 143

plotted if the trial using the corresponding pair of control parameters was
successful. This is the same technique that was explored in Sect. 2.6.4. The
resulting distribution of points shows which control parameter combina-
tions are effective on a particular function for a given DE version with the
given Np. Figure 3.3 presents an example plot of the control parameter
combinations that were effective for solving the ten-dimensional hyper-
ellipsoid with DE/rand/1/bin.

DE/rand/1/bin

Np=50, Z=0.206

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

Fig. 3.3. A phase portrait for DE/rand/1/bin with points showing the control pa-
rameter combinations of F and Cr that were effective on the ten-dimensional ro-
tated hyper-ellipsoid with Np = 50

The best control parameter settings are taken to be the coordinates of the
center of the grid square with the lowest average number of function
evaluations per success, or AES, for which all ten trials were successful (P
= 1). A successful trial is one in which the objective function value of the
current best vector becomes less than or equal to the VTR in less than or
equal to Emax function evaluations. The title of Fig. 3.3 reports the DE ver-
sion, Np (= 50) and Z (= 0.206), the fraction of all 1000 trials that were
successful. This fraction measures how hard it is to find an effective set of
control parameters for a given function–algorithm combination.

Ideally, finding the population size best suited for a given algorithm–
function combination would allow an algorithm’s very best performance to
be determined. Because of the high computational effort of an exhaustive
search for the optimal Np, this study explored algorithmic performance at a
preset series of population sizes: Np = 50, 100, 200, 400, 800 and 1600.
The population size ultimately chosen for a phase portrait is the one that
gives the lowest AES when all ten randomly chosen control parameter
combinations from a single grid square are successful. If no grid square

144 3 Benchmarking Differential Evolution

produces ten consecutive trials for any Np ≤ 1600, the AES and Np of the
grid square giving the highest convergence probability, P, is used. If two or
more grid squares have the same maximum probability, P < 1, then the Np

of the square with the lowest AES is chosen for the plot. Table 3.2 summa-
rizes the AES for each algorithm–function combination.

DE/rand/1/bin

Np=50, Z=0.206

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=50, Z=0.308

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=50, Z=0.271

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=50, Z=0.465

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.4. Phase portraits for the ten-dimensional rotated hyper-ellipsoid

Ten-Dimensional Rotated Hyper-Ellipsoid

Each trial for this problem was limited to 200,000 objective function
evaluations. Each algorithm produced its lowest AES at Np = 50. At this
population size, DE/target-to-best/1/bin gave the fastest performance,
while DE/rand/1/either-or had the most robust control space (Z = 0.465).

3.3 DE Versus DE 145

In each case, the best F was in the range 0.55 ≤ F ≤ 0.65. For algorithms
using crossover, Cr > 0.4 gave the best results, whereas the choice of PF

for the DE/rand/1/either-or algorithm was almost arbitrary when F > 0.5.

Ten-Dimensional Rotated Rosenbrock

Each trial was limited to 200,000 objective function evaluations. Once
again, each algorithm performed best at Np = 50. On this function, both
DE/best/1/bin and DE/target-to-best were faster than DE/rand/1/bin and
DE/rand/1/either-or, which took about twice as long. Classic DE had the
most robust control parameter space (Z = 0.345). In each case, the best F
was in the range 0.65 ≤ F ≤ 0.75. For algorithms using crossover, Cr > 0.5
was critical, while the choice for PF was not important when F > 0.6.

DE/rand/1/bin

Np=50, Z=0.164

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=50, Z=0.207

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=50, Z=0.176

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=50, Z=0.345

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.5. Phase portraits for the ten-dimensional rotated Rosenbrock function

146 3 Benchmarking Differential Evolution

Ten-Dimensional Rotated Ackley

Even when rotated, the Ackley function proved to be very easy to solve.
Once again, all four algorithms performed best when Np = 50.
DE/best/1/bin was a little faster than DE/target-to-best/1/bin and about
twice as fast as DE/rand/1/bin and four times faster than DE/rand/1/either-
or. DE/rand/1/bin had the most robust control parameter space (Z = 0.795),
although none of the algorithms was hard to tune for this function. The
best F fell in the range 0.25 ≤ F ≤ 0.55. Neither Cr nor PF had to be well
chosen when F was in the range 0.5 ≤ F ≤ 1.0. Emax was 200,000 objective
function evaluations.

DE/rand/1/bin

Np=50, Z=0.795

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=50, Z=0.598

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=50, Z=0.647

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=50, Z=0.453

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.6. Phase portraits for the ten-dimensional rotated Ackley function

3.3 DE Versus DE 147

Nine-Dimensional Rotated Storn’s Chebyshev

Because this problem is already parameter dependent, rotation does not
substantially affect DE’s ability to solve it. Again, Np = 50 was more than
large enough to solve this problem. DE/target-to-best/1/bin proved to be
significantly faster than DE/best/1/bin on this function, but both methods
incurred about the same value of Z. The highest Z was posted by
DE/rand/1/either-or (Z = 0.396). The best F at this Np was in the range
0.65 ≤ F ≤ 0.75. For algorithms using crossover, Cr had to be above about
0.5 while PF was arbitrary when F > 0.6. Emax was 200,000 objective func-
tion evaluations.

DE/rand/1/bin

Np=50, Z=0.091

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=50, Z=0.165

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=50, Z=0.157

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=50, Z=0.396

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.7. Phase portraits for the nine-dimensional rotated Storn’s Chebyshev func-
tion

148 3 Benchmarking Differential Evolution

Ten-Dimensional Rotated Griewangk

The ten-dimensional rotated version of Griewangk’s function is the first
problem in this test bed for which Np had to be larger than 50 to produce
regular convergence. Both DE/rand/1/bin (Np = 100) and
DE/rand/1/either-or (Np = 200) solved this problem, although
DE/rand/1/either-or was more than ten times as fast and displayed a higher
Z (= 0.133). Even when Np = 1600, neither DE/target-to-best/1/bin nor
DE/best/1/bin could solve this function consistently within 2,000,000 func-
tion evaluations. The best F was relatively small, lying between 0.25 and
0.45. For this function, PF is not arbitrary and a setting that favors three-
point recombination over mutation, e.g., PF < 0.5, is beneficial.

DE/rand/1/bin

Np=100, Z=0.114

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=200, Z=0.002

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=100, Z=0.023

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=200, Z=0.133

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.8. Phase portraits for the ten-dimensional rotated Griewangk function

3.3 DE Versus DE 149

Ten-Dimensional Rotated Rastrigin

Both DE/best/1/bin and DE/target-to-best/1/bin struggled on this highly
multi-modal function, posting Z = 0.001 and Z = 0.003, respectively. The
AES for these two methods was also very high. DE/rand/1/bin was also
unable to achieve regular convergence (Z = 0.006). By contrast, access to
the three-point recombination axis lets DE/rand/1/either-or find solutions
with regularity as long as PF < 0.5 and 0.2 <F <0.4. At Np = 400, F = 0.35
was the best scale factor for DE/rand/1/either-or. Emax was 2,000,000 ob-
jective function evaluations.

DE/rand/1/bin

Np=400, Z=0.006

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=100, Z=0.001

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=200, Z=0.003

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=400, Z=0.082

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.9. Phase portraits for the ten-dimensional rotated Rastrigin function

150 3 Benchmarking Differential Evolution

Ten-Dimensional Rotated Modified Langerman

None of the four methods had any difficulty with this 2nd ICEO function.
DE/rand/1/best was faster by virtue of its ability to use a smaller popula-
tion (Np = 50) than could the other three methods (Np = 100), yet it also
had the highest Z (= 0.415). Compared to the other three algorithms,
DE/rand/1/either-or needed a higher F (= 0.75) and required about five
times more objective function evaluations than did DE/rand/1/bin. Neither
Cr nor PF had to be chosen with care as long as F was in the right range.
Emax was 2,000,000 objective function evaluations.

DE/rand/1/bin

Np=50, Z=0.514

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=100, Z=0.245

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=100, Z=0.296

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=100, Z=0.320

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.10. Phase portraits for the ten-dimensional rotated Modified Langerman
function

3.3 DE Versus DE 151

DE/rand/1/bin

Np=800, Z=0.039

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=1600, Z=0.020

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F
C

r

DE/target-to-best/1/bin

Np=400, Z=0.008

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=400, Z=0.178

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.11. Phase portraits for the ten-dimensional rotated Shekel’s foxholes func-
tion

Ten-Dimensional Rotated Shekel’s Foxholes

Like the rotated Rastrigin and Griewangk functions, the rotated Shekel’s
foxholes function also proved to be very hard for both methods that rely on
the best-so-far vector. Neither DE/best/1/bin nor DE/target-to-best/1/bin
was able to produce regular convergence in 2,000,000 function evaluations
or with Np ≤ 1600. Classic DE was more successful, achieving nine con-
secutive successes when Np = 800, F = 0.95, Cr = 0.95. By contrast, Np =
400 provided the either-or algorithm with enough diversity to solve this
problem with regularity. Unlike the rotated Griewangk and Rastrigin func-

152 3 Benchmarking Differential Evolution

tions that favored recombination (PF < 0.5), the plot for DE/rand/1/either-
or shows that preferentially searching the mutation axis (PF > 0.5) is a bet-
ter strategy.

DE/rand/1/bin

Np=200, Z=0.112

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=800, Z=0.023

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=400, Z=0.040

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=200, Z=0.554

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.12. Phase portraits for the ten-dimensional rotated Whitley function

Ten-Dimensional Rotated Whitley

This function is a composite of the one-dimensional Griewangk function
and the ten-dimensional generalized Rosenbrock function. Its large-scale
structure resembles Rosenbrock’s function, while at a small scale, it dis-
plays a myriad of local optima due to the contribution from Griewangk’s
function. All methods achieved some level of success, but only
DE/rand/1/bin and DE/rand/1/either-or could produce ten consecutive tri-

3.3 DE Versus DE 153

als. DE/rand/1/either-or was not only the fastest algorithm, but also the
most robust (Z = 0.544). Emax was 2,000,000 objective function evalua-
tions.

DE/rand/1/bin

Np=50, Z=0.272

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/best/1/bin

Np=50, Z=0.392

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/target-to-best/1/bin

Np=50, Z=0.498

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

C
r

DE/rand/1/either-or

Np=50, Z=0.373

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

F

P
F

Fig. 3.13. Phase portraits of the fifteen-dimensional rotated Lennard-Jones func-
tion

Fifteen-Dimensional Lennard-Jones

This problem asks for the optimal arrangement of five atoms of the hypo-
thetical “Lennard-Jonesium” in three-dimensional space. The optimal ar-
rangement for three atoms is an equilateral triangle, while the minimum
“energy” configuration for four atoms is a tetrahedron. Although this is a
highly parameter-dependent “many-body” problem, none of the algorithms
had difficulty finding solutions with Np = 50. Emax was limited to

154 3 Benchmarking Differential Evolution

2,000,000 objective function evaluations, although this proved to be un-
necessarily high. Like the scale factor values reported in other cluster op-
timization studies with DE, F could be very small (except in conjunction
with DE/rand/1/either-or) and still be effective. DE/best/1/bin proved to be
the fastest of the four methods, while DE/target-to-best/1/bin had the most
robust control space (Z = 0.498).

3.3.4 Summary

Table 3.2 summarizes the AES for each algorithm–function combination.
The best results are highlighted in bold. If values are in italic, then not all
trials were successful and the number of successful trials (< 10) appears in
parentheses. The performance of the three methods that rely on crossover
exemplifies the tradeoff between speed and reliability. Both DE/best/1/bin
and DE/target-to-best/1/bin were usually faster than DE/rand/1/bin, but
DE/rand/1/bin was more reliable, failing only on Rastrigin’s function and
to a lesser degree on Shekel’s function.

DE/rand/1/either-or’s performance stands out as being both fast and re-
liable. It was the only method that could solve each function ten times in
succession. When comparing results of equal reliability (P = 1), it was also
the fastest method in four cases.

Table 3.2. The AES for each of the four DE versions

Function Rand Best Target-to-best Either-or
Hyper-ellipsoid 19,531.2 12,225.4 10,755.8 13,612.3

Rosenbrock 44,292.1 20,896.6 21,262.2 46,614.3
Ackley 11,581.3 5,394.6 6,074.9 20,050.6

Chebyshev 44,142.4 18,332.9 12,952 27,775.6
Griewangk 22,2795 31,678 (1) 1,139,120 (4) 19,198.7

Rastrigin 421,317 (2) 1,295,790 (1) 1,658,980 (2) 490,648

Mod. Langerman 56,156.6 128,728 122,968 293,159
Shekel 1,205,800 (9) 176,545 (2) 87,404 (2) 710,499

Whitley 177,305 369,544 (4) 453,481 (5) 70,380.8

Lennard-Jones 34,592 10,165.5 21,549.7 59,116.9

Table 3.3 summarizes the Z values for each algorithm–function combi-
nation. The highest Z for each function, highlighted in bold, indicates the
most robust control space. In all but three cases, DE/rand/1/either-or had
the most robust control space. If functions had not been rotated to make
parameters dependent, the methods that rely on crossover would have
posted significantly higher Z values on the (otherwise) separable problems
like Rastrigin’s function.

3.3 DE Versus DE 155

Table 3.4 lists the control parameter settings derived from the phase por-
trait experiments. Settings in italic did not produce ten consecutive trials.
In those cases where settings did produce ten consecutive trials, population
sizes were fairly consistent, never differing by more than a factor of two
(e.g., Modified Langerman and Griewangk functions). The largest popula-
tion required by reliable methods (P = 1) was never more than 400.

Table 3.3. The fraction of 1000 random control parameter combinations that were
successful (Z)

f(x) Rand Best Target-to-best Either-or
Hyper-ellipsoid 0.206 0.308 0.271 0.465

Rosenbrock 0.164 0.207 0.176 0.345

Ackley 0.795 0.598 0.647 0.453
Chebyshev 0.091 0.165 0.157 0.396

Griewangk 0.114 0.002 0.023 0.133

Rastrigin 0.006 0.001 0.003 0.082

Langerman 0.514 0.254 0.296 0.320
Shekel 0.039 0.020 0.008 0.178

Whitley 0.112 0.023 0.040 0.554

Lennard-Jones 0.272 0.392 0.498 0.373
Average 0.2313 0.1970 0.2119 0.3299

Table 3.4. Quasi-optimal control parameter values for each algorithm–function
combination

Rand Best Target-to-best Either-or
f(x)

Np F Cr Np F Cr Np F Cr Np F PF

Helli. 50 0.55 0.95 50 0.65 0.85 50 0.65 0.85 50 0.55 0.35
Ros. 50 0.65 0.95 50 0.75 0.85 50 0.75 0.95 50 0.75 0.05
Ack. 50 0.25 0.55 50 0.45 0.55 50 0.55 0.75 50 0.45 0.45
Cheb. 50 0.65 0.95 50 0.75 0.95 50 0.75 0.95 50 0.65 0.45
Gri. 100 0.25 0.45 200 0.25 0.25 100 0.45 0.45 200 0.25 0.05
Ras. 400 0.15 0.55 100 0.45 0.45 200 0.65 0.95 400 0.35 0.05

Lang. 50 0.45 0.55 100 0.35 0.15 100 0.55 0.15 100 0.75 0.25
Shek. 800 0.95 0.95 1600 0.75 0.65 400 0.85 0.95 400 0.95 0.85
Whit. 200 0.45 0.95 800 0.95 0.95 400 0.85 0.95 200 0.45 0.95
L-J 50 0.45 0.95 50 0.45 0.65 50 0.95 0.95 50 0.95 0.45

When P = 1, the best scale factor ranged from F = 0.25 to F = 0.95. Al-
lowing for the fact that points were randomly chosen within a grid square –
not just sampled at its center as the values in Table 3.4 might suggest – ex-
pands this range to 0.2 < F < 1.0. No one particular range of F seemed to

156 3 Benchmarking Differential Evolution

be favored, which suggests that choosing the right value for the scale fac-
tor may require some effort.

Except for the Modified Langerman and Lennard-Jones functions, Cr

was always greater than 0.4, and Cr = 0.95 was the most common value.
This is to be expected, since Cr must be near 1.0 for the search to remain
efficient when parameters become dependent (Sect. 2.6.2). Table 3.4
shows that PF varies over the full spectrum of values, but it does not show
that in all but two cases (the rotated Rastrigin and Griewangk functions),
the choice of PF was effectively arbitrary if F was chosen from within the
right range.

In summary, the two methods that relied on the best-so-far vector were
clearly faster on the easiest functions, but both became unreliable once the
test functions became highly multi-modal. Not shown in the phase portraits
is the fact that on the most difficult functions, large increases in Np had
relatively little impact on both run times and convergence probabilities for
DE/best/1/bin and DE/target-to-best/1/bin. Similarly, increasing Np did not
always increase Z for these two methods. For example, in the case of the
rotated Griewangk function, DE/best/1/bin never found more than two so-
lutions (Z = 0.002) regardless of whether Np was 100 or 1600.

Classic DE (DE/rand/1/bin) was slower, but more robust than the two
methods that relied on the best-so-far vector. This tradeoff reflects the
usual condition in which speed and probability of convergence are con-
flicting objectives. The only function that posed a significant challenge to
DE/rand/1/bin was the rotated Rastrigin’s function.

DE/rand/1/either-or was both reliable and fast. In addition, its control
space was very robust and PF seldom had to be chosen with care.
DE/rand/1/either-or performed well when other versions did not because of
its ability to access the three-vector recombination axis. Furthermore, its
rotationally invariant generating scheme keeps the search efficient when
parameters become dependent. The next section examines DE’s perform-
ance on five commonly cited thirty-dimensional test functions to give
some idea of how DE performs compared to other optimizers.

3.4 DE Versus Other Optimizers

This section compares the four algorithms tested in the previous section to
a variety of EAs and classical optimization techniques. In Sect. 3.4.1, DE
is compared to as many as 16 other methods on a set of five, thirty-
dimensional problems. Guidelines for version and control parameter selec-
tion are then given. Section 3.4.2 summarizes the results of four studies

3.4 DE Versus Other Optimizers 157

that compared DE to other optimizers with test beds dominated by uncon-
strained problems. Section 3.4.3 then summarizes the results of four stud-
ies that compared DE to other optimizers in constrained, multi-objective,
mixed-variable and noisy problem domains. Finally, Sect. 3.4.4 presents a
series of results comparing DE with other optimizers on real-world appli-
cations.

3.4.1 Comparative Performance: Thirty-Dimensional Functions

This subsection compares DE’s performance to that of 16 other optimizers
using a test bed composed of five commonly cited thirty-dimensional test
functions. Included in the test bed are the Rosenbrock, Ackley, Griewangk,
Rastrigin and Schwefel functions. None of these functions are rotated and
all but Rosenbrock (uni-modal) and Griewangk (multi-modal) are separa-
ble. The Schwefel function is unique in this group because it is bound con-
strained. Function descriptions are given in the Appendix.

Table 3.5 lists the EAs cited in these comparisons. Among the compet-
ing optimizers are four genetic algorithms, (GAs), three evolution strate-
gies (ESs), three versions of evolutionary programming (EP), three particle
swarm optimization (PSO) algorithms, a simple evolutionary algorithm
(SEA) and the evolutionary optimization (EO) algorithm.

Instead of reporting the number of objective function evaluations that an
optimizer needs to reach the VTR, most published results simply state the
mean best value after Emax function evaluations. Even though not all stud-
ies use the same termination criteria or the same Emax, their results can be
plotted as points on a progress plot of the mean objective function value.
To this end, Figs. 3.14–3.18 plot the published results for the algorithms
listed in Table 3.5. Not all studies provided results for all five, thirty-
dimensional test functions, although most did. In addition, results for the
HTGA, StGA and OGA are not plotted for technical reasons. Instead, re-
sults for those three GAs are reported in Table 3.7.

The five progress plots also chart DE’s performance as the ten-trial av-
erage of the best-so-far vector’s objective function value sampled at regu-
lar intervals. Plots are provided for each of the four versions of DE exam-
ined in the previous section. These DE performance curves are plotted as
either dotted, dashed, or dash-dot lines, while the VTR is plotted as a solid
horizontal line. Table 3.6 lists the control parameter settings used to gener-
ate the DE progress plots in Figs. 3.14–3.18.

158 3 Benchmarking Differential Evolution

Table 3.5. Methods used for comparison

Symbol Method Reference

ALEP
Evolutionary programming with

adaptive Levy mutations
(Lee and Yao 2004)

arPSO
Attractive and repulsive

particle swarm optimization
(Vesterstrøm and
Thomsen 2004)

CCGA
Cooperative co-evolutionary

genetic algorithm
(van den Bergh and
Englebrecht 2004)

CEP Classical evolutionary programming (Yao et al. 1999)

CEP/AM
Conventional evolutionary
programming with adaptive

mutations (b = 1.0×10-4)
(Chellapilla 1998)

CES Classical evolution strategies (Yao and Liu 1997)

CPSO-S6
Cooperative particle swarm

optimization (S6)
(van den Bergh and
Englebrecht 2004)

EO Evolutionary optimization (Angeline 1998)

FEP Fast evolution programming (Yao et al. 1999)

FES Fast evolutionary strategies (Yao and Liu 1997)

HTGA Hybrid Taguchi-genetic algorithm (Tsai et al. 2004)
OGA Orthogonal genetic algorithm (Leung and Wang 2001)

PSO Particle swarm optimization (Angeline 1998)

QEA/R
Quantum evolutionary algorithm

with rotation
(Han and Kim 2004)

SEA Simple evolutionary algorithm
(Vesterstrøm and
Thomsen 2004)

StGA Stochastic genetic algorithm (Tu and Lu 2004)

Table 3.6. DE settings for data plotted in Figs. 3.14–3.18

Rand Best Target-to-best Either-or
f(x)

Np F Cr Np F Cr Np F Cr Np F PF

Ros. 50 0.75 0.95 400 0.75 0.95 100 0.75 0.95 150 0.75 0.5
Ack. 50 0.5 0.2 50 0.5 0.2 50 0.5 0.2 250 0.5 0.5
Gri. 50 0.5 0.2 500 0.5 0.2 100 0.5 0.2 300 0.5 0.0
Ras. 50 0.5 0.2 800 0.5 0.2 100 0.5 0.2 800 0.35 0.0
Sch. 50 0.5 0.2 300 0.8 0.2 200 0.9 0.2 400 0.7 0.5

3.4 DE Versus Other Optimizers 159

30-D Rosenbrock

1.00E-09

1.00E-06

1.00E-03

1.00E+00

1.00E+03

1.00E+06

0 1000000 2000000 3000000

function evaluations

fu
n

c
ti

o
n

 v
a

lu
e

rand best target-to-best

either-or VTR ALEP

arPSO CCGA CEP

CEP/AM CES CPSO-S6

EO FEP FES

PSO QEA/R SEA

Fig. 3.14. Progress plot of the mean best value for the (unrotated) thirty-
dimensional Rosenbrock function

Thirty-Dimensional Rosenbrock

As Fig. 3.14 shows, none of the four DE algorithms had any difficulty
solving this parameter-dependent, uni-modal problem. To overcome this
function’s parameter dependence, Cr had to be set near 1.0. To produce

160 3 Benchmarking Differential Evolution

regular convergence, F had to be set to at least 0.75 when Np = 50. Even
though this function is uni-modal, none of the other algorithms drove the
mean best vector’s value below 1.0, let alone below the VTR (= 1.0×10−6).
While CSPO–S6, CCGA and ALEP were all fast, none reached f(x) < 1.4.
The time scale defined by the number of function evaluations taken by
DE/rand/1/either-or to reach the VTR suggests that Emax may have been
too low for algorithms like CES, FES, CEP, FEP QEA/R and CCGA to
reach the VTR.

30-D Ackley

1E-11

1E-06

0.1

10000

0 100000 200000 300000 400000 500000

function evaluations

fu
n

c
ti

o
n

 v
a

lu
e

rand best target-to-best

either-or VTR ALEP

arPSO CCGA CEP

CEP/AMMO CES CPSO-S6

EO n.a. FEP FES

PSO n.a. QEA/R SEA

Fig. 3.15. Progress plot for the (unrotated) thirty-dimensional Ackley function

3.4 DE Versus Other Optimizers 161

Thirty-Dimensional Ackley

Like its ten-dimensional rotated counterpart studied in the previous sec-
tion, Ackley’s function was easily solved by all four versions of DE.
Again, DE/rand/1/either-or was significantly slower than the three versions
of DE that use crossover, but it was still able to reach the VTR
(= 1.0×10−6). Only one other result (arPSO) exceeded the VTR, although
CPSO–S6 came close, posting a mean best value of 1.12×10−6.

30-D Griewangk

1E-11

1E-06

0.1 0 100000 200000 300000 400000 500000

function evaluations

fu
n

c
ti

o
n

 v
a

lu
e

rand best target-to-best

either-or VTR ALEP

arPSO CCGA CEP

CEP/AM n.a. CES CPSO-S6

EO FEP FES

PSO QEA/R SEA

Fig. 3.16. Progress plot for the (unrotated) thirty-dimensional Griewangk function

162 3 Benchmarking Differential Evolution

30-D Rastrigin

1.00E-08

1.00E-06

1.00E-04

1.00E-02

1.00E+00

1.00E+02

0 500000 1000000 1500000

function evaluations

fu
n

c
ti

o
n

 v
a

lu
e

rand best target-to-best

either-or VTR ALEP

arPSO CCGA CEP

CEP/AM n.a. CES CPSO-S6

EO FEP FES

PSO QEA/R SEA

Fig. 3.17. Progress plot for the (unrotated) thirty-dimensional Rastrigin function

Thirty-Dimensional Griewangk

At D = 30, this function is relatively easy to solve because both the number
and complexity of local minima generated by the cosine term decrease as
the dimension increases (Whitley et al. 1996). Despite this, only DE
reached the VTR (= 1.0×10−6). To be fair, it must be pointed out that the
goal in the other studies cited here was not to reach the VTR, but to find

3.4 DE Versus Other Optimizers 163

the mean best value after Emax generations. Thus it may be that given more
time, some of these other methods may also have reached the VTR.
DE/best/1/bin’s performance was slowed by the fact that it needed a large
population (Np = 500) to produce ten consecutive trials when F = 0.5.

Thirty-Dimensional Rastrigin

This function is characterized by having an enormous number of local
minima. Because Rastrigin’s function is separable, all three DE algorithms
that rely on crossover were successful, although DE/best/1/bin was again
slowed by the need for a high population to avert premature convergence.
None of the other algorithms displayed here reached the VTR (= 1.0×10−6).
Fast evolutionary programming (FEP) gave the best non-DE result (f(x) =
0.046). The DE/rand/1/either-or algorithm struggled on this function, al-
though it did eventually reach the VTR at around 4.6×107 AES (not
shown).

Thirty-Dimensional Schwefel

Not as many studies have reported results for this function, perhaps be-
cause it is bound-constrained. All three versions of DE that rely on cross-
over had no trouble solving this separable function with Cr = 0.2 and F =
0.5. Although the population sizes that produced ten consecutive trials dif-
fered, the progress plots for all three DE versions that use crossover are
virtually indistinguishable. All four DE algorithms used the bounce-back
method to reset out-of-bound trial parameters (see Sect. 4.3.1). As with
Rastrigin’s function, DE/rand/1/either-or could not exploit this function’s
decomposability, although it did eventually converge to the VTR (=
−418.983 + 0.01) with regularity after about 2.0×107 function evaluations.
Several other methods also solved this function, e.g., FES, FEP and
QEA/R.

Several GAs developed for numerical optimization have proven very ef-
fective on this five-function test bed. Except for Schwefel’s function, re-
sults for these GAs could not be graphed along with the other results be-
cause the reported mean best value, f(x) = 0, cannot be plotted on a
logarithmic scale. In the case of Schwefel’s function, all three GAs were
so close to the true optimum that they would have been indistinguishable if
they had been plotted. Instead, both the average number of objective func-
tion evaluations taken and the mean best result for these three GAs are
listed in Table 3.7. Results for Rosenbrock’s function for both the OGA
and HTGA are for D = 100, while all other results are for D = 30. The re-

164 3 Benchmarking Differential Evolution

sults for Schwefel’s function in Table 3.7 have been divided by the func-
tion’s dimension (D = 30) to provide a normalized optimal function value.

30-D Schwefel

-500

-400

-300

-200

-100

0 250000 500000 750000 1000000

function evaluations

fu
n

c
ti

o
n

 v
a

lu
e

rand best target-to-best

either-or VTR ALEP

arPSO CCGA n.a. CEP

CEP/AM n.a. CES CPSO-S6 n.a.

EO n.a. FEP FES

PSO n.a. QEA/R SEA

Fig. 3.18. Progress plot for the (unrotated) thirty-dimensional Schwefel function

Table 3.7. GAs compared

HTGA StGA OGA
f(x)

Evals. Mean Evals. Mean Evals. Mean
Ros. 60,737 0.7 45,000 0.04435 167,863 0.7520

Ack. 16,632 0 10,000 3.52×10−8 112,421 4.4×10−16

Gri. 20,999 0 52,500 2.4×10−17 134,000 0

Ras. 16,267 0 28,500 4.4×10−13 224,710 0

Sch. 16,3468 −418.982 1500 −418.983 302,166 −418.981

3.4 DE Versus Other Optimizers 165

Each of the algorithms in Table 3.7 used a different termination criterion,
making it difficult to provide a comparable DE result. For example, the
OGA terminated trials once the objective function value of the best-so-far
vector was unchanged for fifty generations after the first 1000 generations.
Authors reporting results for the HTGA found the 1000-generation limit
too long and terminated trials once the best result equaled the mean best
result found by the OGA. Trials for the StGA were halted after a preset
number of generations. Table 3.8 lists the number of objective function
evaluations that DE/rand/1/bin took to optimize these functions. Np was
adjusted in increments of five until fifty consecutive trials were successful.
Trials were terminated once the objective function value of the best-so-far
vector reached the VTR. As the steep slopes in Figs. 3.14–3.18 show, DE
very quickly closes in on the optimum once it reaches the VTR. Whatever
extra time it takes DE to drive the value of the mean best vector from the
VTR to the values listed in Table 3.7 (e.g., “0”) increases the number of
function evaluations by only a small percentage.

Although they differed in speed, each GA performed very well on all
but Rosenbrock’s function. Like the versions of DE that use crossover,
these GAs are successful on this test bed in part because they use a low
mutation rate. In each of these three GAs, the probability that a bit was
mutated (inverted) was pm= 0.02. Although parameters in Griewangk’s
functions are mildly dependent, results obtained with DE in Table 3.8
show that a low mutation rate strategy is effective on this function never-
theless.

Table 3.8. The number of evaluations it took DE/rand/1/bin to reach the VTR

f(x) Evaluations VTR NP CR F

Rosenbrock 115,137 1.0×10−6 60 0.9 0.8
Ackley 18,741 1.0×10−6 20 0.2 0.5

Griewangk 14,446.3 1.0×10−6 20 0.2 0.5
Rastrigin 118,936 1.0×10−6 35 0.2 0.5
Schwefel 20,690.7 −418.982 45 0.2 0.5

The three GAs’ inability to solve the simple uni-modal Rosenbrock
function suggests that their incremental strategy, although effective on
separable functions, would – for the reasons given by Salomon – be less
effective on functions with dependent parameters unless mutations are cor-
related (see Sects. 1.2.3 and 2.6.2).

166 3 Benchmarking Differential Evolution

Selecting Effective Control Parameters: Rules of Thumb

If time and computational effort are not an issue, then either classic DE
(DE/rand/1/bin) or DE/rand/1/either-or will be a good first choice.
DE/rand/1/bin has a proven record of success, whereas DE/rand/1/either-or
– although potentially more effective on parameter-dependent functions –
is new and relatively untested on real-world problems. If the objective
function is known to be separable or if it exhibits a low degree of parame-
ter dependence, then classic DE will be more effective than
DE/rand/1/either-or. While Cr = 0.2 should be the default crossover setting
for separable functions or those that exhibit limited parameter dependence,
Cr = 0.9 or 0.95 will ensure that optimization remains efficient in the pres-
ence of dependent parameters. When Cr = 0.2, F may be as small as 0.3,
but F = 0.5 will be a better first choice. As Cr increases, however, F usu-
ally needs to increase as well. For example, if Cr = 0.9, then F ≥ 0.8 will
be more likely to give regular convergence than will F = 0.5.

Like F, Np may also have to be increased as Cr increases. For example,
when the base vector was randomly chosen, Np = 50 was sufficient to
solve the four, thirty-dimensional functions that used Cr = 0.2. For
DE/rand/1/either-or, however, Cr is implicitly equal to 1 and Np had to be
between 5 and 16 times as large as the populations that were effective
when Cr = 0.2. Setting Np = 5⋅D⋅Cr is usually a good low-end default set-
ting, but for highly multi-modal, parameter-dependent functions, Np may
need to be 10⋅D or higher.

If it is not known whether or not the objective function is decomposable,
or if a low-Cr strategy with DE/rand/1/bin fails to give satisfactory results,
then DE/rand/1/either-or is probably the most viable option. Effective val-
ues for F will likely be found in the range (0.3, 1.0). The mutation prob-
ability, PF, will probably not be difficult to choose, although selecting a
good value for PF becomes more important as F grows smaller. In general,
PF = 0.5 seems to be a good, if non-optimal, first choice. For
DE/rand/1/either-or, Np will be about the same size as that required by
DE/rand/1/bin when Cr = 1. While Np = 5⋅D may be adequate for simple
functions, populations of 10⋅D or larger may be required to achieve regular
convergence on highly multi-modal, parameter-dependent functions.

If the objective function is not highly multi-modal and if function
evaluations are very time-consuming, then DE/best/1/bin with a small
amount of jitter may be the best choice. In particular, this method has
proven very effective for designing digital filters. If DE/best/1/bin is cho-
sen, then F and/or Np may have to be relatively large to maintain diversity
and forestall premature convergence. The guidance given for selecting Cr

for classic DE applies here as well: Cr = 0.2 for separable functions or

3.4 DE Versus Other Optimizers 167

those that exhibit limited parameter dependence, and Cr = 0.9 or 0.95 oth-
erwise.

As might be expected, DE/target-to-best/1/bin exhibits performance that
is intermediate between that of classic DE and DE/best/1/bin. Performance
would improve if F and K were both independent and well chosen, but this
extra “tuning” further complicates the process of finding an effective set of
control parameters. Similarly, DE/rand/1/either-or would have performed
at least as well as did classic DE on the thirty-dimensional Rastrigin and
Schwefel functions if the target vector were crossed with either a mutant
with probability PF, or a three-vector recombinant with probability 1–PF.

Very small values of F seem particularly effective when searching for
the minimum energy configuration of atoms. This unusual case empha-
sizes that these “rules of thumb” are only intended to serve as guidelines
and that experimenting with control parameter combinations is strongly
encouraged if these general rules do not appear to be effective.

3.4.2 Comparative Studies: Unconstrained Optimization

This section explores four studies that compared DE to a variety of well-
known optimizers. The first paper (Storn and Price 1997) compared DE to
two annealing methods, two EAs and to the method of stochastic differen-
tial equations (Aluffi-Pentini et al. 1985), although the test beds were not
very challenging. The next paper (Ali and Törn 1999) compared DE to
several versions of the controlled random search and to two floating-point
GAs. While the first test bed consisted of unchallenging low-dimensional
problems, the second test bed was substantially more difficult. The third
paper (Vesterstrøm and Thomsen 2004) employed an extensive test bed
consisting of functions having up to 100 dimensions for a comparison of
DE to two versions of the particle swarm optimization algorithm and to a
simple EA. The authors of Paterlini and Krink (2004) also compared DE to
particle swarm optimization and to a floating-point GA. Their test bed was
a set of partitional clustering problems that ranged from easy to difficult.

Storn and Price

In this early study (Storn and Price 1997), the authors compared
DE/rand/1/bin to two annealing methods, two EAs and to the method of
stochastic differential equations (SDE) (Aluffi-Pentini et al. 1987). The
first comparison pitted DE against both the annealed Nelder–Mead algo-
rithm (ANM) (Press et al. 1992) and adaptive simulated annealing (ASA)
(Ingber 1993). Each method, including DE/rand/1/bin, was tuned to give

168 3 Benchmarking Differential Evolution

its best performance. The test bed was a modified De Jong test suite (Storn
and Price 1997) that included Corana’s parabola (D = 4) (Corana et al.
1987), Griewangk’s function (D = 10) (Griewangk 1981), Zimmerman’s
function (a constrained problem) (Zimmermann 1990) and the Chebyshev
polynomial fitting problem (D = 5 and D = 9) (Storn and Price 1997). The
ANM method regularly solved only four of the test bed’s ten functions
(sphere (D = 3), Rosenbrock (D = 2) and step (D = 5) from the modified
De Jong test bed and Zimmerman (D = 2)). Adaptive simulated annealing
did better than ANM, but it could not reach the VTR for either the
Griewangk function or the Chebyshev problems. DE was the only method
to optimize all functions with regularity, i.e., for all twenty trials.

Population sizes for DE/rand/1/bin varied from Np = 5 (sphere (D = 3))
to Np = 100 (Chebyshev (D = 9)). In most cases, 0 ≤ Cr ≤ 0.2, but the best
value for Cr for the Chebyshev, Zimmerman and Rosenbrock functions
was between 0.9 and 1, inclusive. Both the Chebyshev and Rosenbrock
functions have nonlinear terms that give rise to parameter dependence and
Zimmerman’s function has a single nonlinear constraint. Most functions
were solved with F = 0.9, except for the Chebyshev problem (F = 0.6) and
Zimmerman’s problem (F = 0.5).

The second comparison in (Storn and Price 1997) compared DE to the
breeder genetic algorithm (BGA) (Mühlenbein 1993) and an EA with
“soft” genetic operators (EASY) (Voigt 1995). The five-function test bed
included the hyper-ellipsoid (D = 30 and D = 100) (Storn and Price 1997),
Rastrigin (D = 20 and D = 100) (Mühlenbein et al. 1991), Griewangk (D =
20 and D = 100) (Griewangk 1981), Ackley (D = 30 and D = 100) (Ackley
1987) and Katsuura (D = 10 and D = 30) (Katsuura 1991) functions. Per-
formance data for the BGA on the hyper-ellipsoid and Katsuura’s func-
tions was not available, but in all other cases, all 3 methods solved each
version of every function. DE was the fastest method on all but Rastrigin’s
function, which was more quickly optimized by the BGA. Despite the high
dimension of these functions, DE solved them all with population sizes no
larger than Np = 25. In addition, F = 0.5, Cr = 0.1 were used in each case
except for Rastrigin’s function (Cr = 0). DE’s success with small popula-
tion sizes and low values for Cr reflects the fact that all test bed functions
were separable. Consequently, both competing EAs also performed well
because they used low mutation rates, e.g., pm= 1/D in the case of EASY.

In a final study, (Storn and Price 1997) compared DE to the method of
stochastic differential equations (SDE) (Aluffi-Pentini et al. 1985) on a
very simple, fifteen-member test bed composed of functions having from
one to ten dimensions. Both algorithms successfully optimized all test bed
functions, but DE was faster than SDE in every case, often by a factor of
ten or more. The DE control parameter setting Np = 20, F = 0.5, Cr = 0

3.4 DE Versus Other Optimizers 169

was effective in all but two cases. On one non-separable function, Cr was
set to 1 and the population size had to be increased to Np = 30. On another
function, F was set to 1 and Np was raised to Np = 40. Setting F or Cr to
just less than 1 in these two cases would probably have allowed Np to be
smaller, since both F = 1 and Cr = 1 dramatically reduce the number of po-
tential trial vectors.

Ali and Törn

The authors of this study (Ali and Törn 1998) compared four versions of
DE, four versions of the Controlled Random Search (CRS) (Price 1977)
algorithm and two GAs based on the real-coded GA proposed in Hu et al.
(1997). Benchmark functions were organized into two test beds. The first
test bed consisted of nine, relatively simple, low-dimensional test func-
tions, while the second, more difficult test bed included functions devel-
oped for the 2nd International Contest on Evolutionary Optimization.
Optimizers were rated based on both the number of function evaluations,
the total CPU time that they took to reach the VTR and on the fraction of
trials that were successful. Ali and Törn then ranked the algorithms from
best to worst in each of these three categories. On the easy test bed, the
best algorithm depended on which of the three criteria was applied. DE
solved all problems, but versions of the CRS algorithm required fewer
function evaluations and less CPU time than did DE. One of the GAs was
faster than DE in terms of the number of function evaluations, but not
when CPU times were compared.

The roles were reversed, however, when algorithms were compared
based on their rate of success. DE algorithms captured the top five spots
followed by four CRS algorithms in places 6, 8, 9 and 10 with a GA taking
the seventh ranked position. To be fair, the comparisons should have been
conducted at the same probability of success, but this is often difficult to
achieve in practice.

On the second, more difficult test bed, versions of DE were not only
more successful than any CRS or GA algorithm, but also faster. DE algo-
rithms took the first three spots in each category, requiring fewer evalua-
tions, less CPU time and achieving a greater rate of success than the com-
peting algorithms. The very best performing versions on this test bed were
two of the modified DE algorithms proposed in Ali and Törn (1998).

Vesterstrøm and Thomsen

The primary focus of this comparison (Vesterstrøm and Thomsen 2004)
was to compare DE (DE/rand/1/exp), a simple evolutionary algorithm

170 3 Benchmarking Differential Evolution

(SEA) (Thomsen 2003) and two particle swarm optimization algorithms
(PSO) (Vesterstrøm and Riget 2002) and (arPSO) (Vesterstrøm and Riget
2002). Results for both the SEA and arPSO are plotted in Figs. 3.14–3.18
in Sect. 3.4.1. The test bed consisted of 23 functions, most of which were
taken from Yao and Liu (1997). In addition, the test bed included two
noisy functions and one whose landscape contained flat plateaus. In all ex-
periments, DE’s control parameter settings were Np = 100, Cr = 0.9 and
F= 0.5. Despite Np and F being smaller than would normally be recom-
mended with D = 30 and Cr = 0.9, DE gave a lower mean value than com-
peting algorithms in 17 of the 23 problems having dimension thirty or less.

DE’s mean best result after 500,000 function evaluations for two of the
six problems for which it was not the best performer differed from the best
performing algorithm (SEA) only beyond the 5th decimal place, e.g.,
–1.03163 for the SEA and –1.03162 for DE. On the thirty-dimensional
versions of both Schwefels’ uni-modal ridge function (Schwefel 1995) and
the one-max problem (Stanhope and Daida 1997), PSO gave a lower mean
best value than did DE, although DE’s final results for these two functions,
2.02×10−8 and 3.85×10−8, respectively, were excellent. Only on two func-
tions did DE show a significant difference from the best result. One of
these was a simple four-dimensional function that caused DE and both
PSO algorithms to stagnate. For a function of such low dimension, it
seems certain that DE would give a better final solution if some control pa-
rameter tuning had been attempted. DE’s other inferior result was a uni-
modal, thirty-dimensional function to which uniformly distributed evalua-
tion noise was added.

Vesterstrøm and Thomsen also explored optimizer performance on a
one hundred-dimensional subset of Yao and Liu’s test bed. For these ex-
periments, Emax was set to 5,000,000 function evaluations. Even without
changing its control parameter settings, DE performed even better than on
the first test bed, posting the lowest or equal mean best value for twelve of
the thirteen functions. The only one hundred-dimensional function on
which DE did not do as well or better than the other algorithms was the
noisy uni-modal function. In general, the authors called DE’s performance
with respect to the optimizers analyzed “outstanding” and judged DE to be
simple, robust, reliable and easy to tune.

Paterlini and Krink

A recent study (Paterlini and Krink 2004) compared the ability of four
optimizers to solve a set of six simulated and four real-world partitional
clustering problems. In addition to DE, the methods evaluated included the
k-means method, random search, a floating-point encoded GA and the

3.4 DE Versus Other Optimizers 171

PSO algorithm. The goal of partitional clustering is to determine the opti-
mal partitioning for a data set, i.e., to maximize the similarities within a
group while minimizing the dissimilarities between different groups. The
GA tested in this comparison used tournament selection, Gaussian muta-
tions and arithmetic crossover. The PSO algorithm was based on the origi-
nal method described in Kennedy and Eberhart (1995), while
DE/rand/1/exp was chosen to represent DE. The random search was not
incremental, but consisted of Emax evaluations of vectors chosen with ran-
dom uniformity from within the search space. DE, PSO and the GA were
all tuned, but the authors noted that both the GA and PSO methods took
“much more time” to tune than did DE.

Data clusters can be defined in many ways and several clustering crite-
ria were explored. For the simplest data sets, all three algorithms reached
the same mean value and the clustering criterion was not an important fac-
tor. The more difficult clustering problems showed the superiority of EAs
over the simple random search and the method of k-means. On these prob-
lems, DE was both the most accurate in terms of mean objective function
value and the most robust in terms of being able to reproduce a result.

DE’s status as an effective algorithm for identifying clusters was rein-
forced by its performance on the four real-world data sets. While all meth-
ods performed well on the simplest problem, DE was better in two cases
and not significantly worse (based on a 95% confidence level) than PSO in
the other. (Both methods found the optimum.) In general, the more diffi-
cult the clustering problem was (e.g., the more overlapping clusters there
were), the better DE performed compared to the competing algorithms.
The authors concluded that DE was “clearly and consistently superior
compared to GAs and PSO for hard clustering problems”.

3.4.3 Performance Comparisons from Other Problem Domains

Multi-Constrained, Nonlinear Optimization

In Lampinen (2002), DE/rand/1/bin was used in conjunction with
Lampinen’s Pareto-dominance inspired selection criterion (Sect. 4.3) to
optimize a set of nonlinear benchmark functions that were subject to mul-
tiple, nonlinear constraints. All functions were taken from the test beds in
Michalewicz and Schoenauer (1996) and Koziel and Michalewicz (1999).
The ten functions studied by Lampinen include one linear objective func-
tion with both linear and nonlinear constraints and one nonlinear objective
function with linear constraints. The remaining eight functions were
nonlinear and subject to one or more nonlinear constraints. In addition,

172 3 Benchmarking Differential Evolution

three functions were subject to equality constraints, e.g., γ (x) = 0, which
Lampinen converted into a pair of inequality constraints: 0.001 ≤ γ (x) and
γ (x) ≤ 0.001.

When compared to a uniform random search, DE found the first feasible
solution between 3% and 99% faster, indicating that Lampinen’s criterion
was effectively guiding the population toward feasible regions. DE’s im-
provement over the random search was the highest for the most difficult
functions. Lampinen then compared DE’s performance to the very best re-
sult reported in Joines and Houck (1994), Koziel and Michalewicz (1999)
and Michalewicz (1995). Lampinen chose to set Cr = 0.9 and F = 0.9 for
all ten problems, but spent some effort tuning the population size because
problems varied in dimension from D = 2 to D = 50. Except for one prob-
lem that required Np = 120, the remaining nine functions were solved us-
ing 15 ≤ Np ≤ 40. In each case, 1000 trials were run to test DE’s reliability.
For all test problems, DE with Lampinen’s criterion found the best-known
solution except in two cases for which DE’s solution was better than the
best previously known solution. In addition, all 1000 trials for each func-
tion found the reported optimum. Precision for the solutions to the three
functions with equality constraints was limited by the tolerance chosen for
converting an equality constraint into two inequality constraints.

Mixed-Variable Optimization

Another study (Lampinen and Zelinka 1999) used a popular test bed of
mechanical design problems to compare DE to ten different optimizers.
The problems are to design a gear train (four integer variables), a pressure
vessel (two discrete and two continuous variables) and a coil spring (one
integer, one discrete and one continuous variable). In addition, each vari-
able in the gear train problem is subject to both upper and lower bound
constraints. The pressure vessel design problem includes six inequality
constraint functions, while the coil spring design is subject to eight ine-
quality constraints. In this early study, constraints were implemented with
traditional penalty functions, not Lampinen’s Pareto-dominance-based se-
lection criterion (Sect. 4.3). A more recent study (Lampinen and Storn
2004) solved the functions in this test bed using Lampinen’s criterion and
compared the results to those reported for twenty other methods.

The popularity of this test bed made it possible to compare DE to a wide
range of optimization methods that included classical approaches, several
genetic algorithms, evolutionary programming (EP), evolution strategies
(ES), simulated annealing (SA) and several unique methods. Of the seven
methods reporting results for the gear train design problem, only DE and
two other methods – the meta-GA (Wu and Chow 1995) and the modified

3.4 DE Versus Other Optimizers 173

GA in Lin et al. (1995) – found the optimal solution. In addition, multiple
runs with DE found the four alternative solutions to this problem.

Variations in the test problem implementations in other studies forced
Lampinen and Zelinka to test DE on three different versions of the pres-
sure vessel design problem. Both Sandgren (1990) and Fu et al. (1991) re-
ported results for Case A, which treats all parameters as continuous. DE’s
solution to Case A was both different and significantly better than those
found by the other two methods, e.g., f(x) = 7,790.588 for Fu et al. and f(x)
= 7,019.031 for DE. Case B of the pressure vessel design problem was
formulated according the original problem statement. Four algorithms re-
ported results for this version and DE once again produced the best result.
The sequential linearization algorithm in (Loh and Papalambros 1991)
gave a result that was almost as good, but one of their published parameter
values violates a constraint. Case C was investigated so that DE could be
compared to several algorithms that used a different numerical value in
one of the constraint functions. Once this adjustment was taken into ac-
count, DE once again gave the best result (f(x) = 7,006.358). The two-level
parallel ES (Thierauf and Cai 1997) gave a result that was almost as good
(f(x) = 7,006.9), but neither of the other two methods (Li and Chow 1994;
Cao and Wu 1997) were competitive.

The coil spring problem also had both continuous and mixed-variable
versions. In the continuous case, DE improved on Sandgren’s value of
2.6353 by posting an objective function value of 2.61388. DE also re-
turned the best result on the mixed-variable version of the coil spring prob-
lem, beating the best result reported by Sandgren and two other methods
(Chen and Tsao 1993; Wu and Chow 1995).

Multi-Objective Optimization

Kukkonen and Lampinen (Kukkonen and Lampinen 2004) compared DE
with other optimizers on multi-objective benchmark functions. In addition
to DE, the comparison included the non-denominated sorting genetic algo-
rithm (NSGA–II) (Deb et al. 2002) and the strength Pareto evolutionary
algorithm (SPEA) (Zitzler and Thiele 1999). In particular, NSGA–II was
chosen for its good performance in previously published tests (Deb et al.
2002). Two versions of DE were tested. Generalized differential evolution
(GDE) uses a Pareto-based selection criterion for handing constraints and
multiple objectives (see Sect. 4.6). GDE2 adds a mechanism to improve
the extent and diversity of GDE’s approximation to the Pareto-front.

The test bed was composed of five, bi-objective benchmark functions
described in Zitzler et al. (2000). For all test problems, the DE control pa-
rameter settings were Np = 100, Cr = 0.05 and F = 0.1. Control parameter

174 3 Benchmarking Differential Evolution

values for both F and Cr were determined by preliminary testing with val-
ues from the set {0.05, 0.1, 0.2, 0.3, 0.4}. The authors report that values
for F outside this range tended to result in rapid convergence to a single
point on the Pareto-front. In addition, each of the 100 trials was limited to
250 generations, but NSGA–II and GDE2 used twice as many function
evaluations per generation. Closeness to the Pareto-front was measured by
both an error ratio and by a generational distance. In addition, Kukkonen
and Lampinen also measured diversity in the solutions with spacing,
spread and maximum spread metrics. These metrics were applied to both
versions of GDE and NSGA–II, but results for the SPEA were plotted for
visual reference only.

Results showed that GDE gave a good approximation to the Pareto-
front, but that GDE2 improved both the extent and diversity of the solu-
tions. Overall, NSGA–II performed best in most statistical categories on
four of the five benchmark functions, although GDE2 outperformed
NSGA–II on the test function ZDT6 that tests an optimizer’s response to
non-uniformity in the Pareto-front. Despite handling multiple objectives
directly using Pareto-dominant based selection, both versions of DE per-
formed comparably to both NSGA–II and SPEA, although this conclusion
is based on limited experimentation.

Optimizing Noisy Functions

In a comparison with PSO and a simple EA, the authors of Krink et al.
(2004) explored DE/rand/1/exp’s performance on objective functions with
noisy evaluations. The EA used binary tournament selection, two-vector
arithmetic recombination and a Gaussian mutation operator. Control pa-
rameter settings for each algorithm were chosen based on preliminary ex-
periments, but they were not tuned for each problem. In DE’s case, the set-
ting chosen was Np = 50, Cr = 0.8, F = 0.5. The test bed included the
Schaffer (D = 2), sphere (D = 5), Griewangk (D = 50), Rastrigin (D = 50)
and Rosenbrock (D = 50) functions. Trials for the sphere and Schaffer
functions were limited to 100,000 function evaluations, whereas the re-
maining three, fifty-dimensional functions were allowed 500,000 function
evaluations.

For their experiment, the authors first optimized the non-noisy version
of each function, and found that DE outperformed the other two algorithms
when measured by the mean objective function value at Emax function
evaluations. Next, zero-mean Gaussian noise having a variance of 1 was
added to each vector’s objective function value. To minimize the effects of
the noise, trials were conducted in which vectors were reevaluated 1, 5, 20,

3.4 DE Versus Other Optimizers 175

50 and 100 times, with each evaluation contributing to the total allowed
number of function evaluations.

Performance was compared based on the mean value of the final popu-
lation. DE gave the best result for both the noisy Rastrigin and Rosenbrock
functions, but only because both other methods stagnated before reaching
the optimum. Once, however, the variance of the population’s objective
function values were on a par with the variance of the evaluation noise,
DE’s performance was comparable to that of PSO, but not as good as that
of the EA.

Summary

DE was particularly effective when handling constraints directly. In sev-
eral cases, DE found a result that was better than the previously best
known solution, even though functions were defined with mixed variables.
DE was also competitive optimizing functions with multiple objectives us-
ing a simple Pareto-based selection scheme. Functions with added evalua-
tion noise, however, proved to be more difficult for DE than for an EA
with Gaussian mutation. DE dominated the comparison, however, when
noise was absent.

3.4.4 Application-Based Performance Comparisons

Some of the greatest challenges for an optimizer are found in the realm of
real-world applications. Unlike test functions, real-world applications sel-
dom display regularities. Furthermore, noise, constraints, and both mixed
and dependent variables are common in many real-world problems. Practi-
cal applications also offer an opportunity to discover how hard it is for re-
searchers who are not necessarily optimization experts to adapt, implement
and tune an optimizer. As such, real-world applications are a demanding
proving ground for optimizers. Below is a brief survey of studies that have
compared DE to other optimizers on real-world problems. In several cases,
DE is compared to traditional methods that are industry standards.

Multi-Sensor Fusion

In Joshi and Sanderson (1999) and Sect. 7.4 of this book, the authors use
DE to integrate information from both visual and tactile sensors to catego-
rize an object’s shape and determine its orientation (pose). Tactile sensor
data is taken from a robotic hand that grasps the objects, while a camera
records the object’s shape and extracts vertex/edge features. The goal is to
integrate the tactile and visual cues to improve the robot’s ability to ma-

176 3 Benchmarking Differential Evolution

nipulate the object. The authors used a minimum representation size crite-
rion to help select a model for the sensor data. Finding the minimum repre-
sentation involves a tradeoff between model size (number of parameters)
and residual error. In addition, the problem contains both discrete and con-
tinuous variables.

In their study, Joshi and Sanderson compared DE/best/2/bin’s perform-
ance to that of a binary encoded GA that used one-point crossover, a muta-
tion probability of pm= 0.05 and a population size of 100. For DE, the con-
trol parameter settings were Np = 100, Cr = 0.8 and F = 0.8. Settings for
both algorithms were chosen by trial and error to minimize the size of the
representation at the end of the search. When compared to the GA, DE
found a much smaller representation size in less time with fewer evalua-
tions and also showed smaller interpretation errors. Details can be found in
Sect. 7.4 of this book.

Earthquake Relocation

Also appearing in Chap. 7 (Sect. 7.5) is a study by R žek and Kvasni ka
based on R žek and Kvasni ka (2001) in which the authors explored DE’s
ability to find an earthquake’s epicenter from seismographic data recorded
at multiple stations. This four-dimensional inverse problem is hard because
it is nonlinear and, in some cases, multi-modal as well. For their study, the
authors chose DE/rand/1/bin and applied it to problems with both synthetic
and real data. Considerable effort was spent exploring how different con-
trol parameter settings affected DE’s performance. The author’s found that
DE was very robust in this regard and settled on Np = 30, Cr = 0.8, F = 0.5
for all experiments. Tests with synthetic data showed that DE’s results
were reliable, fast and accurate. In addition, adding uniform parameter
noise to synthetic data did not jeopardize DE’s ability to locate the global
optimum. Real-world seismic data from events located in the Gulf of Cor-
inth showed that DE always gave a significantly better result than did the
industry standard HYPO71 location program. Section 7.5 contains details.

Active Compensation in RF-Driven Plasmas

Langmuir probes are a diagnostic tool for measuring the properties of low-
pressure plasma. The act of measurement, however, disturbs the plasma
from its normal state, but if a radio-frequency signal with the right phase,
amplitude and waveform is applied to the probe, these distortions can be
actively cancelled. As a result, plasma used for circuit etching can produce
cleaner shapes. In this study (Sect. 7.12), Zelinka and Nolle used DE to ad-
just fourteen waveform variables to actively compensate for nonlinear in-

3.4 DE Versus Other Optimizers 177

teractions between plasma and a Langmuir probe. After some experimen-
tation, they found the best DE control parameter settings to be Np = 50, Cr

= 0.8, F = 0.5. When compared to simulated annealing, DE’s results were
more precise and more consistent. Consult Sect. 7.12 for more details.

DC Operating Point Analysis for Nonlinear Circuits

Finding a circuit’s quiescent, or DC, operating point is the starting point
for performing other types of circuit analysis. In Crutchley and Zwolinski
(2003), the classical Newton–Raphson (NR) method is compared to two
versions of DE (DE/rand/1/bin and DE/target-to-best/1/bin) and to three
ES algorithms. The versions of the ES algorithm are a (µ + λ)-ES with
standard adaptive mutations (ESA), a (µ + λ)-ES with correlated mutations
(ES) and a tournament selection based ES (TSEA). Neither the ES nor the
TSEA used adaptive mutations. After some experimentation, the authors
chose Np = 10⋅n, Cr = 0.5, F = 0.4 for DE/rand/1/bin and Np = 10⋅n, Cr =
0.3 F = 0.8, K = 0.9 for DE/target-to-best/1/bin, where n is the number of
circuit nodes.

The test bed consisted of nine benchmark circuits, two of which have
multiple solutions. Results included the mean error per node compared to
the Newton–Raphson method (assumed to be the most accurate), the num-
ber of solutions found, the number of generations taken and the CPU time
consumed. DE/rand/1/bin and TSEA showed comparable relative errors in
all but one case, for which TSEA was better. For circuits having a single
solution, TSEA required fewer generations and less CPU time in all but
one case, for which DE/rand/1/bin was faster. Only the two DE algorithms
and ES, however, were able to find multiple solutions in a single run. Al-
though the NR method was by far the fastest method in all cases, it must
be manually reinitialized to find all possible solutions. In brief, the authors
argued that the best algorithms in terms of accuracy, speed and ability to
find multiple solutions were the two versions of DE.

Identifying Induction Motor Parameters

DE’s ability to find optimal parameters for two induction motor models
was examined in Ursem and Vadstrup (2004). One of the models incorpo-
rated nonlinear magnetic saturation effects while the other motor model
did not. In a previous study, eight stochastic search algorithms were tested
on these same problems. The methods previously tested were the steepest
descent local search, simulated annealing, a simple EA, a diversity-guided
EA, ES with simple mutations (ES1), ES with correlated mutations (ES2),

178 3 Benchmarking Differential Evolution

standard PSO and diversity-guided PSO. In this study, DE was compared
to the best of these optimizers – the two ESs and the diversity-guided EA.

DE’s control parameters were tuned by trial and error, with Np = 100,
Cr = 0.5, F = 0.5 being chosen for both problems. The authors noted that
compared to other algorithms, DE’s control parameters required signifi-
cantly fewer trials to “tune”. For the five-dimensional induction motor
problem without magnetic saturation, both DE and DGEA found the “ex-
act” solution for all twenty trials, but DE was three to four times faster
than both DGEA and ES2.

All four algorithms in this study found the exact solution to the five-
dimensional problem more than once, but only DE was able to find the ex-
act result for the eight-dimensional model with magnetic saturation. DE
found the exact result not only for all twenty trials in the original experi-
ment, but also when eighty additional trials were conducted. On this prob-
lem, the ES with correlated mutations (ES2) performed worse than did the
ES with simple mutations (ES1). The authors concluded that DE was ro-
bust, easy to tune, fast, accurate and simple to implement.

Estimation of Heat Transfer Parameters in a Trickle-Bed
Reactor

Trickle-bed (chemical) reactors are widely used in the petroleum industry
and to a lesser extent in the chemical and pharmaceutical industries. Two-
dimensional models have been developed that consist of coupled partial
differential equations of the parabolic type. In Babu and Sastry (1999), the
authors use the method of orthogonal collocation to transform the set of
partial differential equations into a function minimization problem. In a
typical trickle-bed reactor, the heat transfer parameters, effective radial
thermal conductivity and wall-to-bed heat transfer coefficients are un-
known and must be estimated. Once these values have been determined,
the all-important temperature profile of the reactor bed can be numerically
determined. In their experiment, the authors measured the radial tempera-
ture profile in a working trickle-bed reactor and then sought the model’s
parameter values that could reproduce the measured profile. In all, 232
data points were obtained that covered a wide range of flow rates and
packings.

The authors chose DE/target-to-best/1/bin to compete with the classical
radial temperature profile (RTP) method, which uses Powell’s method. DE
control parameters were Np = 20, Cr = 0.9, F = 0.7, K = 0.7. Compared to
the RTP method, DE was two and a half to three times faster and its esti-
mates were much more accurate. In addition, DE was very robust, con-

3.4 DE Versus Other Optimizers 179

verging to the global optimum regardless of the initial population, whereas
the RTP method needed an initial guess close to the solution.

Aerodynamic Optimization

Aerodynamic shape optimization involves finding the most efficient shape
for bodies moving through air. In Rogalski et al. (1999), the authors used
DE/target-to-best/1/bin, the Nelder–Mead downhill simplex algorithm and
simulated annealing to design three fan blades. All three problems were at-
tacked with the inverse method, where the goal is to produce a shape that
exhibits the prescribed surface pressure distribution. The authors used
Bezier curves to model both a blade’s thickness (width) profile and the
camber curve that gives the blade its characteristic arch. Several con-
straints were applied using penalty functions. A program that simulates air-
flow computed the pressure distribution around each proposed shape. The
difference between the computed pressure distribution and the target dis-
tribution was then used to compute an error function based on the L2 norm
that served as an objective function. In all, each problem involved finding
fifteen real-valued coefficients. The control parameters for DE were Np =
150, Cr = 1, F = K = 0.85.

For the first problem, all three optimizers were able to accurately repre-
sent the target shape. In terms of residual error, DE was twice as good as
its nearest competitor, although it took almost fifty times as long to con-
verge. A high-pressure region near the nose of the second fan blade made
finding the target shape more difficult than in the first case. For this second
design problem, DE was again the slowest method, but it was the only one
to accurately model the target shape. Similarly, DE was the only algorithm
of the three to accurately model the third target shape.

Image Registration

Thomas and Vernon. Image registration is a fundamental image-
processing task that matches two or more images. In Thomas and Vernon
(1997), the authors begin their experiment by generating a 255-by-255
pixel target image. The second image is a copy of the first that has been ro-
tated and to which noise has been added to both the x and y coordinates of
each pixel. Control points are identified in each image and the error in
mapping the control points serves as an objective function that must be
minimized.

Control points can also be used to solve a set of simultaneous linear
equations so that a least squared error (LSE) solution can be found. On
data sets generated by the identity transformation with noise, DE matched

180 3 Benchmarking Differential Evolution

the performance of the LSE method exactly. On data sets generated by
nonlinear transformations, LSE was slightly better than DE in four of nine
cases, whereas DE was better in the remaining five. In two of these cases,
DE’s result was significantly better that LSE’s and in each of these two
cases, one parameter value was much larger than that found by LSE (e.g.,
224.72 for DE vs. 2.14 for LSE). DE/rand/1/bin appears to be the method
employed in this study, with Np = 160, F = 0.4. A value for Cr was not
provided.

Salomon et al. In Sect. 7.6, Salomon et al. evaluate DE as a tool for three-
dimensional medical image registration. This study did not consider com-
parative performance, but focused instead on how well DE/target-to-
best/1/bin (called “DE/rand-to-best/1/bin” by the authors) performs when
implemented in parallel. The authors found that DE was not only fast and
accurate, but also scaled almost linearly with the number of processors.
See Sect. 7.6 for details.

Optimization of Carbon and Silicon Cluster Geometry

Ali and Törn. Cluster optimization is a many-body problem that exhibits a
very high degree of parameter interaction. In Ali and Törn (2000), the au-
thors sought the minimum binding energies of both carbon and silicon
clusters consisting of up to fifteen atoms and 39 variables. The binding en-
ergy between atoms was simulated with the Tersoff potential.

DE was modified to include both a derivative-based local optimization
technique and an auxiliary population, Sa, of Np vectors. In this algorithm,
known as topographical DE (TDE), a trial vector that does not improve on
the target vector subsequently competes with the corresponding vector in
Sa. If the trial vector wins this second competition, it replaces the inferior
vector in Sa.

For this series of experiments, the authors chose Np = 10⋅D, but other
DE settings were not provided. For silicon clusters up to six atoms, TDE’s
result could be compared to the best result found by the eight optimizers
studied in Ali et al. (1997). In two of these cases, TDE found even better
minima than the best known values.

Chakraborti. In Sect. 7.1 of this book, N. Chakraborti uses DE to dis-
cover the minimum energy configurations of silicon–hydrogen clusters
whose interactions are based on the “tight-binding” model. When com-
pared to the simple GA and simulated annealing, DE gave an equal or bet-
ter result in all but one case. The author also concluded that DE’s elitist se-
lection criterion was an asset for this type of problem and that DE could

3.4 DE Versus Other Optimizers 181

resolve closely spaced minima without resorting to “niching” strategies.
Consult Sect. 7.1 for additional details.

Optimizing Neural Networks

Fischer et al. In Fischer et al. (1999), the authors use DE to optimize a
neural network (NN) having three inputs, a single hidden layer with a fixed
number of hidden units and a single output unit. Keeping the topology of
the network fixed restricts the problem to one of determining network
weights. To train the network, the authors chose the Austrian inter-regional
telecommunications data set because its multiple local minima are known
to pose a difficult challenge to gradient-based learning algorithms. The ob-
jective function measured the squared error between the network’s output
and the actual training data. The goal was to make good predictions about
the intensity of telecommunications traffic between two locations.

The authors chose DE/best/1/bin, Cr = 1 and experimented with a range
of value for both F and Np. They decided on F = 0.9 for further experi-
ments even though neighboring values were also effective. Values for Np

ranging from 50 to 100 were explored with F = 0.9. The authors found that
increasing Np beyond 200 did not improve the out-of-sample average. Np

= 400 was used for subsequent experiments in which the number of hidden
nodes was varied. A topology with eight hidden nodes proved best. For
comparison, the authors also trained weights with a multi-start, conjugate-
gradient (CG) back-propagation method. Both methods were given the
same time to train the networks, with each DE trial taking as long as six
CG trials. While the CG method showed a better in-sample performance,
DE exhibited statistically better performance in the more important out-of-
sample category.

Plagianakos et al. In Plagianakos et al. (2001), the authors investigated
DE’s ability to train neural networks that use discrete activation functions.
Most NNs use continuous activation functions, like the well-known sig-
moid function, but discrete, e.g., binary activation functions are well suited
for inherently binary tasks. In addition, discrete networks are computation-
ally simple to understand and provide a starting point for investigations
into networks with continuous activation functions. Furthermore, networks
with discrete activation functions are cheaper to implement in hardware.
When the activation function becomes discrete, however, back-
propagation methods that rely on gradients are not effective, so a direct
search algorithm like DE is ideally suited for this problem.

In their investigation, Plagianakos et al. used DE/target-to-best/1/bin,
with F = K, to solve a set of three benchmark problems. No control pa-

182 3 Benchmarking Differential Evolution

rameter settings were reported. Problems included the “exclusive or”
(XOR) classification problem (known to be sensitive to the initial choice
of weights), the three-bit parity problem (hard because members of differ-
ent classes differ by a single bit) and controlling a lathe cutting process.
DE’s results were compared to those found by four other algorithms: GLO
(Gorwin et al. 1994), T (Tom 1990), GZ (Goodman and Zeng 1994) and
MVGA (Magoulas et al. 1997). On the XOR problem, DE was successful
100% of the time, while the nearest competitor (GLO) was successful 84%
of the time. Both DE and GLO did well on the three-bit parity problem,
scoring 100% and 96%, respectively, but the GZ algorithm did not have
any successes. On the lathe control problem, DE (93%) and MVGA (34%)
scored successes. The authors concluded that DE was a promising method
even when compared with other methods that require the gradient ap-
proximations of the error function and train networks by progressively al-
tering the shape of the sigmoid function.

3.5 Summary

The results summarized in this chapter echo several themes. One is that
while DE may not always be the fastest method, it is usually the one that
produces the best result, although the number of cases in which it is also
faster is significant. DE also proves itself to be robust, both in how control
parameters are chosen and in the regularity with which it finds the true op-
timum. In addition, when compared to one-point optimizers like Powell’s
method, DE is relatively immune to differences in initial populations. Be-
cause it is a direct search method, DE is versatile enough to solve prob-
lems whose objective functions lack the analytical description needed to
compute gradients. As a bonus, DE is also very simple to implement and
modify. As these researchers have found, DE is a good first choice when
approaching a new and difficult global optimization problem is defined
with continuous and/or discrete parameters.

References

Ackley DH (1987) A connectionist machine for genetic hillclimbing. Kluwer,
Boston, MA, USA

Ali MM, Törn A (1998) Evolution based global optimization techniques and the
controlled random search algorithm: Proposed modifications and numerical
studies. Submitted to the Journal of Global Optimization, 1998, Kluwer Aca-
demic Publishers, The Netherlands

References 183

Ali MM, Törn A (2000) Optimization of carbon and silicon clusters geometry for
Tersoff potential using differential evolution. In: Floudas CA, Pardalos PM
(eds) Optimization in computational and molecular biology. Kluwer Aca-
demic Publishers pp 1–15

Aluffi-Pentini F, Parisi V, Zirilli F (1985) Global optimization and stochastic dif-
ferential equations. Journal of Optimization and Theory and Applications
47(1):1–16

Angeline PJ (1998) Evolutionary optimization versus particle swarm optimization.
In: Porto VW, Saravanan N, Waagen D, Eiben AE (eds) Evolutionary pro-
gramming VII. Springer, Berlin pp 601–610

Babu BV, Sastry KKN (1999) Estimation of heat transfer parameters in a trickle-
bed reactor using differential evolution and orthogonal collocation. Computers
and Chemical Engineering 23:327–339

Bersini H, Dorigo M, Langerman S, Seront G, Gambardella L (1996) Results of
the first international contest on evolutionary optimization (1st ICEO). In: Pro-
ceedings of the 1996 international conference on evolutionary computation,
Nagoya, Japan, May 20-22. IEEE Press

Cao YJ, Wu QH (1997) Mechanical design optimization by mixed-variable evolu-
tionary programming. In: Proceedings of the 1997 conference on evolutionary
computation. IEEE Press pp 443–446

Chellapilla K (1998) Combining mutation operators in evolutionary programming.
IEEE Transactions on Evolutionary Computation 2:91–96

Chen JL, Tsao YC (1993) Optimal design of machine elements using genetic al-
gorithms. Journal of the Chinese Society of Mechanical Engineers 14(2):193–
199

Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing multimodal func-
tions for continuous variables with the “simulated annealing algorithm”. ACM
Transactions on Mathematical Software, March 1987, pp 272–280

Crutchley DA, Zwolinski M (2003) Globally convergent algorithms for DC oper-
ating point analysis for nonlinear circuits. IEEE Transactions on Evolutionary
Computation 7(1):2–10

Deb K, Pratap A, Agarwal S, Meyarivan T (2002) A fast and elitist multi-
objective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation 6:182–197

Fischer MM, Reismann M, Hlavackova-Schindler K (1999) Parameter estimation
in neural spatial interaction modelling by a derivative free global optimization
method. In: Proceedings of IV international conference on geocomputation,
Mary Washington College, Fredericksburg, VA, USA, July 25–28, 1999
Available via Internet:

 http://www.geovista.psu.edu/sites/geocomp99/Gc99/007/gc_007.htm
Fu J-F, Fenton RG, Cleghorn WL (1991) A mixed integer-discrete-continuous

programming method and its application to engineering design optimization.
Engineering Optimization 17(4):263–280

Goodman R, Zeng Z (1994) A learning algorithm for multi-layer perceptrons with
hard-limiting threshold units. In: Proceedings of the IEEE Neural Networks
for Signal Processing, pp 219–228

184 3 Benchmarking Differential Evolution

Gorwin EM, Logar AM, Oldham WJB (1994) An iterative method for training
multilayer networks with threshold functions. IEEE Transactions on Neural
Networks 5:507–508

Griewangk AO (1981) Generalized descent for global optimization. JOTA 34:11–
39

Han K-H, Kim J-H (2004) Quantum-inspired evolutionary algorithms with a new
termination criterion, Hε gate, and two-phase scheme. IEEE transactions on
Evolutionary Computation 8(2):156–169

Hu YF, Mcguire KC, Cokljat D, Blake RJ (1997) Parallel controlled random
search algorithms for shape optimization. In: Emerson DR, Ecer A, Periaux J,
Satofuka N (eds) Parallel computational fluid dynamics. North-Holland, pp
345–352

Ingber L (1993) Simulated annealing: Practice versus theory. Journal of Mathe-
matical and Computer Modeling 18(11):29–57

Joines JA, Houck CR (1994) On the use of non-stationary penalty functions to
solve nonlinear constrained optimization problems. In: Proceedings of the first
IEEE conference on evolutionary computation, June 27–29. IEEE Press vol 2,
pp 579–584

Joshi R, Sanderson AC (1999) Minimal representation multisensor fusion using
differential evolution. IEEE Transactions on systems, man and cybernetics –
part A: Systems and Humans 29(1):63–76

Katsuura H (1991) Continuous nowhere differential functions – an application of
contraction mappings. The American Mathematical Monthly 5(98)

Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: Proceedings of
the 1995 IEEE international conference on neural networks, 4. IEEE Press,
Piscataway, NJ, USA pp 1942–1948

Krink T, Filipie B, Fogel GB (2004) Noisy optimization problems – a particular
challenge for differential evolution? In: Proceedings of the 2004 Congress on
evolutionary computation vol 1, pp 332–339

Kozeil S, Michalewicz Z (1999) Evolutionary algorithms, homomorphous map-
pings and constrained parameter optimization. Evolutionary Computation
7(1):19–44

Kukkonen S, Lampinen J (2004) An extension of generalized differential evolu-
tion for multi-objective optimization with constraints. In: Proceedings of
PPSN 2004, the 8th International conference on parallel problem solving from
nature, September 18–22 2004, Birmingham, UK, pp 752–761. Springer,
ISBN: 3-540-23092-0

Lampinen J (2002). A constraint handling approach for the differential evolution
algorithm. In: Proceedings of the 2002 IEEE world congress on computational
intelligence – WCCI 2002, 2002 Congress on evolutionary computation –
CEC 2002, Honolulu, Hawaii, May 12-17, 2002. IEEE Press, 6 pages. ISBN
0-7803-7281-6

Lampinen J, Storn R (2004) Differential evolution. In: Onwubolu GC, Babu BV
(eds) New optimization techniques in engineering. Studies in fuzziness and
soft computing, vol 141, Chapter 6. Springer, pp 123–166. ISBN 3-540-
20167-X

References 185

Lampinen J, Zelinka I (1999) Mechanical engineering design optimization by dif-
ferential evolution. In: Corne D, Dorigo M, Glover F (eds) New ideas in op-
timization. McGraw-Hill, Maidenhead, UK pp 127–146

Lee C-Y, Yao X (2004) Evolutionary programming using mutations based on the
Levy probability distribution. IEEE Transactions on Evolutionary Computa-
tion 8(1):1–13

Li HL, Chow CT (1994) A global approach for nonlinear mixed discrete pro-
gramming in design optimization. Engineering Optimization 22:109–122

Leung Y-W, Wang Y (2001) An orthogonal genetic algorithm with quantization
for global numerical optimization. IEEE Transactions on Evolutionary Com-
putation 5(1):41–53

Lin SS, Zhang C, Wang H–P (1995) On mixed-discrete nonlinear optimization
problems: A comparative study. Engineering Optimization 23(4):287–300

Loh HT, Papalambros PY (1991) A sequential linearization approach for solving
mixed-discrete nonlinear design optimization problems. Transactions of the
ASME, Journal of Mechanical Design 113(3):325–334

Loh HT, Paplambros PY (1991a) Computational implementation and tests of a se-
quential linearization algorithm for mixed-discrete nonlinear design optimiza-
tion. Transactions of the ASME, Journal of Mechanical Design 113(3):335–
345

Margoulas GD, Vrahatis MN, Grapsa TN, Androulackis GS (1997) A training
method for discrete multilayer neural networks. In: Ellacot SW, Mason JC,
Anderson IJ (eds) Mathematics of neural networks: Models, algorithms and
applications, chapter 41. Kluwer Academic Publishers

Michalewicz Z (1995) Genetic algorithms, numerical optimization and constraints.
In: Proceedings of the sixth international conference on genetic algorithms,
Pittsburgh, July 15–19 pp 151–158

Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained pa-
rameter optimization problems. Evolutionary Computation 4(1):1–32

Moscato PA (1989) On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Technical report, Caltech concur-
rent computation program report 826, Caltech, Pasadena, California

Mühlenbein H, Scomisch D, Born J (1991) The parallel genetic algorithm as func-
tion optimizer. Parallel Computing 17:619–632

Mühlenbein H, Schlierkamp-Vosen D (1993) Predictive models for the breeder
genetic algorithm, I. Continuous parameter optimization. Evolutionary Com-
putation 1(1):25–49

Paterlini S, Krink T (2004) Differential evolution and particle swarm optimization
in partitional culstering. In: Proceedings of the 2004 Congress on Evolution-
ary Computation (CEC 2004), IEEE Press, Piscataway, NJ, USA

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes
in C. Cambridge University Press

Price KV (1997) Differential evolution vs. the contest functions of the 2nd ICEO.
In: Proceedings of the 1997 IEEE international conference on evolutionary
computation, April 13-16, Indianapolis, IN, USA. IEEE Press, pp 153–157

186 3 Benchmarking Differential Evolution

Price WL (1977) Global optimization by controlled random search. Computer
Journal 20:367–370

Plagianakos VP, Magoulas GD, Nousis NK, Vrahatis MN (2001) Training multi-
layer networks with discrete activation functions. In: Proceedings of the
INNS-IEEE international joint conference on neural networks, July 14–19,
2001, Washington DC, USA

Rogalsky T, Derksen RW, Kocabiyik S (1999) Differential evolution in aerody-
namic optimization. In: Proceedings of the 46th annual conference of the Ca-
nadian aeronautics and space institute, May 2-5, 1999, pp 29–36. Available
via Internet: http://home.cc.umanitoba.ca/~umrogal1/publications.html

R žek B, Kvasni ka M (2001) Differential evolution algorithm in the earthquake
hypocenter location. Pure and Applied Geophysics 158:667–693

Salomon R (1996) Reevaluating genetic algorithm performance under coordinate
rotation of benchmark functions: A survey of some theoretical and practical
aspects of genetic algorithms. Biosystems 39(3):263–278

Sandgren E (1990) Nonlinear integer and discrete programming in mechanical de-
sign optimization. Transactions of the ASME, Journal of Mechanical Design
112(2):223–229

Schwefel H-P (1995) Evolution and optimum seeking. Wiley
Stanhope SA, Daida JM (1997) An individually variable mutation rate strategy for

genetic algorithms. In: Angeline PJ, Reynolds RJ, McDonnell JR, Eberhart R
(eds) Evolutionary programming VI; Lecture notes in computer science 1213.
Springer, pp 235–245

Storn R, Price KV (1997) Differential evolution – A simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimiza-
tion 11:341–359

Thierauf G, Cai J (1997) Evolution strategies – parallelization and application in
engineering optimization. In: Topping BHV (ed) Parallel and distributed
processing for computational mechanics. Saxe-Coburg Publications, Edin-
burgh

Thomas P, Vernon D (1997) Image registration by differential evolution. In: Pro-
ceedings of the first Irish machine vision and image processing conference
IMVIP-97, Magee College, University of Ulster, pp 221–225. PostScript file
available from http://www.cs.may.ie/~pthomas/

Thomsen R (2003) Flexible ligand docking using evolutionary algorithms: Inves-
tigating the effects of variation operators and local search hybrids. Biosystems
72(1–2):57–73

Tom DJ (1990) Training binary node feed forward neural networks by back-
propagation of error. Electronics Letters 26:1745–1746

Tsai J-T, Liu T-K, Chou J-H (2004) Hybrid Taguchi-genetic algorithm for global
numerical optimization. IEEE Transactions on Evolutionary Computation
8(4):365–377

Tu Z, Lu Y (2004) A robust stochastic genetic algorithm for global numerical op-
timization. IEEE Transactions on Evolutionary Computation 8(5):456–470

Ursem RK, Vadstrup P (2004) Parameter identification of induction motors using
differential evolution. Applied Soft Computing 4(1): 49–64

References 187

Van den Bergh F, Englebrecht AP (2004) A cooperative approach to particle
swarm optimization. IEEE Transactions on Evolutionary Computation
8(3):225–239

Vesterstrøm JS, Riget J (2002) Particle swarms: Extensions for improved local,
multi-modal and dynamic search in numerical optimization. Master’s thesis,
EVALife, Dept. of Computer Science, University of Aarhus, Denmark

Vesterstrøm J, Thomsen R (2004) A comparative study of differential evolution,
particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems. In: Proceedings of the 2004 congress on evolutionary
computing, vol 2, pp 1980–1987

Voigt H-M (1995) Soft genetic operators in evolutionary computation and bio-
computation. In: Lecture Notes in Computer Science 899. Springer, Berlin, pp
123–141

Whitley D, Mathias K, Rana S, Dzubera J (1996) Evaluating evolutionary algo-
rithms. Artificial Intelligence 85:1–32

Wolpert DH, Macready WG (1997) No free lunch theorems for optimization.
IEEE transactions on evolutionary computation, IEEE Press, 1(1):67–82

Wu S-J, Chow P-T (1995) Genetic algorithms for nonlinear mixed discrete-
interger optimization problems via meta-genetic parameter optimization. En-
gineering Optimization 24(2): 137–159

Yao X, Liu Y (1997) Fast Evolution Strategies. In: Angeline PJ, Reynolds RJ,
McDonnell JR, Eberhart R (eds) Evolutionary programming VI. Springer,
Berlin, pp 151–161

Yao X, Liu Y, Lin GM (1999) Evolutionary programming made faster. IEEE
Transactions on Evolutionary Computation 3:82–102

Yen J, Lee B (1997) A simplex genetic algorithm hybrid. In: Proceedings of the
1997 IEEE conference on evolutionary computation, Indianapolis, Indiana,
April 13-16. IEEE Press, pp 175–180

Zimmermann W (1990) Operations research. Oldenbourg
Zitzler E, Thiele I (1999) Multi-objective evolutionary algorithms: A comparative

case study and the strength Pareto approach. IEEE Transactions on Evolution-
ary Computation 4:257–271

Zitzler E, Deb K, Thiele L (2000) Comparison of multi-objective evolutionary al-
gorithms: Empirical results. Evolutionary Computation 8:173–195

4 Problem Domains

4.1 Overview

Up until now, this book has focused primarily on unconstrained, and to a
lesser degree, bound constrained continuous optimization. This chapter
explores how to apply DE in several different, less idealized problem do-
mains. Among the topics discussed are how to optimize functions with
discrete or mixed-type parameters as well as those that are subject to
bound, inequality and/or equality constraints. In addition, the challenges
associated with optimizing both noisy functions and those with multiple
objectives are discussed. This chapter also explores the possibility of ap-
plying DE to combinatorial problems like the Traveling Salesman Prob-
lem, or TSP. The next section, however, looks at how DE handles quan-
tized functions and parameters.

Objective function description Qf(f(xq))

Q0(x0) Q1(x1) QD-1(xD-1) Parameter quantizers

Objective function quantizer

fq(xq)f(xq)

x0 x1 xD-1

xq,0 xq,1 xq,D-1

Fig. 4.1. An objective function whose parameters and output are both quantized

4.2 Function and Parameter Quantization

Real-world optimization often involves functions and/or parameters that
vary discretely. A continuous range of values becomes discretely distrib-

190 4 Problem Domains

uted when operated on by a quantizing function, Q. The diagram in Fig.
4.1 shows the most general case in which the function is rendered discrete
by the quantizing function Qf and parameters are quantized by the func-
tions Qj, j = 0, 1, …, D − 1.

4.2.1 Uniform Quantization

Uniform quantization transforms a continuous range of values into a set of
evenly spaced values, like the integers. Uniform quantization (Rabiner and
Gold 1975) is based on the quantizing function

.
)(

)(
k

ykfloor
yQ

⋅=
(4.1)

The “floor” function returns the integer part of its argument, e.g.,
floor(4.13) = 4. As Fig. 4.2 illustrates, when k = 1, Q(y) returns the integer
part of y.

y

floor(y)

1 2 3 4 5

1

2

3

4

5

-1-2-3-4-5

-1

-2

-3

-4

Fig. 4.2. Uniform quantization: floor(y) returns the function value indicated by the
dots that mark discontinuities.

Selecting components for a gear train is an example of an optimization
task where objective function parameters are uniformly quantized
(Lampinen and Storn 2004). The goal is to select a combination of gears
that minimizes the (absolute) difference between the actual and target rota-

4.2 Function and Parameter Quantization 191

tion rates. Since both the number of gears and the number of teeth on a
gear are integers, parameters are uniformly discrete. Additionally, the ob-
jective function value itself is also discrete because for a fixed input rate of
rotation, a finite number of gear combinations produce only a limited
number of isolated output rates. Unlike parameter values, however, objec-
tive function values are not uniformly distributed in this example.

4.2.2 Non-Uniform Quantization

Discrete values need not be regularly spaced and many applications opti-
mize non-uniformly quantized variables (Kondoz 1994). Non-uniform

quantization maps the continuum to a set of isolated and irregularly spaced
real values. Figure 4.3 illustrates non-uniform quantization with an exam-
ple that also displays a saturation characteristic, i.e., Q(y)’s output has a
limiting magnitude.

y

Q(y)

1 2 3 4 5

1

2

0.5

4

5

Saturation

Saturation

-1-2-3-4-5

-0.5
-1

-2

-3

-4

3

Fig. 4.3. Non-uniform quantization

Parameters with non-uniformly quantized values are common in many
mechanical and electronic design problems, often because only a limited
set of components is commercially available. For example, electronic re-
sistors in the E12 series have the following discrete normalized values: 1.0,
1.2, 1.5, 1.8, 2.2, 2.7, 3.3, 3.9, 4.7, 5.6, 6.8, 8.2. Not all resistance values
are available and those that are, are not uniformly spaced.

192 4 Problem Domains

Transformation tables can be an effective way to non-uniformly quan-
tize continuous values when a quantizing function is impractical. For ex-
ample, if objective function parameters must be prime numbers, then a
quantizing function will first have to “floor” a floating-point number into
an integer and then search for the closest prime value.

Locating the nearest prime value involves a search process that can be
computationally intensive if primes are not stored in advance. A table-
based approach is both faster and simpler (Fig. 4.4). Instead of varying the
parameters xj and quantizing them to the closest prime value, it is much
easier to vary surrogate parameters zj ∈ [1.5, 12.5] and use floor(zj) as the
table index to primes already stored in memory. In Fig. 4.4, for example,
index 5 leads to table entry 11. When the objective function is evaluated,
table entries take the place of the corresponding parameters, xj.

2 3 5 7 11 13 17 19 23 29 31 37

1 2 3 4 5 6 7 8 9 10 11 12Table indices

Table entries

Fig. 4.4. Table-based, non-uniform quantization

4.2.3 Objective Function Quantization

The graph in Fig. 4.5 is an example of a function whose value has been
uniformly quantized. Figure 4.5 shows that quantization turns a smooth
function into one with a staircase-like appearance. In general, staircase dis-
continuities are not a fundamental problem for a direct search method like
DE, but flat plateaus do have an effect. In particular, vectors on a plateau
will spread only if new vectors of lesser than or equal objective function
value are accepted.

Figure 4.6 illustrates how replacing population vectors with trial vectors
of equal objective function values keeps DE from stagnating on quantized
objective function landscapes. The intervals [x0,L, x0,U] and [x1,L, x1,U] in
Fig. 4.6 define a plateau where the objective function value is constant.
DE’s vector generating scheme inevitably places multiple trial vectors out-
side the hull that encloses the original population. If trial vectors are not al-
lowed to replace competitors of equal objective function value, the popula-
tion stagnates and remains confined to the original hull. If, however, trial
vectors replace population vectors of equal objective function value, the
population expands very quickly unless F is below Zaharie’s limit (Zaharie
2002). If F is too small, the population will likely converge even if trial

4.2 Function and Parameter Quantization 193

vectors replace target vectors of equal objective function value. For DE
with Nj(0,1) Gaussian jitter, Zaharie found that in the absence of selective
pressure, the population’s variance increases as long as

.0
2

2
2

2 <+⋅−⋅⋅
Np

Cr

Np

Cr
CrF

(4.2)

Other DE models behave similarly and experiments suggest that as long as
F is above the Zaharie limit, the population should diverge (see Sect. 2.5).

Figure 4.7 shows how the presence of plateaus affects DE’s ability to
optimize both the ten-dimensional sphere

()
=

=
9

0

2

j

jxf x
(4.3a)

and its quantized counterpart

() .
2

2floor
9

0

2⋅

= =j
j

q

x

f x

(4.3b)

x

y
y=f(x)

yq=floor(f(x))

1

2

3

4

5

Fig. 4.5. A function, f(x), and its uniformly quantized version, yq = floor(f(x))

194 4 Problem Domains

x0

x1

hull around the
cloud of points

x0,L x0,U

x1,L

x1,U

Fig. 4.6. A cloud of points will quickly spread over the plateau defined by the in-
tervals [x0,L, x0,U] and [x1,L, x1,U] if DE’s selection rule replaces target vectors with
trial vectors of equal value.

0

50

100

150

200

0 1000 2000 3000 4000 5000 6000

o
b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e

number of function evaluations

Convergence graph for f(x)

Convergence graph for fq(x)

Fig. 4.7. Typical convergence graphs for a continuous (Eq. 4.3a) and a quantized
(Eq. 4.3b) ten-dimensional sphere. The initialization interval was [−10,10]. The
algorithm was DE/rand/1/bin with Np = 30, F = 0.85 and Cr = 1.

4.2 Function and Parameter Quantization 195

The convergence graphs in Fig. 4.7 plot the current best vector’s objec-
tive function value versus the number of function evaluations. Both plots
were generated with classic DE (DE/rand/1/bin), Np = 30, F = 0.85 and Cr

= 1. The quantized sphere’s convergence graph exhibits larger vertical
jumps and less incremental improvement than its continuous counterpart.
Similarly, the number of function evaluations spent without making im-
provement is higher in the quantized version than in the continuous case.
Intuitively, this behavior makes sense because the population’s best func-
tion value does not improve while DE explores a plateau. Even though
quantizing the objective function affected DE’s convergence profile, it did
not impact DE’s effectiveness.

In reality, examples where parameters are continuous but the objective
function output is discrete are rare. More often, parameters are quantized
but the objective function is not – a possibility that also can be treated as if
the reverse was true – with continuous parameters serving as input for a
quantized objective function. The next section shows how this transforma-
tion adds diversity to the spectrum of vector differences, thereby reducing
the chance that DE will stagnate.

x

y
y=f(x)

yn=f(nxs)

xs 2xs-xs-2xs

Fig. 4.8. Uniform parameter quantization. Not all parameter values are allowed. n
is an integer.

4.2.4 Parameter Quantization

Quantizing the parameters of a real-valued objective function transforms a
continuous optimization task into a discrete one. Although the objective
function itself is not quantized, function values are nevertheless discrete

196 4 Problem Domains

simply because they can only be sampled at allowed parameter values
(Fig. 4.8). Limiting parameters to discrete values restricts the distribution
of vector differences, which in turn limits DE’s ability to explore the prob-
lem space.

When parameters are discrete, differential mutation rarely creates a trial
point that coincides with an allowed discrete value. Only in special cases,
like that of uniform quantization and F = 1, do trial values coincide with
allowed values. As Fig. 4.9 shows, even for uniformly distributed discrete
variables, F ≠ 1 creates child vectors that are not allowed. Consequently, a
criterion must be established when dealing with discrete variables that can
locate the allowed parameter value that is nearest to the proposed value.
Finding the nearest allowable vector in D-dimensional space is probably
the best approach, but that task is significantly harder than finding the
nearest discrete value for each parameter independently, which is the
method used for the experiments in this book.

xr1

xr2

F⋅(xr1-xr2)

xr3

ui = xr3+F⋅(xr1-xr2) is not
a valid point

nearest valid neighbor to ui

Fig. 4.9. Difference vector generation using discrete points may not directly lead
to a valid point. In this diagram, Cr = 1, so ui = vi.

A second difficulty posed by discrete parameters is that even if trial vec-
tors are mapped to the closest allowed value, some points may not be ac-
cessible unless F is carefully chosen. For example, suppose that a variable
is restricted to the even integers and a single odd value. Assuming that the
odd point does not already belong to the population, the difference be-
tween any two instances of this quantized, discrete parameter will be a
multiple of 2F. As a result, F must be a special value (e.g., 0.5 < F < 0.75)
to place a trial point closer to the odd point than to an even one.

4.2 Function and Parameter Quantization 197

Instead of requiring F to assume a special value, it is more effective to
use real values in place of discrete parameters when randomly initializing
and generating vectors. In the example above, randomly initializing a dis-
crete parameter with a floating-point value creates many differences
smaller than 2 that can place a trial point near the lone odd point almost ir-
respective of F. Forming differentials with distributed real values gener-
ates a richer spectrum of differences that both reduces the risk that discrete
values are inaccessible and relaxes the constraints on an effective F. For
this reason, discrete parameters should be represented as floating-point
values even when the problem is inherently discrete (Lampinen and Ze-
linka 1999).

When working with discrete parameters, the objective function is evalu-
ated once DE’s floating-point parameter values are quantized to, but not
overwritten by, their nearest allowed discrete values. Figure 4.10 illustrates
how copies of vectors generated in the continuous domain are quantized
before being input into the objective function.

Objective
function

evaluation

Vector
quantizationx

xq

f(xq)

continuous parameter
domain

All vectors are computed
and altered in this domain

discrete parameter
domain

objective function
domain

Fig. 4.10. An objective function’s discrete arguments are copies of floating-point
parameters quantized to their nearest allowed value.

When real-valued trial vectors are evaluated at their nearest allowable
discrete value, DE is in effect optimizing a staircase function like the ex-
ample of objective function quantization in Fig. 4.5. As Fig. 4.11 illus-
trates, the distribution of minima differs substantially between y and yn.
For yn, only two minima exist instead of the previous four, i.e., two minima
are masked. This is in contrast to the quantized objective function in Fig.
4.5 where the location of the minima is broadened, but all minima still ex-
ist. Simply put, objective function quantization does not mask minima, but
parameter quantization can.

198 4 Problem Domains

x

y
y=f(x)

yn=f(nxs)

xs 2xs-xs-2xs

Fig. 4.11. If parameter quantization is applied after differential mutation but be-
fore evaluation, then the objective function is, in effect, stepped (dashed line).

0

50

100

150

200

0 1000 2000 3000 4000 5000 6000

o
b
je

c
ti
v
e
 f

u
n
c
ti
o
n
 v

a
lu

e

number of function evaluations

Convergence graph

Fig. 4.12. Convergence graph for the objective function in Eq. 4.4. The DE variant
was DE/rand/1/bin, Np = 30, F = 0.85, Cr = 1. The initialization interval was
[−10,10].

Applying the “floor” operation to the sphere of Eq. 4.4 is a simple ex-
ample of a function with quantized parameters. The corresponding conver-
gence graph in Fig. 4.12 suggests that as long as parameters are generated

4.2 Function and Parameter Quantization 199

and maintained using real values, quantization is not an impediment. Equa-
tion 4.4, however, is a very simple case:

() ()()
=

=
9

0

2

i

ipq xfloorxf
(4.4)

Equation 4.4 exhibits a single minimum at x = 0 that is not masked. In
real-world applications, minima can be masked if discrete parameter val-
ues are too far apart. Equations 4.5–4.7 outline a constraint satisfaction
problem like those that can be solved with the demo version of the FIWIZ
digital filter design program (Storn 2000) that accompanies this book on
CD.

The problem is solved when an and bn are such that H(z) is

()

()∏

∏
−

=

−

=

=

−

=

−

−

−
=

⋅+

⋅
==

1

0

1

0
0

0

1

0

1
)(

)(
)(

M

m

pm

N

n

n

M

m

m
m

N

n

n
n

zz

zz

A

zb

za

zD

zU
zH

(4.5)

with

() () () 1,2sin2cos2exp −=Ω⋅+Ω=Ω⋅= ιπιππιz
(4.6)

and

sf

f=Ω
(4.7)

is constrained to lie within the tolerances shown in Fig. 4.13 as Ω ranges
from 0.0 to 0.5. The variables f and fs in Eq. 4.7 denote the natural and
sampling frequencies, respectively (Storn 1999b; Mitra and Kaiser 1993).
The parameters an and bn are quantized to simulate digital filter processor
word-length limitations. In this constraint satisfaction problem, “success”
means that H(z) satisfies the tolerance scheme.

Table 4.1 shows how the level of quantization for the parameters an and
bn affects DE’s ability to solve this problem. Listed along with the quanti-
zation step size are P, the fraction of trials that were successful, and the
corresponding average number of function evaluations that DE required.
Although the test set is small, the trend is clear. Results show that increas-
ing the quantization step size slowed DE and made it less reliable. The
coarser the quantization, the more difficult it becomes for DE to find a so-
lution until eventually (7-bit step), all minima are masked and a solution is

200 4 Problem Domains

no longer possible. Results are ten-trial averages. DE settings were the
same for all designs: DE/best/1/bin with uniform jitter, Np = 30, F = 0.85,
Cr = 1. The number of parameters was D = N + M + 1 with N = 4, M = 4.
The increment by 1 accounts for the parameter A0 in Eq. 4.5.

Additional applications where objective functions with discrete parame-
ters have been successfully optimized can be found in Storn (1997) and
Lampinen and Zelinka (1999). Table 4.2 summarizes the similarities and
differences between objective function and parameter quantization.

Fig. 4.13. A tolerance scheme constraining the function in Eq. 4.5. The x–axis in
this plot denotes Ω while the y–axis plots 20⋅log10⋅|H(exp(ι2πΩ)|.

Table 4.1. The effect that different quantization levels have on DE’s ability to
solve the design problem set forth in Eqs. 4.5–4.7.

Quantization level Average evaluations P
None 4230 1

16-bit (step size 2−15) 5970 1

10-bit (step size 2−9) 6016 0.9

8-bit (step size 2−7) 8317 0.7

7-bit (step size 2−6) – 0

4.3 Optimization with Constraints 201

Table 4.2. Objective function and parameter quantization compared

 Objective function Parameters

Number of function values Restricted Restricted

Function plateaus? Yes, for fq(x)
Yes, for f(x)
no for f(xq)

Minima
Broadened May be hidden

Stagnation risk unless… f(ui,g) ≤ f(xi,g) for ui,g

to survive
x is used instead of

xq for the differential

4.2.5 Mixed Variables

Mixed-variable problems, also known as mixed-discrete programming
problems, contain both continuous and discrete parameters. As outlined in
the previous sections, DE handles such tasks by representing all parame-
ters internally as floating-point values and quantizing the discrete parame-
ter values to the nearest allowed point. Lampinen and Zelinka (1999) de-
scribed the first practical applications of DE to mixed-variable
optimization.

4.3 Optimization with Constraints

Perhaps the majority of real-world optimization tasks involve finding a so-
lution that not only is optimal, but also satisfies one or more constraints.
There are several ways in which an optimization problem can be con-
strained. A general formulation for constrained optimization is

()

.1,...,1,0,:sconstraint boundaryand

,,...,2,1,0)(:sconstraintequality

,1,2,...,,0)(:sconstraintinequality

:tosubject

),(:minimizeto

,,...,,Find

U,L,

T
110

−=≤≤
==

=≤

ℜ∈= −

Djxxx

Nn

Mm

f

xxx

jjj

n

m

D
D

x

x

x

xx

ϕ
γ

(4.8)

202 4 Problem Domains

Strictly speaking, boundary constraints are inequality constraints, but they
are listed separately because they occur frequently and are easier to handle
than general inequality constraints.

Constraints typically make optimization harder for DE because they can
create forbidden regions on the objective function landscape that restrict
the free movement of vectors. It often happens, depending on how they are
handled, that constraints divide the search space into several disjoint
islands. On the other hand, constraints can eliminate local minima that
might otherwise trap vectors, thereby reducing the chance that DE will
prematurely converge. For an up-to-date survey on constraint handling
techniques used with EAs, see Coello (2002).

4.3.1 Boundary Constraints

Boundary constraints are very common in real-world applications, often
because parameters are related to physical components or measures that
have natural bounds. For example, neither passive electronic resistance nor
the length of a mechanical object can be negative. Even when the problem
itself is unconstrained, bounds may be imposed by the limits set by the
particular data type. For example, the limited number of bits dedicated to a
fixed-point number in a digital signal processor sets a bound on the range
of values that can be represented. Fortunately, handling boundary con-
straints in DE is particularly straightforward and several schemes have
been applied with success.

In DE, each population vector is crossed with a randomly generated mu-
tant vector. Since the current population of vectors already satisfies all
bound constraints, only contributions from mutant vectors potentially vio-
late parameter limits. Consequently, bounds need to be checked only when
a mutant parameter is selected for the trial vector. For simplicity, however,
the following examples test all trial parameters, not just those donated by
the mutant.

There are two distinctly different general techniques for handling out-
of-bounds parameters. Resetting schemes modify out-of-bounds parame-
ters so that the trial vector satisfies all constraints. By contrast, penalty

methods drive solutions from restricted areas through the action of an ob-
jective function-based criterion. The simplest of these penalty methods is
the “brick wall”.

4.3 Optimization with Constraints 203

Brick Wall Penalty

If any trial parameter exceeds a bound, the brick wall strategy sets the of-
fending vector’s objective function value high enough to guarantee that it
will not be selected. If the optimum lies near bounds, the brick wall pen-
alty can slow progress because generating a solution that has no out-of-
bounds parameters may be improbable. The pseudo-code in Fig. 4.14 out-
lines this strategy as it applies to DE.

...
violate_flag = FALSE;
for (j=0; j<D; j++)
{
 if ((uj<xj,L)||(uj>xj,U)) //if parameter exceeds bounds

 {
 violate_flag = TRUE;
 }
}
if (violate_flag = TRUE) return_value = HIGH_VALUE;
else return_value = objective_function(u);
...

Fig. 4.14. Pseudo-code for the brick wall penalty

Adaptive Penalty

Unlike the brick wall penalty, the adaptive penalty increases the objective
function value by an amount that depends on the number of bounds that a
trial vector violates. For example, an objective function can be incre-
mented by a penalty whenever a parameter exceeds a bound. An alterna-
tive scheme (Fig. 4.15) imposes an additional penalty that depends not
only on the number of violations, but also on their magnitude (Storn
1996a, 1996b, 2000).

204 4 Problem Domains

...
return_value = objective_function(u);
penalty = 0;
for (j=0; j<D; j++)
{
 if (uj<xj,L) //if parameter exceeds lower bound

 {
 penalty = penalty + CONST_PENALTY + FACTOR*(xj,L-uj);

 }
 if (uj>xj,U) //if parameter exceeds upper bound

 {
 penalty = penalty + CONST_PENALTY + FACTOR*(uj-xj,U);

 }
}
return_value = return_value + penalty;
...

Fig. 4.15. Pseudo-code for an adaptive penalty

Random Reinitialization

Penalty methods do not reset out-of-bounds parameters. If bounds are eas-
ily exceeded, then vectors that satisfy all bound constraints will be rare and
progress will be slow. Resetting methods convert out-of-bounds parameter
values into allowed values. The most unbiased approach, random reini-
tialization, replaces a parameter that exceeds its bounds by a randomly
chosen value from within the allowed range (Lampinen and Zelinka 1999).
Because it radically changes a parameter’s value, reinitialization can dis-
rupt progress toward solutions that lie near bounds. Equation 4.9 shows
how to reinitialize an out-of-bounds trial parameter:

() () ()U,,,L,,,L,U,L,,, if)1,0(rand jgijjgijjjjjgij xuxuxxxu >∨<−⋅+= (4.9)

Bounce-Back

Like random reinitialization, the bounce-back method replaces a vector
that has exceeded one or more of its bounds by a valid vector that satisfies
all boundary constraints. In contrast to random reinitialization, the bounce-
back strategy takes the progress toward the optimum into account by se-
lecting a parameter value that lies between the base parameter value and
the bound being violated. The base vector xr0 is the vector in DE’s muta-
tion scheme to which the random vector differential is added. As the popu-
lation moves toward its bounds, the bounce-back method generates vectors

4.3 Optimization with Constraints 205

that will be located even closer to the bounds. Figure 4.16 presents pseudo-
code for the bounce-back strategy, while Fig. 4.17 illustrates the process in
a two-dimensional search space.

...
xr0 = base_vector;
ui = child_vector;
...
for (j=0; j<D; j++)
{
 if (uj,i<xj,L) //if child parameter exceeds lower bound

 {
uj,i = xj,r0 + rand(0,1)*(xj,L-xj,r0);

 }
 if (uj,i>xj,U) //if child parameter exceeds upper bound

 {
uj,i = xj,r0 + rand(0,1)*(xj,U-xj,r0);

 }
}
...

Fig. 4.16. Pseudo-code for bounce-back parameter constraint handling

x0

x1

1

2

3
4

5

6

7

8

9

x0,L x0,U

x1,L

x1,U
chosen trial point

previous trial point violating
the bound for x0

weighted
difference vector

base point

Fig. 4.17. Bounce-back bound resetting replaces an out-of-bounds trial parameter
with one located between the base vector and the bound exceeded.

206 4 Problem Domains

A simple, yet effective deterministic variant of bounce-back resetting
forces an out-of-bounds trial parameter to the point midway between the
bound violated and the base vector, e.g., uj,i,g= (xj,r0,g+ xj,U)/2 when the up-
per bound is violated. Setting parameter values equal to the bounds they
violate should be avoided because it lowers the diversity of the difference
vector population.

4.3.2 Inequality Constraints

Inequality constraints require a solution to contain parameter values that
satisfy one or more constraint functions. Most often, inequality constraints
are implemented as penalty functions. Like the adaptive penalty for bound
constraints, penalty functions increase the objective function value when
constraints are violated. One common way to integrate constraint viola-
tions into an optimization task is to multiply each penalty by a weight, wm,
and add the result to the objective function, f(x):

() () ().'
1=

⋅+=
M

m

mm pwff xxx
(4.10)

Weights help normalize all penalties to the same range. Without normali-
zation, penalty function contributions may differ by many orders of magni-
tude, leaving violations with small penalties underrepresented until those
that generate large penalties become just as small. When there are many
constraints, the main drawback of the penalty approach is that pre-
specified weights must be well chosen to keep the population from con-
verging upon either infeasible or non-optimal vectors.

Especially for EAs, under-penalizing infeasible solutions (i.e., applying
weights that are too small) typically slows convergence toward, or fails to
find, feasible solutions. On the other hand, over-penalizing typically
speeds convergence to a feasible solution, but risks prematurely converg-
ing on a suboptimal one, especially during optimization’s early stages. If
constraints partition the search space such that feasible solutions form mul-
tiple disjoint regions, EAs operating with over-penalized constraints tend
to prematurely converge upon the best point in the first feasible island dis-
covered.

Penalty Functions for the Feasible Region

Classical penalty functions are barrier functions (Carrol 1961)

4.3 Optimization with Constraints 207

() ()x
x

m

mp
γ

1−=
(4.11)

or log barrier functions (Frisch 1955)

() ()()xx mmp γ−−= ln (4.12)

where γm(x) is from Eq. 4.8. For example, Fig. 4.18 (left) illustrates a sim-
ple one-dimensional constraint, γ1(x) = x − 1 < 0, and the corresponding
barrier function (right). A point from outside the feasible area has little
chance to tunnel through the singularity at x = 1.

x
x=1

x-1<0

-3 -2 -1 0 1 2 3
-

-8

-6

-4

-2

0

2

4

6

8

10

x

pm(x)

pm(x)=-1/(x-1)

Fig. 4.18. Graphical illustration of the constraint x − 1 < 0 (left) and the corre-
sponding barrier function, pm(x) (right).

The biggest drawback associated with barrier penalty functions is that they
do not work when a vector violates a constraint. Instead, they require vec-
tors to be resituated so that they fall within a feasible region.

Penalty Functions for Infeasible Regions

One penalty that often works well when trial solutions lie outside the con-
straint region is

() () () >
=

otherwise.0

,0for2 xx
x mm

mp
γγ (4.13)

When γ1(x) = x − 1 < 0, the classical barrier penalty is infinite at the bound
x = 1, but when computed according to Eq. 4.13, the penalty is zero. The
effect of Eq. 4.13 is to steer the population within an infeasible region to-
ward a feasible one, rather than obstruct it with an insurmountable barrier

208 4 Problem Domains

(Fig. 4.19). Penalizing with the absolute value of γm(x) instead of its square
more gently steers vectors toward feasible areas.

-3 -2 -1 0 1 2 3
-4

-3

-2

-1

0

1

2

3

4

x

pm(x)

Fig. 4.19. Penalty for the constraint γ1(x) = x − 1 < 0, according to Eq. 4.13

Other common penalty functions for the infeasible region are

() ()() () >−
=

otherwise.0

,0for1cosh xx
x

mm

mp
γγ (4.14)

and

() () () >>+⋅
=

otherwise.0

,0,with,0for 2121 cccc
p

mm

m

xx
x

γγ (4.15)

Constraint Satisfaction: An Example

In constraint satisfaction problems, optimization terminates once con-
straints are satisfied. The following constraint satisfaction problem resem-
bles those that arise in signal processing (filter design) and kinematics (tra-
jectory design). The function

()
[]20,0for

1

1
),,(

2
10

10 ∈
⋅+⋅+

= τ
ττ

τ
xx

xxh
(4.16)

4.3 Optimization with Constraints 209

has two parameters x0 and x1 as well as the running variable τ. In addition,
let h(x0, x1, τ) be subject to the constraint functions:

)10,0[for),,(04.1),,(10101 ∈−= τττγ xxhxx (4.17)

[]20,10for4.0),,(),,(10102 ∈−= τττγ xxhxx (4.18)

[]5,0for),,(8.0),,(10103 ∈−= τττγ xxhxx (4.19)

Figure 4.20 more clearly shows the nature of the optimization task speci-
fied by Eqs. 4.16–4.19.

0

0.5

1

1.5

2

0 5 10 15 20

τ

h(-0.1,0.14,τ)

(-0.1,0.14,τ0)>0

(-0.1,0.14,τ1)<0

1.04

0.8

 (-0.1,0.14,τ2)>0

τ2

τ0 τ1

γ1

γ2

γ3

Fig. 4.20. The curved line must fall within the upper and lower bounds over the
specified range. Points along the τ−axis illustrate each constraint function.

Combining Eq. 4.10 and Eq. 4.13 together with Eqs. 4.15–4.17 and tak-
ing S finely quantized samples on the τ-axis yields the objective function

() ()() ()
.3,

otherwise;0

,0,for,
'

1

1

0

2

=>⋅=
=

−

=

Mwf
M

m

S

s

smsm
m

τγτγ xx
x

(4.20)

Figure 4.21 plots f′(x) with all weights set equal to 1 (wm = 1).

210 4 Problem Domains

f'(x1,x2,τ)

-1
-0.9

-0.8
-0.7

-0.6
-0.5

-0.4
-0.3

-0.2
-0.1

0

x1

-1 -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0

x2

0.0001
0.001
0.01
0.1

1
10

100
1000

10000

f'(x0,x1,τ)

x0

x1

Fig. 4.21. The final objective function from Eq. 4.20. Values > 5000 have been
clipped to 5000 to enhance detail.

The constrained function, f′(x,τ), is symmetric around x1 = 0, so there is
more than one global minimum. Even this relatively simple problem pro-
duces an objective function that is riddled with local minima.

Direct Constraint Handling

Schemes that sum penalty functions run the risk that one penalty will
dominate unless weights are correctly adjusted. In addition, the population
can converge upon an infeasible region if its objective function values are
much lower than those in feasible regions. It can even happen that no set of
weights will work. Because weight selection tends to be a trial and error
optimization problem in its own right, simpler direct constraint handling
methods have been designed that do not require the user to “tune” penalty
weights.

Among the early direct handling techniques are those due to Kjellström
and Taxen (1981) and Kreutzer (1985). These constraint relaxation

techniques loosen constraints just enough so that all vectors in a population
satisfy all constraints. Constraints are subsequently tightened over time.

4.3 Optimization with Constraints 211

This idea was extended by Storn (1999a) as CADE (Constraint Adaptation
with Differential Evolution) to enhance DE’s range of application.

Lampinen has devised a similar method (Lampinen 2001) that shows
improved convergence speed when compared to CADE. In contrast to
standard DE, each population vector is assigned not just one, but an array
of objective values. The array contains not only each vector’s objective
function’s value, but also its constraint function values, γm(xi), m = 1, …,
M; i = 1, …, Np. Figure 4.22 provides an overview.

94 23 12 5 41 62 77 45

126

?

F

+

+

+ -

parent
population

child
population

1) Choose target vector 2) Random choice of two population members

3) Compute weighted
 difference vector

4) Add to randomly
 chosen third vector6)

 if (all constraints fulfilled)
 {
 smaller cost
 value survives
 }
else
 {
 trial vector must equal
 or improve all constraints
 to survive
 }

cost value f(xNp)

parameter vector xNp

population arrays swap places for next generation

24

13

3

44

78

12

2

156

53

77

11

25

27

67

10

15

constraint value γ1(xNp)

constraint value γ2(xNp)

x 5) Crossover with target vector

5

10

trial vector

126

5

10

Fig. 4.22. Direct constraint handling with DE after Lampinen (2001). This exam-
ple exhibits two constraints.

In simple terms, Lampinen’s criterion selects the trial vector ui,g if:

• ui,g satisfies all constraints and has a lower or equal objective function
value than xi,g, or

• ui,g is feasible and xi,g is not, or
• ui,g and xi,g are both infeasible, but ui,g does not violate any constraint

more than xi,g.

212 4 Problem Domains

 More formally, Lampinen’s selection criterion states:

{ }

{ }

{ }

{ }

{ }

()
()

.violationsconstrainttherepresent

0,)(max)('

0,)(max)('

where

otherwise

)(')(':,...,1

0)(:,...,1

0)(:,...,1

0)(:,...,1

)()(

0)(0)(:,...,1

if

,,

,,

,

,,

,

,

,

,,

,,

,
1,

gimgim

gimgim

gi

gimgim

gim

gim

gim

gigi

gimgim

gi

gi

Mm

Mm

Mm

Mm

ff

Mm

uu

xx

x

xu

u

x

u

xu

xu

u
x

γγ

γγ

γγ

γ

γ

γ

γγ

=

=

≤∈∀
∧

>∈∃

∨

>∈∃
∧

≤∈∀

∨
≤

∧
≤∧≤∈∀

=+

(4.21)

To avoid stagnation on flat regions of the objective function surface,
trial vectors replace competing target vectors when both are infeasible so-
lutions of equal quality, i.e., when both vectors violate all constraints to the
same extent. The aforementioned CADE method has basically the same
structure as Lampinen’s method except that, in CADE, a trial vector com-
petes against the worst vector of the previous generation instead of its as-
signed target vector. Consequently, CADE tends to converge more slowly
than Lampinen’s method because CADE is more likely to accept small
improvements in a trial vector.

If the objective function is unconstrained (M = 0, N = 0) or both vectors
are infeasible, then Lampinen’s criterion simply compares objective func-
tion values, just like DE’s usual selection rule. When either one or both
vectors are infeasible, however, objective function values are not com-
pared. Consequently, it is not necessary to evaluate the objective function
as long as one or more constraints are violated. This not only saves time,
but also prevents over-satisfying constraints since there is no selective
pressure to drive vectors into infeasible regions with low objective func-
tion values. Instead, selection drives vectors in the direction where con-

4.3 Optimization with Constraints 213

straint violations decrease (Lampinen 2002). For example, trying to make
γm(ui,g) smaller than γm(xi,g) once γm(xi,g) ≤ 0 over-satisfies the constraints.
As the second term in the if-condition for ui,g in Eq. 4.21 shows, the trial
vector’s constraint function γm(ui,g) needs to be less than or equal to the
target’s constraint function γm(xi,g) only if γm(xi,g) is positive, i.e., only if
the target violates the constraint. If γm(xi,g) is zero or negative, i.e., if the
target constraint is fulfilled, then the trial vector only needs to be less than
or equal to 0. The fact that Lampinen’s method does not over-satisfy con-
straints is a significant benefit.

Like DE selection, Lampinen’s criterion only needs to determine which
of two solutions is better, so solutions can be compared even if objectives
are not numerical. When both solutions are feasible, or one is feasible and
the other is not, this determination is straightforward. The situation is less
clear when competing vectors are both infeasible. The part of Lampinen’s
criterion that decides which of two infeasible solutions is better is based on
the idea of Pareto-dominance in the constraint function space, γ'(x) =
max(0, γ(x)) (see Sect. 4.6). If a feasible solution for the problem exists,
the Pareto-optimal front in the effective constraint function space is a sin-
gle point (γ'(x) = 0).

In addition to being simple, Lampinen’s constraint handling approach
can reduce the computational effort spent evaluating vectors. Not only
does the objective function not have to be evaluated when one or both vec-
tors are infeasible, but a vector can also be rejected before all its constraint
violations have been computed, thus saving time. Figure 4.23 depicts an
efficient implementation of Lampinen’s constraint handling method that
exploits these two time-saving features.

Figure 4.24 provides an example of how the order in which functions
are evaluated affects the total number of evaluations.

214 4 Problem Domains

Start comparing
vectors ui,g and xi,g.

m = 1

Evaluate m:th
constraint function,

γm (ui,g).

Does ui,g violate

m:th constraint
more than xi,g ?

Last
constraint?

m = M

m = m + 1

Select vector xi,g ,

the current
population member.

End of
comparison.

Select vector ui,g ,

the child vector.

Does xi,g satisfy

all constraints?

f (ui,g) ≤ f (xi,g)

2) After finding ui,g violating any

of the constraints more than xg ,

ui,g can be rejected immediately,

without evaluating the remaining
constraint function values at all.

NO

NO

NO

NO

YES

YES

YES

1) Objective and constraint function
values for xi,g are stored in order to

avoid unnecessary re-evaluation here.

2)

1)

4) Objective function needs to be
evaluated for ui,g only in case that

both ui,g and xi,g have been found

feasible.

Evaluate the
objective function,

f (ui,g).

4)

3) If the current population member,
xi,g , satisfies all the constraints, trial

ui,g is also feasible here, since it does

not violate any of the constraints
more than xi,g .

3)

5) Constraint function values for ui,g

will be stored. The objective function
value is computed and stored only in
case that ui,g is a feasible solution.

For an infeasible ui,g the objective

function value is not computed, since
it is not needed later on for the
comparisons either in case of an
infeasible ui,g or xi,g . See note 3).

5)YES

Fig. 4.23. The recommended way to implement Lampinen’s selection scheme
(Lampinen 2001, 2002)

4.3 Optimization with Constraints 215

Comparison of Computational Implementations
Number of Function Evaluations for Solving a Multi-Constrained Problem

K =1 , M =6

2
7

0
0

0
0

2
7

0
0

0
0

2
7

0
0

0
0

2
7

0
0

0
0

2
7

0
0

0
0

2
7

0
0

0
0

2
7

0
0

0
0

2
7

0
0

0
0

2
1

2
3

3
8

1
5

6
3

1
1

1
1

9
3

7
2

7
8

8
8

7

4
8

9
5

1

3
5

1
1

7

0

50000

100000

150000

200000

250000

300000

f(x)

N
u

m
b

er
 o

f
F

E

Original

Optimized
implementation

γ6(x)γ5(x)γ4(x)γ3(x)γ2(x)γ1(x) f (x)

Fig. 4.24. The number of function evaluations to solve a multi-constrained prob-
lem, Problem no. 106 in Hock and Schittkowski (1981), with and without the op-
timized implementation described in Fig. 4.23. This problem has a single objective
and is subject to six constraint functions. See Lampinen (2002) for details of the
solution.

Direct Constraint Handling: An Example

Visualizing the shape of the region containing feasible vectors provides an
insight into how DE operates when constraints are handled directly. In
general, the shape of a region of acceptability, or ROA, in which all vec-
tors satisfy a given set of constraints, is not known and may require con-
siderable computational effort to determine. For the problem described by
Eqs. 4.16–4.19, however, ROAs can be computed analytically. Figure 4.25
shows two ROAs corresponding to domains whose bounds are defined by
infeasible trial and target vectors that satisfy a relaxed set of constraints.
Based on Lampinen’s criterion, the trial vector ui,g will be selected because
it falls inside the ROA of the target vector, xi,g.

The trial vector’s chance of success depends on the shape of the target
vector’s ROA. As constraints are tightened, the ROA shrinks until it even-
tually splits into two disjoint islands (Fig. 4.26). Multiple feasible regions,
like multiple local optima, make optimization more difficult. Nevertheless,
DE’s differential mutation scheme can handle the situation of split islands
because its vector differentials adapt to the changing ROA. As islands

216 4 Problem Domains

shrink and drift apart, there will still be many vectors whose length and
orientation can transport a vector between islands.

x0

-0.4 -0.2 0 0.2 0.4

0

-0.2

-0.4

x1

0.4

0.2

ROA defined by
 xi,g

ROA defined by
 ui,g

xi,g

ui,g

Fig. 4.25. Example for ROAs defined by the target and trial vectors. Since it falls
inside the ROA defined by the target vector, xi,g, the trial vector ui,g wins in this
example.

Another example in which constraints partition the problem space into
disjoint islands looks for the parts of an ellipse that are not shared by an
overlapping circle. More precisely, the problem is to:

4.3 Optimization with Constraints 217

{ }

()

2,11010

sconstraint boundarytosubjectand

028)(

07)(

sconstrainttosubject

,,

Find

2
1

2
02

2
1

2
01

10

=≤≤−

≤++−=

≤+−=

ℜ∈=

jx

xx

xx

xx

j

D

x

x

xx

γ

γ

(4.22)

x0

-0.4 -0.2 0 0.2 0.4

0

-0.2

-0.4

x1

0.4

0.2

The ROA of the original
constraints consists of
merely two points

ROA1

ROA2

ROA3a

ROA3b

Fig. 4.26. The sequence ROA1, ROA2, ROA3a and ROA3b illustrates how the ROA
changes as constraints are tightened.

218 4 Problem Domains

Solutions lie inside the ellipse defined by γ2(x) and outside the circle de-
fined by γ1(x) (see Fig. 4.27). In practice, multiple disjoint sets of feasible
vectors can arise when constraints are nonlinear, as they are in Eq. 4.22.
Figure 4.27 shows how the population evolves under Lampinen’s criterion
not only in the search space, but also in the constraint function space.

Since both the population and the feasible region(s) in Fig 4.27 are
comparatively large, random initialization will usually generate at least
one feasible solution. Despite this, Lampinen’s method does not depend on
the initial population containing any feasible solutions. Instead, the selec-
tive pressure it exerts drives vectors toward both feasible regions so that
after only 40 generations, all vectors satisfy both constraints. Results were
obtained with DE/rand/1/bin, Np = 100, F = 0.9 and Cr = 0.9. The rela-
tively large population was chosen for illustrative purposes and a smaller
population would have more quickly solved this problem.

Lampinen’s criterion unambiguously defines a “best” vector only when
there is one or more feasible vectors, in which case the vector with the
lowest objective function value is best. When feasible vectors cannot be
found, a best vector is not so easily defined. One possibility is to define the
best vector as the nearest feasible vector or perhaps the vector with the
lowest total constraint violations. Finding the “best” infeasible vector can
indicate which constraints are causing problems or suggest a new solution
not previously envisioned.

In conclusion, Lampinen’s criterion does not change DE’s selection rule
as much as it extends its constraint handling abilities. Lampinen’s method
has the advantage shared by all direct constraint handling methods that
constraints can be implemented without having to empirically determine
penalty weights for a multi-term objective function. Similarly, Lampinen’s
method does not require the user to set any additional control parameters.

For constrained optimization problems having an objective function,
Lampinen’s criterion avoids over-satisfying constraints, yet it also pro-
vides the selective pressure needed to solve pure constraint satisfaction
tasks that lack an objective function. While its simplicity and effectiveness
make Lampinen’s criterion a good first choice, penalty methods should not
be abandoned, as they may prove more effective in some cases, especially
if time is taken to adjust them properly.

4.3 Optimization with Constraints 219

The Evolution of the Population
Modified DE/rand/1/bin, F=0.9, Cr=0.9, Np=100

Search Space Constraint Function Space

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

x0

x1

G
en

er
at

io
n

0
0.0

5.0

10.0

15.0

0.0 5.0 10.0

γ1(x)

γ2(x)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

x0

x
1

G
en

er
at

io
n

10

0.0

5.0

10.0

15.0

0.0 5.0 10.0

γ1(x)

γ2(x)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

x0

x
1

G
en

er
at

io
n

20

0.0

5.0

10.0

15.0

0.0 5.0 10.0

γ1(x)

γ2(x)

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

x0

x
1

G
en

er
at

io
n

40

0.0

5.0

10.0

15.0

0.0 5.0 10.0

γ1(x)

γ2(x)

Fig. 4.27. DE’s population evolves until the constraints in Eq. 4.21 are satisfied.

220 4 Problem Domains

4.3.3 Equality Constraints

As Eq. 4.8 previously indicated, equality constraints can be written in the
form

Nnn ,...,2,1,0)(==xϕ (4.23)

If circumstances permit, the best way to handle equality constraints is to
use them to eliminate variables from the objective function.

Elimination of Variables

When an equality constraint equation can be solved for a single variable,
its satisfaction is guaranteed if the resulting expression is substituted into
the objective function. For example, let the objective function

() ()2
1

2
010 21),(−+−= xxxxf (4.24)

be subject to the constraint

() .5.033 2
01 −⋅−= xx (4.25)

Figure 4.28 plots the concentric contours of the objective function (Eq.
4.24) along with the curve that satisfies the equality constraint (Eq. 4.25).

Replacing x1 in Eq. 4.24 with the right side of Eq. 4.25 yields the con-
strained objective function

() ()()22
0

2
00 .5.0311)(' −⋅−+−= xxxf (4.26)

the graph of which can be seen in Fig. 4.29. Eliminating an objective
function variable with an equality constraint not only ensures that all
vectors satisfy the constraint, but also reduces the problem’s dimension by
1.

In pactice, not all equality constraint equations can be solved for a term
that also appears in the objective function. When it cannot be used to
eliminate a variable, an equality constraint can be recast as a pair of
inequality constraints.

4.3 Optimization with Constraints 221

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x0

x1

Fig. 4.28. The objective function’s concentric contour lines (Eq. 4.24) and the line
representing the parabolic constraint function (Eq. 4.25)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

200

400

600

800

1000

1200

1400

x0

f1(x0)

Fig. 4.29. A plot of the one-dimensional function in Eq. 4.26 whose minimum is
1.07131

222 4 Problem Domains

Transformation into Inequality Constraints

Eliminating a variable is the only way to ensure that a solution exactly sat-
isfies an equality constraint. Otherwise, the finite precision of floating-
point number formats limits the degree to which an equality constraint can
be satisfied. It is more reasonable, therefore, to demand that an equality
constraint violation be less than ε, where ε can be made as small as de-
sired:

.,...,2,1,)(Nnn =< εϕ x (4.27)

This relaxed “equality” constraint actually corresponds to a pair of ine-
quality constraints:

.)(and)(εϕεϕ −>< xx nn
(4.28)

As ε approaches 0, the area of the ROA delineated by the inequality con-
straints degenerates into a one-dimensional curve like that in Fig. 4.28
(Storn 1999a). Consequently, if ε = 0, it is very unlikely that DE will
generate any points that satisfy the equality constraint exactly (i.e., within
the floating-point format’s limit of precision). As a result, population
vectors are inevitably infeasible. Even if all parent vectors fall exactly on
the equality constraint line, the children they create would almost never be
feasible (unless the constraint was linear), rendering futile the search for
the objective function minimum. If, however, ε is allowed to shrink as the
population evolves, both the optimum vector’s location and the degree to
which equality constraints are approached can be made arbitrarily small.
One way to achieve this treats ε as a penalty. Note also that the possibility
of expressing an equality constraint with a pair of inequalities (Eq. 4.28)
offers the possibility to apply the inequality constraint handling approaches
described in Sect. 4.3.2.

Penalty Approach

Like inequality constraints, equality constraints can be transformed into
cost terms that penalize the objective function. Equation 4.29 shows that
either the absolute value or the square of ϕn(x) makes a suitable penalty.
When all constraints are fulfilled, the penalty term, like ε, becomes zero:

() () () () () () ()xxxxxxx nnnn

N

n

nn pppwff ϕϕ ==⋅+=
=

orwith' 2

1

(4.29)

Using the constraint violation’s absolute value, the penalized objective
function for the problem set forth in Eqs. 4.24 and 4.25 becomes

4.3 Optimization with Constraints 223

() () () () 1
2

01
2

1
2

010 5.03321,' xxwxxxxf −−−⋅+−+−= (4.30)

Figure 4.30 plots the contour lines for this function for w1= 1. DE has no
particular difficulties solving this problem.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x0

x1

Fig. 4.30. Contour plot of Eq. (4.30)

Equality Constraint Satisfaction

Constraint satisfaction problems are characterized by their lack of an ob-
jective function. If all constraints are equality constraints, the problem re-
duces to solving a system of equations, ϕn(x) = 0. When all constraint
equations are linear, the simplex method (Hillier and Lieberman 1997) or
interior point methods (Arbel 1993) like Karmarkar’s algorithm (Kar-
markar 1984) are both fast and reliable. (The simplex method referred to
here is distinctly different from the simplex algorithm proposed by Nelder

224 4 Problem Domains

and Mead.) Once equality constraints become nonlinear, linear program-
ming methods are not applicable. The fact that there is no general approach
to solving systems of nonlinear equations makes DE a plausible alternative
because it does not require nonlinear equations to be treated any differently
than linear ones.

A pure constraint satisfaction problem (Eq. 4.27) can be recast into an
“objective” function that sums the squares (or absolute values) of all equal-
ity constraint violations:

() .)()('
1

2

=

=
N

n

nf xx ϕ
(4.31)

To satisfy the equality constraints, f′(x) must be driven to zero.
Digital filter design provides a practical example of a nonlinear con-

straint satisfaction problem in which two representations of the same data
flowgraph that have the time sequence s(ν) as input produce the same time
sequence y(ν) as output (Fig. 4.31) (Antoniou 1993). Elements of the
flowgraphs are adders (circles), unit delay elements (rectangles) and mul-

tipliers (triangles). There are many filter design programs that can find the
multiplier values for the second canonical structure (left data flowgraph).
The state variable structure, however, has better numerical properties, so it
is important to derive the multiplier values for the state variable structure
from those computed for the second canonical structure.

z-1

z-1

+
+

+

+

+
+

+

+

-b1

-b2

a0

a1

a2

s(ν)

r(ν)

r(ν-1)

r(ν-2)

a0*r(ν)
y(ν) z-1

z-1

+

+
+

a11

e2

e3

e1

s(ν) y(ν)

+

+

++

a22

d1

+
d2

a21

+

a22

second canonic structure

state variable structure

Fig. 4.31. Two data circuits (flowgraph structures) that yield the same output y(ν)
for the same input, s(ν)

The following system of nonlinear equations describes the design prob-
lem:

4.3 Optimization with Constraints 225

()
() ()
() 22211221

11221121221221134

12211221133

032

2122122111

122110

aadade

adadeaaaae

adedeaae

ae

baaaa

baa

−⋅−⋅⋅+
⋅−⋅⋅+⋅−⋅⋅=

−⋅+⋅++⋅−=
−=

−⋅−⋅=
−−−=

ϕ
ϕ
ϕ
ϕ
ϕ (4.32)

For simplicity, no variables were eliminated from Eq. 4.32. Equation 4.31
was used instead.

To apply DE, each of the nine state variable multipliers a11, a22, a12, a21,
d1, d2, e1, e2, e3 is assigned to a vector component xj, j = 0, 1, …, 8. The ob-
jective function based on Eq. 4.31 will be zero if ϕn = 0 for n = 1, 2, 3, 4,
5. Since there are five known values and nine unknowns, the problem is
under-specified and four of the nine unknowns can be preset, e.g., by set-
ting both a11 and a22 to 0 and by setting e3 to 0 and d1 to 1. Presetting vari-
ables, however, is not entirely arbitrary. A poor presetting may render the
resulting system of equations unsolvable (Hoefer 1987).

For example, let the numerical values input for the second canonical
structure be

a0 = 0.015608325640383633
a1 = 0.009443684818916196
a2 = 0.01980858856448345
b1 = −1.20703125
b2 = 0.75250244140625.

When there are no restrictions on coefficients in the state variable struc-
ture, DE found the following solution for state variable coefficients:

d1 = −0.050119
d2 = 0.302834
e1 = −0.128561
e2 = 0.072084
e3 = 0.015893
a11 = 0.387510
a12 = −0.622358
a21 = 0.698416
a22 = 0.819760.

226 4 Problem Domains

The convergence graph in Fig. 4.32 shows that DE/rand/1/bin with Np =
30, F = 0.75, Cr = 1 had no trouble finding a solution to this nonlinear sys-
tem of equations.

Direct Equality Constraint Handling

Lampinen’s method for direct constraint handling can also be extended to
equality constraints by taking the absolute value of ϕn(x) and selecting a
trial vector that is not worse in any respect than the target vector:

{ }

{ }

{ }

{ }

{ }

ε

ϕϕ

εϕ

εϕ

εϕ

εϕεϕ

≤

≤∈∀
∧

>∈∃

∨

>∈∃
∧

≤∈∀

∨
≤

∧
≤∧≤∈∀

=+

0where

otherwise

)()(:,...,1

)(:,...,1

)(:,...,1

)(:,...,1

)()(

)()(:,...,1

if

,

,,

,

,

,

,,

,,

,
1,

gi

gingin

gin

gin

gin

gigi

gingin

gi

gi

Nn

Nn

Nn

Nn

ff

Nn

x

xu

u

x

u

xu

xu

u
x

(4.33)

The constant ε in Eq. 4.33 may be set close to the floating-point precision
limit.

4.4 Combinatorial Problems 227

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

f(x)

Number of evaluations of f(x)

Fig. 4.32. Example for the convergence graph of the problem outlined in Fig. 4.31

4.4 Combinatorial Problems

In combinatorial problems, parameters can assume only a finite number of
discrete states, so the number of possible vectors is also finite. The term
“combinatorial optimization” is often equated with “discrete optimization
on finite sets” even when a problem is the result of quantizing a highly
constrained continuous problem (Babu and Munawar 2001; Du and Par-
dalos 1998; Press et al. 1992; Reeves 1993). Such problems are combina-
torial (Du and Pardalos 1998; Corne et al. 1999) in a wide sense because
they are viewed as “rearrangement problems” (Pahl and Damrath 2000).
For example, picking the best optical glass for a telescope objective is a
wide-sense combinatorial problem because a glass’s optical properties (in-
dex of refection, dispersion, etc.) are continuous variables that are rendered
discrete only because a limited number of glass types are commercially
available. DE has solved wide-sense combinatorial problems (Babu and
Munawar 2001; Storn 2000) in which discrete parameters are numerical
and arithmetic operations are defined (see Sect. 4.2.5).

Many of the most familiar combinatorial problems, like the traveling
salesman problem, the knapsack problem, the shortest-path problem, etc.
(Syslo et al. 1983), are strict-sense combinatorial problems because they

228 4 Problem Domains

have no continuous counterpart. For example, the single constraint
(bounded) knapsack problem reflects the dilemma faced by a hiker who
wants to pack as many valuable items in his or her knapsack as possible
without exceeding the maximum weight he or she can carry. In the knap-
sack problem, each item has a weight, wj, and a value, cj (Eq. 4.34). The
goal is to maximize the value of items packed without exceeding the
maximum weight, b. The term xj represents the number of items with
weight wj and value, cj:

.0,0,:tosubject

integers,0,:maximize

1

0

1

0

>≥≤

≥

−=

=

−=

=

bwbxw

xxc

j

Dj

j

jj

j

Dj

j

jj

(4.34)

The solution to this problem will be a set of integers that indicate how

many items of each type should be packed. As such, the knapsack problem
is a strict-sense combinatorial problem because its parameters are discrete,
solutions are constrained and it has no continuous counterpart (only a
whole number of items can be placed in the knapsack).

In other strict-sense combinatorial problems, parameter values are dis-
crete because they are symbolic. For example, in the board game of Scrab-
ble, players are given seven randomly selected letters. Each letter has an
associated numerical score. The game’s objective is to find the combina-
tion of letters with the maximum score, subject to the constraint that letters
form a real word that shares one or more letters with a word already on the
board. In this strict-sense combinatorial problem, the objective function
(word score) is numerical, but parameters are discrete, non-numerical let-
ters whose combinations are highly constrained by dictionary entries and
the existing board state.

For a problem like Scrabble, a parameter state is a letter whose meaning
is understood in the context of language, not a number that measures quan-
tity. Unless a symbolic combinatorial problem can be reformulated into
one whose parameters measure quantity, DE is not likely to be effective
because its mutation operator, like all numerical optimizers, relies on
arithmetic operators (add, subtract, multiply, divide, modulo, etc.) rather
than general data manipulation operations (swap, replace, move, etc.).

DE may prove effective on strict-sense, knapsack-like problems whose
parameters measure quantity and whose constraints are not particularly re-
strictive, but its ability to optimize strict-sense problems also depends on
the number and nature of any constraints. Strong constraints like those im-

4.4 Combinatorial Problems 229

posed in the traveling salesman problem make strict-sense combinatorial
problems notoriously difficult for any optimization algorithm. In DE’s
case, the high proportion of infeasible vectors caused by constraints pre-
vents the population from thoroughly exploring the objective function sur-
face. To minimize the problems posed by infeasible vectors, algorithms
can either generate only feasible solutions, or “repair” infeasible ones. The
remainder of this chapter explores one approach that generates only feasi-
ble solutions and three others that rely to varying degrees on repair mecha-
nisms. Each method proposes an analog of DE’s differential mutation op-
erator to solve the traveling salesman problem.

4.4.1 The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) is a fairly universal, strict-sense
combinatorial problem into which many other strict-sense combinatorial
problems can be transformed (Syslo et al. 1983; Dolan and Aldous 1993).
Consequently, many findings about DE’s performance on the TSP can be
extrapolated to other strict-sense combinatorial problems.

c1

c2

c3

c4 c5

x

y

d
5,3

d 3,
4

d
4,2

d 2,
1

d1,5

Fig. 4.33. An example of a five-city TSP. The tour indicated is one possible solu-
tion.

In the TSP, a salesman wants to minimize his travel expenses by finding
the shortest route that visits each city in his territory just once. More gen-
erally, let there be M cities ci, i = 1, 2, ..., M, each of which is at distance
di,j = dj,i to some other city cj, j not equal to i. The total distance for the tour
is

230 4 Problem Domains

,
1

, ijd
M

i

ji ≠=Θ
=

(4.35)

Figure 4.33 shows an example of a five-city tour.

4.4.2 The Permutation Matrix Approach

The basic idea behind DE is that two vectors define a difference that can
then be added to another vector as a mutation. The same idea transfers di-
rectly to the realm of permutations, or the permutation group. Just as two
vectors in real space define a difference vector that is also a vector, two
permutations define a mapping that is also a permutation. This generaliza-
tion of DE can be applied to the TSP because if cities are labeled with
natural numbers, a valid tour is just a permutation of the sequence (1, 2,
…, M). For example, xr1 and xr2 in Eq. 4.36 encode tours, each of which is
a permutation (M = 5):

=

2

5

4

3

1

1rx , =

2

5

3

4

1

2rx .

(4.36)

Labels for cities in vectors xr1 and xr2 do not have to be numbers, but using
numerical tags makes it easy to compute and apply the permutation matrix,
P, that xr1 and xr2 define:

=⋅=

10000

01000

00010

00100

00001

with,12 PxPx rr .

(4.37)

Like DE’s difference vector, the randomly derived permutation matrix can
permute a third randomly chosen vector into a mutant. Because all opera-
tions are permutations, mutants are always feasible solutions, i.e., all are
valid tours that visit each city just once.

Figure 4.34 outlines an algorithm that scales the effect of the permuta-
tion matrix. Setting δ = 1 leaves the permutation matrix unchanged, while

4.4 Combinatorial Problems 231

δ = 0 reduces it to diagonal form. Intermediate values perform a fraction of
the permutation defined by P.

...
for (i=1; i<M; i++)//search all columns of P
{
 if (element p(i,i) of P is 0) //1 not on diagonal
 {
 if (rand() > δ) //if random number ex [0,1] exceeds δ
 {

j=1; //find row where p(j,i) = 1
 while(p(j,i) != 1) j++;
 swap_rows(i,j);
 }
 }
}
...

Fig. 4.34. Algorithm to apply the factor δ to the difference permutation, P

In practice, this approach tends to stagnate because moves derived from
the permutation matrix are seldom productive. In addition, this method is
unable to distinguish rotated but otherwise equal tours. Because they dis-
play a unique binary signature, equal tours can be detected by other means,
although this possibility is not exploited in the algorithm described in Fig.
4.34. This scheme is similar to the one described in Ruettgers (1997) who
used it with some success on scheduling problems.

In part, a permutation takes a value from one parameter and copies it
into a parameter with a different index. Like ordinary vector addition, tra-
ditional DE only combines values from parameters having the same index.
The following two approaches resemble traditional DE because they both
use vector addition, although their ultimate effect is to shuffle values be-
tween parameters, i.e., generate permutations.

4.4.3 Relative Position Indexing

Another way to guarantee that mutant trial tours are (almost) always valid
is to transform parameters into the floating-point interval [0,1], perform
mutation and then convert mutant parameters back into the integer domain
using “relative position indexing” (Lichtblau 2002a). The first step in this
simulation of DE mutation is to divide each parameter by the vector’s
largest element, in this case, M = 5.

232 4 Problem Domains

====

4.0

1

6.0

8.0

2.0

5
and

4.0

1

8.0

6.0

2.0

5
2

,2
1

,1
r

fr
r

fr

x
x

x
x .

(4.38)

The subscript, f, denotes a vector’s floating-point representation. After a
third vector is chosen and normalized

→=

6.0

8.0

2.0

4.0

1

3

4

1

2

5

,33 frr xx ,

(4.39)

the mutation is applied:

() =
−

⋅+=−⋅+=
=

6.0

8.0

37.0

23.0

1

0

0

2.0

2.0

0

85.0

6.0

8.0

2.0

4.0

1

85.0

,2,1,3

F

frfrfrf F xxxv .

(4.40)

The floating-point mutant vector, vf, is then transformed back into the inte-
ger domain by assigning the smallest floating value (0.23) to the smallest
integer (1), the next highest floating value (0.37) to the next highest integer
(2), and so on to obtain

=→=

3

4

2

1

5

6.0

8.0

37.0

23.0

1

vv f .

(4.41)

This backward transformation, or “relative position indexing”, always
yields a valid tour except in the unlikely event that two or more floating-
point values are the same. When such an event occurs, the trial vector must
be either discarded or repaired.

4.4 Combinatorial Problems 233

This method looks attractive at first sight and the results are reasonable,
albeit not competitive with special-purpose TSP-solvers (Lichtblau 2002a,
2002b). A closer look, however, reveals that DE’s mutation scheme to-
gether with the forward and backward transformations is, in essence, a
shuffling generator. In addition, this approach does not reliably detect
identical tours because the difference in city indices has no real signifi-
cance. For example, vectors with rotated entries, e.g., (2, 3, 4, 5, 1) and (1,
2, 3, 4, 5), are the same tour, but their difference, e.g., (1, 1, 1, 1, −4), is
not zero.

4.4.4 Onwubolu’s Approach

Like Lichtblau, Onwubolu and Babu (2004) label cities with integral nu-
merical indices, transform vectors into the real domain, manipulate them
and then transform them back into the integer domain. Onwubolu and
Babu defined the forward transformation of city indices into the continu-
ous domain as

()ε+⋅+−= 11'
ii xx (4.42)

where ε is a small number. The backward transformation is defined as

() ()[]ε−⋅+= 21round '
ii xx (4.43)

where the round() function rounds the argument to the nearest integer.
Like the previous two methods, this approach impedes DE’s self-

steering mechanism because it fails to recognize rotated tours as equal. In
addition, Onwubolu and Babu’s method usually generates invalid tours
that must be repaired. Even though competitive results are reported in On-
wubolu and Babu (2004) and Onwubolu (2003), there is reason to believe
that the success of this approach is primarily a consequence of prudently
chosen local heuristics and repair mechanisms, not DE mutation.

4.4.5 Adjacency Matrix Approach

When tours are encoded as city vectors, the difference between rotated but
otherwise identical tours is never zero. Rotation, however, has no effect on
a tour’s representation if it is encoded as an adjacency matrix. An adja-
cency matrix is a symmetric, M × M matrix matrix in which the entry in
row i and column j is the number of connections from city i to city j (Do-
lan and Aldous 1993). The tour in Fig. 4.33 generates the adjacency ma-
trix:

234 4 Problem Domains

=

00101

00110

11000

01001

10010

1A .

(4.44)

For example, city c1, which corresponds to both row 1 and column 1 of A1,
is connected to city c2 and to city c5 because there are ones in the second
and fifth columns of row 1, as well as in the second and fifth rows of col-
umn 1.

Because the TSP allows each city to be visited only once, the elements
of A1 must be either ones or zeros. More particularly, there must be exactly
two ones in each row and in each column. In addition, the main diagonal
of the adjacency matrix must be zero because there is no route from a city
to itself. An adjacency matrix that satisfies the above requirements consti-
tutes a valid TSP matrix.

Like the permutation matrix, the adjacency matrix is a semi-numerical,
logical operator whose binary elements can be computed by comparing ei-
ther numeric or non-numeric city symbols. Since matrix entries are zeros
and ones, differences must be taken in the finite field GF(2), or Galois
Field 2. All values in GF(2) are either 0 or 1 and all arithmetic operations
are performed modulo 2, meaning that 2 is added to, or subtracted from,
each computed result until only 0 or 1 remains. Equation 4.45 shows that
addition and subtraction are the same in GF(2):

()
()
()

()
()
() 02mod11

12mod10

02mod00

02mod11

12mod10

02mod00

=−
=−
=−
=+
=+
=+ (4.45)

The notation

() yxyx ⊕=+ 2mod (4.46)

is shorthand for modulo 2 addition, also known as the “exclusive or” logi-
cal operation.

The difference matrix ∆i,j

4.4 Combinatorial Problems 235

jiji AA ⊕=,
(4.47)

is the analog of DE’s traditional difference vector. For example, given the
valid TSP matrices A1 and A2,

=

00101

00110

11000

01001

10010

1A , =

01001

10100

01010

00101

10010

2A ,

(4.48)

their difference is

=⊕=

01100

10010

10010

01100

00000

212,1 AA .

(4.49)

From Eq. 4.49 it is apparent that ∆i,j itself need not be a TSP matrix. For
example, the first row and column of a valid TSP matrix cannot be all ze-
ros.

Rotated but otherwise equal tours generate identical adjacency matrices.
Consequently, the difference matrix between equal but rotated tours is al-
ways zero. Figure 4.35 shows that when two tours are not equal, the differ-
ence matrix drops connections that are common to both A1 and A2.

c1

c2

c3

c4 c5

A1

c1

c2

c3

c4
c5

A2

c1

c2

c3

c4
c5

∆1,2 = A1 + A2

Fig. 4.35. Example for the difference matrix ∆i,j and its graphical interpretation

236 4 Problem Domains

The TSP’s tight constraints make it unlikely that adding a difference
matrix to a valid TSP base matrix will produce an adjacency matrix that
satisfies the TSP’s requirements. Consequently, invalid TSP matrices must
be repaired to ensure that each city is connected to exactly two others. One
possible repair mechanism is based on the bounce-back method of parame-
ter constraint handling (Sect. 4.3.1). In particular, if adding the difference
matrix to a randomly chosen TSP base matrix does not yield a valid TSP
trial matrix, then this trial matrix is discarded, and a “2-exchange” (Syslo
et al 1983) is performed on the TSP base matrix (Fig. 4.36) instead.

Fig. 4.36. The “2-exchange” heuristic mutation

The 2-exchange reconnects two cities in a different way. First, two cities
are randomly selected except that both must be vertices of the difference
matrix and not connected to each other. Next, an immediate neighbor of
each city is randomly chosen except that the neighbors may not be the
same city. The 2-exchange then swaps the neighbors of the two previously
selected cities.

This scheme preserves good sections of the tour if the population has
almost converged, i.e., if most of the TSP matrices in the population con-
tain the same subtours. When the population is almost converged, there is
a high probability that the difference matrix will contain just a few ones,
which means that there are only a few cities available for a 2-exchange. To
avoid stagnation, a population initialized with randomly generated tours
must be large enough so that every city can be selected for a 2-exchange
by a difference vector. This minimum population size depends on the
probability that a city will be isolated in the difference matrix because two

4.4 Combinatorial Problems 237

adjacent city connections are the same. To reduce the probability of stag-
nation, entirely random 2-exchange moves are allowed with a probability 1
− p, p ∈ [0, 1]. Figure 4.37 shows that this method is competitive with
simulated annealing.

The dominant move in this scheme is the 2-exchange repair algorithm,
not the application of the difference matrix. This claim can easily be veri-
fied by running the algorithm without the 2-exchange repair algorithm
which quickly leads to stagnation. As such, selection is the only aspect of
DE in this technique that makes a significant contribution to resolving the
TSP. This is to be expected because the TSP is so heavily constrained that
a general-purpose mutation scheme is very unlikely to generate valid tours.

4.4.6 Summary

Although DE has performed well on wide-sense combinatorial prob-
lems, its suitability as a combinatorial optimizer is still a topic of consider-
able debate and a definitive judgment cannot be given at this time. Al-
though the DE mutation concept extends to other groups, like the
permutation group, there is no empirical evidence that such operators are
particularly effective. Similarly, tagging what is fundamentally symbolic
data with numerals makes it possible to implement DE-style mutation op-
erations, but the resulting differentials reflect arbitrary labeling choices,
not inherent metrical relationships or the population’s correlation with the
objective function surface. Most of the gains seen when DE-style operators
are invoked in these circumstances can be traced to repair mechanisms and
DE’s elitist selection scheme. More generally, the particular nature of
strict-sense combinatorial problems – their constraints and use of symbols
or numerical values – is more important in determining DE’s success than
is the fact that they are strict-sense problems.

Certainly in the case of the TSP, the most successful strategies for the
TSP continue to be those that rely on special heuristics (Onwubolu 2003;
Michalewicz and Fogel 2000; Freisleben and Merz 1996; Dueck 1993).

238 4 Problem Domains

0

5

10

15

20

25

30

0 5e+06 1e+07 1.5e+07 2e+07 2.5e+07

o
b

je
c
ti
v
e

 f
u

n
c
ti
o

n
 v

a
lu

e

number of function evaluations

Convergence graph for TSP with DE

Simulated Annealing

DE with Adjacency Matrix Approach

City tour obtained with DE

Best tour length: 5.874655724

Fig. 4.37. Convergence graph (above) for a relatively small, 50-city TSP (below)
that was solved with simulated annealing (Press et al. 1992) and with the adja-
cency matrix approach. The final tour length for SA was 5.8835 and 5.875 for DE.
Control parameters for DE were Np = 800 and p = 0.6.

4.5 Design Centering 239

4.5 Design Centering

Design centering is a constraint satisfaction problem whose goal is to find
the solution, which, when perturbed, remains feasible more often than any
other solution. Such problems are common in manufacturing where imper-
fections in production processes are inevitable. For example, analog elec-
tronic circuit design relies on components like resistors and capacitors
whose actual values inevitably differ from their stated values (Zhang and
Styblinski 1995). Similarly, mechanical designers must contend with shape
variations due to machine imprecision or tempering processes. Design cen-
tering also plays an important role in silicon chip manufacturing where
processes cannot be perfectly controlled. Design centering maximizes pro-
duction yield by finding the point least likely to produce an infeasible vec-
tor when manufacturing variations are taken into account.

When perturbed by the probability density function (PDF) that charac-
terizes the production process, the vector that yields the most designs satis-
fying all constraints is the design center, x0. Mathematically, design cen-
tering is the task of finding x = x0 such that

maximum.)(PDF
ROA

00 =xx d (4.50)

Loosely speaking, design centering tries to find the most interior point, for
example, by finding the point that maximizes the minimum distance to the
ROA’s rim. This problem is non-trivial since the ROA is generally un-
known. In addition, the PDF that models vector deviations plays an impor-
tant role in defining the shape whose design center is sought. For example,
the largest hypersphere that can be inscribed inside the ROA is not neces-
sarily the best shape to represent the effects of perturbations.

4.5.1 Divergence, Self-Steering and Pooling

Populations driven by DE exhibit three properties that facilitate design
centering: divergence, self-steering and pooling. Divergence is the ten-
dency of the population’s variance to increase over time when there is no
selective pressure. Self-steering is the ability to adapt step sizes and orien-
tations in response to the ROA’s shape. Pooling describes the population’s
persistence in areas within the ROA where trial vectors have the greatest
chance of survival.

Populations evolve within the ROA the same way that they do on objec-
tive function plateaus. Just as all vectors situated on a plateau have the
same objective function value, those that inhabit the ROA are all consid-

240 4 Problem Domains

ered equally feasible. In both cases, there is no selective pressure other
than that exerted by trial vectors replacing their equally feasible targets.
Since differential mutation inevitably places some trial vectors within the
ROA but beyond the hull that encloses the current generation, the popula-
tion expands if F is not too small (see Fig. 4.38). If, however, F is a nor-
mally distributed random variable that is below Zaharie’s limit, the popula-
tion will converge even if feasible trial vectors always replace feasible
target vectors (see Sect. 2.5.1) (Zaharie 2002). Otherwise, vectors diverge,
their differentials become longer and the expansion accelerates. Only the
ROA’s boundary halts the expansion because infeasible vectors cannot re-
place feasible ones. Figure 4.39 shows how divergence quickly disperses a
highly localized initial population.

x0

-0.4 -0.2 0 0.2 0.4

0

-0.2

-0.4

0.4

0.2 ROA

x1

Fig. 4.38. Some of the feasible trial vectors that replace feasible target vectors will
lie beyond the current population’s boundary causing vectors to diverge over time
if F is above Zaharie’s limit.

While divergence helps DE quickly explore the ROA’s full extent, self-
steering adapts the rate of divergence to the ROA’s shape. The second pic-
ture in Fig. 4.39 shows that as vectors conform to the “racket handle”
shape, the differentials they generate reinforce the population’s tendency to
spread horizontally. Coupled with divergence, self-steering allows vectors
to quickly escape from the racket handle. Once the population enters the

4.5 Design Centering 241

ROA’s open area, steps begin to grow vertically while they continue to ex-
pand horizontally.

-10

-5

0

5

10

0 2 4 6 8 10 12

x1

x0

Generation 1

-10

-5

0

5

10

0 2 4 6 8 10 12

x1

x0

Generation 36

-10

-5

0

5

10

0 2 4 6 8 10 12

x1

x0

Generation 50

Fig. 4.39. Divergence, self-guiding and pooling of the vector population. Results
were generated using DE/rand/1/bin with Np = 30, F = 0.9 and Cr = 0.5.

After the population expands into the ROA’s open area, pooling keeps it
there. Because vectors in the ROA’s most expansive region are the points
most likely to create a feasible trial vector, there is a natural tendency for
vectors to pool there. As the final picture in Fig. 4.39 shows, tightly con-
strained areas like the racket handle are abandoned as vectors pool in a less
restricted environment. The program, racket.exe, on the accompany-

242 4 Problem Domains

ing CD allows experimenting with the divergence, self-guiding and pool-
ing effects.

4.5.2 Computing a Design Center

Applying DE to design centering involves three steps. The first step is to
ensure that all Np population members inhabit the ROA, either by perturb-
ing a known solution with, for example, a multi-dimensional Gaussian dis-
tribution, or by applying DE in conjunction with Eq. 4.21 (Lampinen’s cri-
terion) and waiting until all constraints are satisfied.

Once the population consists of Np feasible vectors, the second step is to
run DE long enough for the population to spread over the entire ROA. One
indicator that the population has reached equilibrium is that the time aver-
age of the mean vector remains constant within certain bounds, i.e., the
time average

()

−+

= =

=
−

=

∈⋅−+⋅=

1

1
,,

1
,1,,

11

or

]1,0[;
1

1

Nk

kg

Np

i

gikav

Np

i

gikavkav

NpN

Np

xx

xxx ααα
(4.51)

should satisfy

η<− −1,, kavkav xx (4.52)

where η is a small number.
The third step is to decide how to define the design center. For convex

ROAs, several authors (Brayton et al. 1981; Lueder 1990; Sapatnekar et al.
1994) argue that it makes sense to use the average value itself as the design
center. If, however, the ROA is non-convex, the mean vector can fall into
an infeasible zone. Figure 4.39 illustrates a non-convex ROA.

Another measure that provides a rough estimate of the design center is
the point that maximizes the center index:

jiij

Np

i

ijj xxdNpjdc −==−=
=

,,...,2,1,)exp(
1

.
(4.53)

4.5 Design Centering 243

Equation 4.52 assumes that all vectors are feasible. The center index is
based on the idea that if feasible vectors are uniformly distributed, the
ROA’s most interior points also have the nearest neighbors. Figure 4.40
shows the center index for the problem defined in Eqs. 4.16–4.19 except
that bounds have been changed from 1.04, 0.4, 0.8 to 1.1, 0.5, 0.4, respec-
tively. The small circle shows that the design center is well placed even
though the ROA is non-convex. It has to be admitted, however, that this
method for estimating the design center is still in its infancy. Program code
for this example can be found on this book’s accompanying CD.

Fig. 4.40. The design center for ROA described by Eqs. 4.16–4.19 but with differ-
ent constraints (1.1, 0.5, 0.4). Here, the design center is based on maximizing the
center index (Eq. 4.53). Results were generated using DE/rand/1/bin with Np =
100, Cr = 1 and F = 0.75 with jitter: Fj = 0.75+randj((0,1) − 0.5)⋅0.0001.

Design centers are less than optimal to the extent that neither the mean
vector nor the center index takes into account the PDF to which parameters
are subject (except to assume that it is uniform). While DE holds promise
as a design centering method, more research is needed to develop an effec-
tive design centering implementation.

244 4 Problem Domains

4.6 Multi-Objective Optimization

Multi-objective optimization attempts to simultaneously minimize K indi-
vidual objective functions. The goal, therefore, is to

()

.2,,...,1),(

minimizeto

,

Find
T

110

≥=

ℜ∈= −

KKkf

,x,,xx

k

D
D

x

xx

(4.54a)

ℜD is the D-dimensional space of real numbers. The solution to this prob-
lem is unambiguously defined only if there is a single vector that simulta-
neously minimizes all K objective functions. In this special case, the solu-
tion vector, x, satisfies the condition

{ } *:,...,1 kKk xx =∈∀ (4.54b)

where xk* is a global optimum of the kth objective function, fk(x).
In practice, objectives often conflict, meaning that all K objective func-

tion extremes do not coincide. When all objectives cannot be simultane-
ously minimized, a single, best solution is not easily defined. For example,
quality control technicians must inspect every item to be certain that each
meets design tolerances. In many cases, however, absolute certainty about
a product’s quality is not necessary and the high cost of inspecting each
unit is not justified. In this example, low cost and defect-free products are
conflicting objectives. The “best” solution is usually a compromise that
depends on which objectives are the most important. If each objective
function can be assigned a weight that indicates its relative importance,
then the best solution will be unambiguous.

4.6.1 Weighted Sum of Objective Functions

Minimizing a weighted sum of objective functions transforms a multi-
objective optimization problem into one with a single objective to which
DE or any other suitable optimizer can be readily applied. Summing
weighted objective functions reduces the multi-objective goal to

4.6 Multi-Objective Optimization 245

()

.2,)()('

minimizeto

,

Find

1

T
110

≥=

ℜ∈=

=

−

Kfwf

,x,,xx

K

k

kk

D
D

xx

xx

(4.55)

The symbol, wk, denotes the kth objective function weight.
Multi-objective optimization methods can be classified based on how

they assign weights, i.e., how they articulate preferences (Hwang and Abu
Syed 1979; Miettinen 1998; Deb 2001; Coello Coello et al. 2002).

• A priori. Weights are assigned prior to optimization based on expert
knowledge.

• Progressive. An expert changes weights during optimization based on
feedback from an updated set of solutions.

• A posteriori. Once a set of candidate solutions has been found, an expert
selects one result and by so doing, implicitly specifies a set of weights.

A priori preference articulation assumes that objective preferences can
be ordered and that weights do not change during optimization. If, how-
ever, there are many conflicting objectives, ordering them may be difficult.
So that weights have the desired impact, objective functions may first have
to be normalized to compensate for their different dynamic ranges. Deter-
mining the appropriate normalization scale factor can be difficult because
it requires knowing the range of function extremes – knowledge that the
optimization itself is supposed to provide. Without additional information
about other potentially effective solutions, the intricacies of weight selec-
tion and normalization often make the a priori approach impractical.

Progressive preference articulation is more flexible than a priori weight
selection because it exploits knowledge gleaned while the optimization is
in progress. By periodically monitoring the optimization, an expert can
change weights and affect corrections. Although progressive preference ar-
ticulation represents a level of refinement over a priori weight selection,
the expert’s biases can inadvertently steer the population to what is ulti-
mately seen as an undesirable compromise.

Searching for a single result that minimizes a weighted sum of objective
functions excludes from consideration the many compromise solutions that
may also be viable. Instead of imposing a set of weights, experts often
want to find a set of competing solutions without biasing the result by ei-
ther a priori or progressive preference articulation. In a posteriori prefer-

246 4 Problem Domains

ence articulation, experts implicitly apply weights by selecting one solu-
tion from a set of equally compelling final possibilities. Algorithms that
employ a posteriori weight preference are typically based on Pareto-
optimality.

4.6.2 Pareto Optimality

The concept of a Pareto-optimum was first introduced by the engi-
neer/economist Vilfredo Pareto (Pareto 1886). The Pareto-optimization
approach to multi-objective optimization can be characterized as follows:
“the term ‘optimize’ in a multi-objective decision making problem refers
to a solution around which there is no way of improving any objective
without worsening at least one other objective” (Palli et al. 1998).

The central concept of Pareto-optimization is Pareto-dominance. A vec-
tor of objective function values dominates another if none of its objective
values are higher and at least one is lower. More specifically, let vectors y
= {f1(x), f2(x), …, fK(x)} and y* = {f1(x*), f2(x*), …, fK(x*)} be points in
the objective function space y ∈ O ⊂ ℜK. Each vector’s components are
the objective function values of an associated point in the parameter or de-
cision space, x ∈ S ⊂ ℜD. Mathematically, vector y* dominates vector y iff

y* is partially less than y, i.e., if

{ } { }).()(:,,1)()(:,,1 yyyy kkkk ffKkffKk <∈∃∧≤∈∀ ∗∗ (4.56)

A solution that is not dominated by any other feasible solution is called
Pareto-optimal, or strongly efficient. More precisely, a solution x* ∈ S is
Pareto-optimal if there is no other vector, x ∈ S, whose objective function
vector dominates that of x*. Thus, Pareto-dominance is a relationship be-
tween vectors in the objective function space, O, not the parameter space,
S.

The Pareto-front is the hypersurface within the objective function space,
O, that is defined by the set of all strongly efficient solutions. As such, the
Pareto-front is a set of “best compromise” solutions that cannot be domi-
nated – no objective can be improved without making some other objective
worse. Armed with such a set of solutions, an expert can learn how much
improving one objective worsens the others before picking one solution
from the non-dominated set.

4.6 Multi-Objective Optimization 247

4.6.3 The Pareto-Front: Two Examples

Equation 4.57 outlines a two-dimensional, multi-objective optimization
problem with two conflicting objectives:

()

10,10-

 boundstosubject

)(

)(

minimizeto

,

Find

10

2
102

1
2
01

2T
10

≤≤

+=

+=

ℜ∈=

xx

xxf

xxf

,xx

x

x

xx

(4.57)

Figure 4.41 plots 200 non-dominated solutions to Eq. 4.57 and one domi-

nated solution that is outperformed by many other points with respect to
both objectives. The distribution of non-dominated points in the objective
function space approximates the true Pareto-front (Fig. 4.41, right).

Decision Variable Space

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

x 0

x
1

Dominated solution

Objective Function Space

-20.0

0.0

20.0

40.0

60.0

80.0

100.0

-20.0 0.0 20.0 40.0 60.0 80.0 100.0

f 1(x)

f
2(

x
)

Pareto-front of nondominated

solutions

FEASIBLE

REGION

INFEASIBLE

REGION

Dominated solution

Fig. 4.41. Plots of 200 non-dominated solutions for the bi-objective problem in
Eq. 4.57 in both the decision variable and objective function spaces. The Pareto-
front separates feasible solutions from infeasible ones. Non-dominated points were
generated with the modified version of DE that is described in the next section.

In this example, solutions also form a front when they are plotted in the
decision variable space (Fig. 4.41, left). The distribution of Pareto-optimal
points within the parameter space is a consequence of the particular way in

248 4 Problem Domains

which Eq. 4.57 associates points in the parameter space with their counter-
parts in the objective function space. Depending on the mapping, Pareto-
optimal points may not form a front at all. In the following two-variable,
two-objective optimization problem, solutions in the decision space are not
distributed on a front:

()

10,10-

 boundstosubject

-8)(

-6)(

minimizeto

,

Find

10

2
1

2
02

2
1

2
01

2T
10

≤≤

+=

+=

ℜ∈=

xx

xxf

xxf

,xx

x

x

xx

(4.58)

The dual objective in Eq. 4.58 is to simultaneously minimize the dis-
tance to each of two concentric circles, one with radius 6, the other with
radius 8 (see Fig. 4.42). Only those points that fall on or between the cir-
cles are Pareto-optimal.

Decision Variable Space

-10

-8

-6

-4

-2

0

2

4

6

8

10

-10 -8 -6 -4 -2 0 2 4 6 8 10

x 0

x
1

Objective Function Space

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

f 1(x)

f 2
(x

)

Fig. 4.42. A set of 100 different Pareto-optimal solutions for the bi-objective ex-
ample problem Eq. 4.58. Only points on or between the circles are Pareto-optimal.
The modified version of DE described in the next section generated the non-
dominated set.

4.6 Multi-Objective Optimization 249

For any point that lies either inside or outside both circles, there will al-
ways be a solution that improves one objective without worsening the
other. For example, (0, 5.9) is not a Pareto-optimal solution because it is
dominated by the Pareto-optimal point (0, 6.1). Inspection shows that the
point (0, 6.1) is Pareto-optimal because there is no point having a shorter
distance to one circle, that does not have greater distance to the other.

In this example (Fig. 4.42), the non-dominated points approximate the
Pareto-front in the objective function space, but not in the decision vari-
able space where they form an annulus instead. In summary:

• The Pareto-front contains the Pareto-optimal solutions. The Pareto-front
divides the objective function space into two parts: one that contains
non-optimal solutions and one that contains infeasible solutions. There
is no valid mapping from the decision variable space to the infeasible
part of the objective function space because by definition there are no
valid points beyond the Pareto-front.

• The Pareto-front is not always continuous. For example, constraints,
quantized parameters or quantized non-continuous objective functions
can produce a discontinuous Pareto-front.

• The Pareto-front is not always convex. It can be concave, e.g., serpen-
tine, or consist of disjoint sections, each of which may be either concave
or convex.

• The Pareto-front may coalesce to a single point if objectives do not con-
flict or if constraints so restrict it.

• The Pareto-front may extend toward infinity even if parameters are
bound constrained. Consequently, it may be necessary to set bounds on
objective function values.

• Depending on the problem, neighboring points in the Pareto-front are
not always neighbors in the parameter space.

A more detailed discussion of Pareto-optimization and related concepts
can be found in Miettinen (1998), Deb (2001) and Coello Coello et al.
(2002).

For most nonlinear, multi-objective optimization problems, determining
the entire continuous Pareto-optimal surface is practically impossible, but
finding a discrete set of Pareto-optimal points that approximates the true
Pareto-front (e.g., Fig. 4.42) is a realistic expectation. While even a simple
random search can locate Pareto-optimal points, EAs can find multiple
non-dominated solutions within a single run.

250 4 Problem Domains

4.6.4 Adapting DE for Multi-Objective Optimization

Problems with multiple objectives resemble those with multiple con-
straints. In both cases, the goal is to find a set of parameters that minimizes
a set of functions. Because problems in these two domains share this
common structure, the methods used to solve them are often similar. For
example, both constrained and multi-objective optimization may benefit
from a judicious assignment of weights to raw function values. Pareto-
optimal solutions, however, must be determined without weights so that an
expert will have a set of unbiased options from which to choose. By using
Pareto-dominance as a selection criterion, a population can be driven to-
ward the Pareto-front in the same way that Lampinen’s dominance-based
criterion for constrained optimization (Eq. 4.21) pressures vectors toward
feasible regions.

Incorporating dominance-based selection into DE involves nothing
more than comparing the trial and target vectors to determine which one is
dominant.

{ } () ()≤∈∀
=+ otherwise.

,:,...,1if

,

,,,

1,
gi

gikgikgi

gi

ffKk

x

xuu
x

(4.59)

According to Eq. 4.59, the trial vector ui,g is selected if the target vector,
xi,g, does not dominate it. Except for containing objective function values
instead of constraint function violations, Eq. 4.59 is identical to
Lampinen’s criterion for comparing two infeasible vectors (Eq. 4.21).

After many generations, some population vectors will be dominated
while others will not. As a final step, all dominated points in the last gen-
eration should be removed so that the remaining population approximates
the Pareto-front. More formally, a member, xb, of the final generation’s
population should be removed from the final population if there exists an-
other vector, xa, that satisfies the condition

{ } { }
{ } .where),()(:,,1)()(

:,21,,,,1

baffKkff

,Np,baKk

bkakbkak ≠<∈∃∧≤
∈∀∈∀

xxxx

(4.60)

In many cases, the trial vector ui,g can be rejected before all K objective
functions have been evaluated. If this shortcut is exploited, DE will exe-
cute more quickly. The flowchart in Fig. 4.43 describes a Pareto-
dominance selection criterion that minimizes the number of objective func-
tion evaluations.

4.6 Multi-Objective Optimization 251

Start comparing
vectors i,g

Select vectorxi,g ,

the current
population member.

End of
comparison.

Select vectorui,g ,

the trial vector.

fk(ui,g) ≤ fk(xi,g)

NO

YES

1) Objective function values for
xi,g are stored in order to avoid

unnecessary re-evaluation here.

Evaluatek:th
objective function,

fk (ui,g).

2) Objective function values for
the trial ui,g are stored.

2)

k = 1

k = k + 1

Last objective
function

k = K

NO

YES

1)

?

?

i,gxu

Fig. 4.43. This implementation of the Pareto-dominance-based selection rule in
Eq. 4.59 rejects a dominated trial vector at the earliest possible phase to avoid per-
forming any unnecessary objective function evaluations.

Both the selection rule described above and Lampinen’s criterion for di-
rect constraint handling are based on Pareto-dominance. This similarity
makes it easy to implement dominance-based selection for multi-objective
problems that are also constrained. Equation 4.61 outlines a Pareto-

252 4 Problem Domains

dominance-based selection rule that is designed to handle both multiple
objectives and multiple constraints:

{ }

{ } () ()

{ }

{ }

{ }

{ }

()
()

.violationsconstrainttherepresent

0,)(max)('

0,)(max)('

where

otherwise

)(')(':,...,1

0)(:,...,1

0)(:,...,1

0)(:,...,1

:,...,1

0)(0)(:,...,1

if

,,

,,

,

,,

,

,

,

,,

,,

,
1,

gimgim

gimgim

gi

gimgim

gim

gim

gim

gikgik

gimgim

gi

gi

Mm

Mm

Mm

Mm

ffKk

Mm

uu

xx

x

xu

u

x

u

xu

xu

u
x

γγ

γγ

γγ

γ

γ

γ

γγ

=

=

≤∈∀
∧

>∈∃

∨

>∈∃
∧

≤∈∀

∨
≤∈∀

∧
≤∧≤∈∀

=+

(4.61)

The selection rule in Eq. 4.61 can handle any number of objective and con-
straint functions, including K = 0 (constraint satisfaction problems) and M
= 0 (unconstrained problems). When K = 1 and M = 0, the Pareto-
dominance selection criterion reduces to DE’s original selection rule.

Equation 4.61 distinguishes three cases in which the trial vector replaces
the target vector in the next generation. The trial vector wins if:

1. Both vectors are feasible and the target vector does not dominate the
trial vector in the objective function space.

2. The trial is feasible and the target vector is infeasible.
Both vectors are infeasible and the trial vector’s constraint violations are

all less than or equal to those of the target vector.

Unless both the trial and target vectors are feasible, objective function val-
ues are not compared. Ignoring objective function values when one or both
vectors are infeasible is justified in the same sense that it does not matter if

4.6 Multi-Objective Optimization 253

a lens can be designed to give perfect images if it must be made of glass
that does not exist. The flowcharts in Fig. 4.44 show the selection scheme
outlined in Eq. 4.61 that minimizes the number of objective and constraint
function evaluations. According to Fig. 4.44, the most computationally ex-
pensive constraint and objective functions should be evaluated last so that
early detection of an inferior trial will save the most effort.

Start comparing
vectors ui,g and xi,g.

m = 1

Evaluate m:th
constraint function,

γm (ui,g).

Does ui,g violate

m:th constraint
more than xi,g ?

Last
constraint?

m = M

m = m + 1

2) After finding ui,g violating any of

the constraints more than xg , ui,g can

be rejected immediately, without
evaluating the remaining constraint
function values at all.

NO

NO

YES

YES

1) Objective and constraint function
values for xi,g are stored in order to

avoid unnecessary re-evaluation here.

2)

1)

A B

Fig. 4.44a. Pareto-dominance-based selection with direct constraint handling (Eq.
4.60). Inferior trial vectors are rejected at the earliest possible phase to avoid per-
forming unnecessary objective or constraint function evaluations.

254 4 Problem Domains

Select vector xi,g ,

the current
population member.

End of
comparison.

Select vector ui,g ,

the trial vector.

Does xi,g

satisfy all
constraints?

fk(ui,g) ≤ fk(xi,g)

NO

NO

YES

YES

4) Objective functions need to be
evaluated for the trial ui,g only in

case that both ui,g and xi,g have

been found feasible.

Evaluate k:th
objective

funct ion, fk (ui,g).

4)

3) If the current population member,
xi,g , satisfies all the constraints, trial

ui,g is also feasible here, since it

does not violate any of the constraints
more than xi,g .

3)

5) Constraint function values for the
trial ui,g will be stored. The objective

function value is computed and stored
only in case that ui,g is a feasible

solution. For an infeasible ui,g the

objective function value is not
computed, since it is not needed later
on for the comparisons either in case

of an infeasible ui,g or xi,g . See

note 3).

5)

k = 1

k = k + 1

Last objective

function
k = K

NO

YES

A B

?

?

Fig. 4.44b. Continuation of Fig. 4.44a

The Pareto–DE approach described here is relatively easy to implement
and should be effective on a wide range of problems. In some cases, how-
ever, this approach may suffer from the same problems that plague other
multi-objective EAs, including:

4.7 Dynamic Objective Functions 255

• The approximated Pareto-front is too far from the true Pareto-front.
• Not enough non-dominated points are found.
• The non-dominated set does not cover the entire Pareto-front.
• The non-dominated set is distributed too non-uniformly along the

Pareto-front.
• It is difficult to determine when the search is over. Compared to prob-

lems with a single objective, developing a stopping criterion for multi-
objective problems is more difficult because the population cannot be
expected to converge (see Figs. 4.41 and 4.42).

Examples of other ways in which DE has been adapted for multi-
objective optimization can be found in Chang et al. (1999), Wang and
Sheu (2000), Abbass et al. (2001), Abbass (2002a, 2002b, 2002c) and
Madavan (2002). In addition, readers interested in other multi-objective
EAs should refer to Miettinen (1998), Deb (2001) and Coello Coello et al.
(2002).

4.7 Dynamic Objective Functions

Previous sections have assumed that a vector’s objective function value is
static (Fig. 4.45a). This section explores how DE handles dynamic objec-

tive functions, i.e., functions that do not always yield the same result each
time a vector is evaluated. The source of an objective function’s dynamism
can be parameters (Fig. 4.45b), the objective function evaluation (Fig.
4.45c), or both (Fig. 4.45d).

In some cases, both the optimal vector and its objective function value
can be reliably estimated by a time average; in others, the optimum vector
drifts during the optimization process and must be tracked. Before outlin-
ing how DE handles optimum tracking, the next subsection considers the
case in which the influence of objective function fluctuations can be aver-
aged out.

256 4 Problem Domains

x

f(x) a)

xg

f(xg)

xg+2xg+1

f(xg+2)

f(xg+1)

b)

x

f(x)g

f(x)g+2

f(x)g+1

c)

xg

f(xg)g

xg+2xg+1

f(xg+2)g+2

f(xg+1)g+1

d)

Fig. 4.45. a A static objective function; b parameter noise; c objective function
evaluation noise; d both parameter and objective function evaluation noise. The
subscript, g, is a discrete time index that indicates the population’s current genera-
tion.

4.7.1 Stationary Optima

Probability distribution functions whose moments (i.e., expected value,
variance, etc.) are time invariant are known as stationary distributions
(Yaglom 1962). If the distribution of parameter or objective function
evaluation fluctuations is stationary and its expectation is finite, then both
the optimal vector and its objective function value can be reliably esti-
mated. The remainder of this section assumes that objective function value
noise is stationary and that the expectation of the underlying distribution is
finite. The next subsection considers the effect that stationary parameter
noise has on DE’s ability to estimate the location of the optimal vector, x*.

4.7 Dynamic Objective Functions 257

Parameter Noise

Parameters may fluctuate because they depend on a manufacturing process
that is subject to statistical variations. For example, manufacturing irregu-
larities might limit the tolerance for an electronic component to 5% of its
nominal value. For constraint satisfaction problems, the presence of pa-
rameter noise naturally leads to design centering (see Sect. 4.5). Noisy pa-
rameters can also occur when the precision of readings or adjustments of
control variables in a physical experiment is limited.

Although parameter noise is not a factor during optimization’s early
stages, it interferes with convergence once fluctuations in the parameter
space become comparable in size to vector differences in the population.
One way to locate the optimum vector x* is to estimate its position with
the time-averaged mean value of the population’s current best performing
vector

integer.,,
1

1
21

2

1
,best

12
best

* gg
gg

g

gg

g

=+−
=≅ xxx

(4.62)

The integers g1 and g2 are the beginning and ending generations, respec-
tively, over which the time average is taken. DE operates as usual, with
both population and trial vectors competing in one-to-one, winner-takes-all
competitions, except that at the end of each generation, g1 ≤ g ≤g2, the
population’s current best vector, xbest,g, is sampled so that the time-
averaged best vector (Eq. 4.62) can finally be computed.

Figure 4.46 illustrates the effect that adding a uniformly distributed ran-
dom variable to parameters has on DE’s ability to optimize the ten-
dimensional sphere objective function. The mean best vector (Eq. 4.62)
outperforms the best vector in the final generation, but not the best vector
obtained when noise is absent. Since there is no objective function evalua-
tion noise in this example, the function value plotted for the mean best
vector is accurate. The accuracy with which the minimum can be located
can be improved by increasing the number of generations over which the
position of the best performing vector is averaged. This, of course, only
holds if the average is taken over those generations where the function
value is basically constant. In Fig. 4.46 this region roughly starts at genera-
tion 2500.

Even though parameter noise makes an objective function value dy-
namic, it does not affect the location of the optimum. Like measurement
error, parameter noise simply makes the optimum harder to locate. For the
optimum to actually shift, the objective function evaluation itself must be
noisy. The next subsection explores the effect of stationary function

258 4 Problem Domains

evaluation noise on DE’s ability to both locate the optimal vector and de-
termine its objective function value.

10-dimensional sphere + parameter noise

1E-25

1E-22

1E-19

1E-16

1E-13

1E-10

1E-07

0,0001

0,1

100

100000

0 1000 2000 3000 4000 5000

Generation

F
u

n
c

ti
o

n
 v

a
lu

e

no noise

noise

mean

best x*

Fig. 4.46. The effect of stationary parameter noise when optimizing the ten-
dimensional sphere objective function. To create the performance plot with noise,
a random increment equal to 10−6 ⋅(randj(0,1) − 0.5) was added to each parameter
prior to evaluation. The population’s best value is plotted every 20 generations.
The algorithm was DE/rand/1/bin, with Np = 50, F = 0.9, Cr = 1, no bound con-
straints. The mean best vector (Eq. 4.62) was averaged over the last 1000 genera-
tions.

Objective Function Evaluation Noise

Noise can also enter the optimization process during the objective function
evaluation. For example, the on-line optimization of control parameters for
an industrial process (controlling a chemical reactor, power plant, etc.) is a
real-world scenario in which physical measurements of the objective func-
tion value (yield from the process, quality of product, etc.) have limited
accuracy. In addition, random phenomena affecting the industrial process
(incomplete mixing, thermal and chemical non-homogeneity, etc.) also
generate some level of noise. Objective function noise can also arise from
sensors like those used by autonomous robots seeking to optimize their re-
sponse to their environment (Salomon 1997). Furthermore, any objective
function that relies on a random number generator (e.g., simulations, game
playing, etc.) also exhibits evaluation noise.

4.7 Dynamic Objective Functions 259

Figure 4.47 shows how DE responds when noise is added to the ten-
dimensional sphere objective function. Results suggest that the time-
averaged population’s best vector is a good estimate for the optimal vector.
In addition, averaging the current best vector’s objective function value
over the same span of generations will improve the estimate of the (nomi-
nal) minimum objective function value.

10-dimensional sphere + evaluation noise

1E-25

1E-22

1E-19

1E-16

1E-13

1E-10

1E-07

0,0001

0,1

100

100000

0 1000 2000 3000 4000 5000

Generation

F
u

n
c

ti
o

n
 v

a
lu

e

no noise

noise

mean

best x*

Fig. 4.47. The effect of adding stationary noise to the sphere objective function. A
random increment equal to 10−6 ⋅randi(0,1) was added to each vector’s function
value. An instance of the best vector’s objective function value is plotted as a
function of the number of generations. The algorithm was DE/rand/1/bin with Np
= 50, F = 0.9 and Cr = 1. The mean best value was averaged over the last 1000
generations.

4.7.2 Non-Stationary Optima

When an objective function’s minimum is non-stationary, its (running) av-
erage location drifts and the optimization goal shifts to tracking the opti-
mal vector at close range. Problems of this type arise in adaptive systems
subject to environmental unpredictability. Very little experience has been
amassed with DE on this type of application, but three cases can be distin-
guished based on the differentiability of the objective function and the op-
timum’s speed relative to the population’s rate of convergence. Each cate-
gory poses problems that require modifying or supplementing classic DE.

260 4 Problem Domains

• Slow drift and differentiable

Problems where the objective function is multi-modal and subject to a
slow drift may occur in real-world problems where, for example, tem-
perature or an aging-process “slowly” alters the objective function.
Here, the term “slowly” refers to the rate of change in the position of the
minimum compared to the time required to find it. DE can be used for
locating the (current) global minimum, but adaptive stochastic algo-
rithms like the least-mean-square (LMS), the recursive-least-square
(RLS) (Haykin 1991), or other deterministic optimizer are probably bet-
ter for tracking as long as the assumptions upon which they depend re-
main valid. Unlike DE, such methods do not need to maintain diversity
in a population.

• Slow drift and non-differentiable

If the neighborhood about a slowly drifting optimum is not differenti-
able, then a derivative-based optimizer will no longer be effective. DE,
however, can be used not only to locate the initial global optimum, but
also to track it if the population is reinitialized at regular intervals, as
Fig. 4.48 indicates. To be successful, the minimum’s rate of change
must be slow compared to the DE’s convergence speed, yet the popula-
tion must not converge too quickly lest difference vectors become so
small that the population cannot keep pace with the optimum. Thus, re-
quiring DE’s population to maintain sufficient diversity typically limits
not only the precision with which the minimum can be found, but also
the precision with which it can be tracked. In addition, parent vectors

must be re-evaluated every generation so that their objective function
values remain current and the population is not constantly being dragged
back to an earlier minimum that no longer exists.

• Rapid drift and non-differentiable

An optimum that drifts rapidly and whose neighborhood is non-
differentiable can immobilize a converged population. One strategy for
keeping the search responsive is to operate in parallel several popula-
tions that have been initialized in a time-staggered fashion (Fig. 4.49).
Each population has a different degree of convergence and each is reini-
tialized after a specified time. The current lowest objective function
value taken over all populations is the point of choice for the applica-
tion. Again, the parent population must be re-evaluated at each genera-
tion. The computational expense for this approach is potentially high, so
it should only be considered when multi-modal, time-dependent objec-
tive functions are otherwise intractable.

4.7 Dynamic Objective Functions 261

DE iteration count

time

max

population
mostly converged

initialization

...

reevalutation
of population

waiting

time

population
mostly converged

convergence

time

convergence

time

Fig. 4.48. Applying DE to a gradually changing objective function

DE iteration count

time

max

population 1
population 2

population 3

initialization

...

population 1

Fig. 4.49. An example of three independent populations, operating in parallel,
whose initializations were time staggered

262 4 Problem Domains

References

Abbass HA (2002a) An evolutionary artificial neural networks approach for breast
cancer diagnosis. Artificial Intelligence in Medicine 25:265–281

Abbass HA (2002b) The self-adaptive Pareto differential evolution algorithm. In:
Proceedings of the 2002 congress on evolutionary computation, Honolulu,
Hawaii, vol 1, pp 831–836

Abbass HA (2002c) A memetic Pareto evolutionary approach to artificial neural
networks. Lecture notes in artificial intelligence, vol 2256. Springer, Berlin
Heidelberg New York

Abbass HA, Sarker R, Newton C (2001) PDE: a Pareto-frontier differential evolu-
tion approach for multi-objective optimization problems. In: Proceedings of
the 2001 congress on evolutionary computation, vol 2, IEEE Press,
Piscataway, NJ, pp 971–978

Antoniou A (1993) Digital Filters – Analysis, Design, and Applications. McGraw-
Hill, New York

Arbel, A (1993) Exploring interior-point linear programming. MIT Press, Cam-
bridge, MA

Babu BV, Munawar SA (2001) Optimal design for shell-and-tube heat exchangers
by different Strategies of differential evolution. Available at:

 http: //www.bvbabu.50megs.com/about.html
Brayton R, Hachtel G, Sangiovanni-Vincentelli A (1981) A survey of optimization

techniques for integrated circuit design. Proceedings of the IEEE 70:1334–
1362

Carrol CW (1962) The created response surface technique for optimizing nonlin-
ear restrained systems. Operations Research 9:169–184

Chang CS, Xu DY, Quek HB (1999) Pareto-optimal set based multi-objective tun-
ing of fuzzy automatic train operation for mass transit system. IEEE Proceed-
ings on Electric Power Applications 146(5):577–583

Coello Coello CA (2002) Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: a survey of the state of the art.
Computer Methods in Applied Mechanics and Engineering 191(11):1245–
1287

Coello Coello CA, Van Veldhuizen DA, Lamont GB (2002) Evolutionary algo-
rithms for solving multi-objective problems. Kluwer Academic, Dordrecht

Corne D, Dorigo M and Glover F (1999) New ideas in optimization. McGraw-
Hill, London

Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley,
Chichester

Dolan A, Aldous J (1993) Networks and algorithms – an introductory approach.
Wiley, Chichester

Du D-Z, Pardalos PM (1998) Handbook of combinatorial optimization. Springer,
Berlin Heidelberg New York

Dueck G (1993) New optimization heuristics – the great deluge algorithm and the
record-to-record travel. Journal of Computational Physics 104:86–92

References 263

Freisleben B, Merz P (1996) Genetic local search algorithm for solving symmetric
and asymmetric traveling salesman problems. In: Proceedings of the IEEE in-
ternational conference on evolutionary computation (ICEC’96). IEEE Press,
New York, pp 616–621

Frisch KR (1955) The logarithmic potential method of convex programming.
Memorandum, University Institute of Economics, Oslo, May 13

Haykin S (1991) Adaptive filter theory. Prentice Hall, New Jersey
Hillier FS and Lieberman GJ (1997) Introduction to operations research, 6th ed.

McGraw-Hill, New York
Hock W, Schittkowski K (1981) Test examples for nonlinear programming codes.

Lecture notes in economics and mathematical systems, vol 187. Springer, Ber-
lin Heidelberg New York

Hoefer K-H (1987) Schnelle Algorithmen zur multipliziererfreien rekursiven digi-
talen Signalverarbeitung. Ph.D. thesis, University of Stuttgart

Hwang Ching-Lai, Abu Syed Md Masud (1979) Multiple objective decision mak-
ing – methods and applications. Springer, Berlin Heidelberg New York

Karmarkar, N (1984) A new polynomial-time algorithm for linear programming.
Combinatorica 4:373–395

Kjellström G, Taxen L (1981) Stochastic optimization in system design. IEEE
Transactions on Circuits and Systems CAS-28(7):702–715

Kondoz AM (1994) Digital speech. Wiley, New York
Kreutzer H (1985) Design centering for the enhancement of yield and for im-

provement of circuit properties. Ph. D. thesis (in German), University of
Stuttgart

Lampinen J (2001) Solving problems subject to multiple nonlinear constraints by
differential evolution. Private communication

Lampinen J (2002) A constraint handling approach for the differential evolution
algorithm. In: Proceedings of the 2002 congress on evolutionary computation
(CEC’02), vol 2, pp 1468–1473

Lampinen J, Storn R (2004) Differential Evolution. In: Godfrey C. Onwubolu, B.
V. Babu (eds) New optimization techniques in engineering. Studies in fuzzi-
ness and soft computing, vol. 141, pp 123–166. Springer, Berlin Heidelberg
New York

Lampinen J, Zelinka I (1999) Mechanical engineering design optimization by dif-
ferential evolution. In: Corne et al. 1999

Lichtblau D (2002a) Discrete optimization using Mathematica. In: N Callaos, T
Ebisuzaki, B Starr, JM Abe, D. Lichtblau (eds) World multi-conference on
systemics, cybernetics and informatics (SCI 2002), International Institute of
Informatics and Systemics, vol 16, pp 169–174. A Mathematica notebook ver-
sion is available at:

 http://library.wolfram.com/infocenter/Conferences/4317/
Lichtblau D (2002b) Private e-mail communication
Lueder E (1990) Optimization of circuits with a large number of parameters. Ar-

chiv fuer Elektrotechnik und Uebertragungstechnik (AEÜ) 44(2):131–138

264 4 Problem Domains

Madavan Nateri K (2002) Multi-objective optimization using a Pareto differential
evolution approach. In: Proceedings of the 2002 congress on evolutionary
computation (CEC’02), vol 2, pp 1145–1150

Michalewicz Z, Fogel DB (2000) How to solve it: modern heuristics. Springer,
Berlin Heidelberg New York

Miettinen KM (1998) Nonlinear multi-objective optimization. Kluwer Academic,
Dordrecht

Mitra SJ and Kaiser JF (1993) Handbook for digital signal processing. Wiley,
New York

Onwubolu GC (2003) Private e-mail communication
Onwubolu GC, Babu BV (2004) New optimization techniques in engineering.

Springer, Berlin Heidelberg New York
Pahl PJ, Damrath R (2000) Mathematische Grundlagen der Ingenieur-Informatik.

Springer, Berlin Heidelberg New York
Palli N, Azarm S, McCluskey P, Sandarajan P (1998) An interactive ε-inequality

constraint method for multiple objectives decision making. Transactions of
the ASME, Journal of Mechanical Design 120(4):678–686

Pareto V. (1886) Cours D’Economie Politique, vols. 1 and 2. F. Rouge, Lausanne
Press WH et al. (1992) Numerical recipes in C. Cambridge University Press
Rabiner LR, Gold B (1975) Theory and application of digital signal processing.

Prentice Hall, New Jersey
Reeves C (1993) Modern heuristic techniques for combinatorial problems. Wiley,

New York
Ruettgers M (1997) Differential evolution: a method for optimization of real

scheduling problems. Technical report at the International Computer Science
Institute, TR-97-013, pp 1–8

Salomon R (1997) Scaling behavior of the evolution strategy when evolving neu-
ronal control architectures for autonomous agents. In: Angeline PJ, Reynolds
RG, McDonnell JR, Eberhart R (eds) Proceedings of the 6th international con-
ference on evolutionary programming. Springer, Berlin Heidelberg New York

Sapatnekar SS, Vaidya PM, Kang SM (1994) Convexity-based algorithms for de-
sign centering. IEEE Transactions on Computer-Aided Design 13(12):1536–
1549

Storn R (1996a) Differential evolution design of an IIR-filter with requirements
for magnitude and group delay. In: IEEE international conference on evolu-
tionary computation (ICEC’96). IEEE Press, New York, pp 268–273

Storn R (1996b) On the usage of differential evolution for function optimization.
In: Smith MH, Lee MA, Keller J, Yen J (eds) Proceedings of the North
American Fuzzy Information Processing Society. IEEE Press, New York, pp
519–523

Storn R (1999a) System design by constraint adaptation and differential evolution.
IEEE Transactions on Evolutionary Computation 3(1):22–34

Storn R (1999b) Designing digital filters with differential evolution. In: Corne D
et al., pp 109–125

Storn R (2000) Available at:
 http://www.icsi.berkeley.edu/~storn/fiwiz.html

References 265

Storn R, Price KV (1997) Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimiza-
tion 11:341–359

Syslo MM, Deo N, Kowalik JS (1983) Discrete optimization algorithms with Pas-
cal programs. Prentice Hall, New Jersey

Wang F-S, Sheu J-W (2000) Multi-objective parameter estimation problems of
fermentation processes using a high ethanol tolerance yeast. Chemical Engi-
neering Science 55(18):3685–3695

Yaglom AM (1962) An introduction to the theory of stationary random functions.
Prentice Hall, New Jersey

Zaharie D (2002) Critical values for the control parameters of differential evolu-
tion algorithms. International conference on soft computing (MENDEL 2002),
pp 62–67

Zhang JC and Styblinski (1995) Yield and variability optimization of integrated
circuits. Kluwer Academic, Dordrecht

5 Architectural Aspects and Computing

Environments

5.1 DE on Parallel Processors

5.1.1 Background

Compared to gradient-based optimizers, evolutionary algorithms (EAs)
demand more processing capacity because they typically require more ob-
jective function evaluations. Even so, DE’s floating-point encoded se-
lection and reproduction operations, which rely less on random number
generation, are not as computationally expensive as are their binary-coded
GA counterparts (Alander and Lampinen 1997). More often, the time re-
quired to generate child vectors is small compared to the time needed to
evaluate the objective function. In real-world applications, it is not un-
common for the objective function evaluation to consume more than 95%
of the total CPU time.

The need for faster processing is particularly acute when optimizing
models based on simulations, since an acceptable solution may require tens
of thousands of objective function evaluations. An efficient parallel ap-
proach to such problems is crucial, since a serial processor may take hun-
dreds of hours to optimize models based on simulations.

5.1.2 Related Work

Research on parallel EAs gathered momentum in the mid-1980s. Jarmo
Alander’s comprehensive bibliography of distributed GAs (Alander 1997)
indicates that a lot of work has been done since. The bibliography cur-
rently contains over 700 references, so this section provides only a very
short and general overview. Udo Kohlmorgen surveyed implementation
strategies for parallel GAs (Kohlmorgen 1995), classifying parallel GAs
into three main types: the farming model, the migration model and the dif-

fusion model.

268 5 Architectural Aspects and Computing Environments

Farming Model

In the farming model, the whole population is kept in a master processor
that selects individuals for mating and sends them to slave processors who
perform all other operations, including crossover, mutation and objective
function evaluation.

slave slave

slave

master

slave

parameters

function
value

-population
 management

-job manage-
 ment

- evaluation
 of objective
 function

STANDARD MODEL (a farming model)

Fig. 5.1. A coarse-grained distributed EA in a local area network. Only the objec-
tive function evaluation is distributed to slave processors. This implementation
may suffer from heterogeneous computing resources (see text).

Standard Model

The standard model is a variation of the farming model that distributes the
objective function evaluation between slave processors (Fig. 5.1). This
model has been used, for example, to implement distributed EAs on a local
area network in Toivanen et al. (1995) and Alander et al. (1994, 1995).
The migration version of the standard model divides the slave processors

5.1 DE on Parallel Processors 269

into separate populations (Fig. 5.2). To allow sub-populations to commu-
nicate with each other, EAs introduce an “immigration” operator that al-
lows individuals to move between sub-populations.

slave slave

master

slave

- global control of process

- main population

- independent

 subpopulation

-independent
 reproduction

 of individuals
-immigration of
 individuals

 between the

 populations

immigration of
individuals

MIGRATION MODEL

Fig. 5.2. A coarse-grained, migration type, distributed EA in a local area network.
The population is divided into independently operating subpopulations. The mi-
gration operator promotes interaction between the otherwise isolated populations
by allowing individuals to immigrate into subpopulations.

Diffusion Model

The diffusion or neighborhood model distributes the population by map-
ping each individual to a single processor (Fig. 5.3). Processors are con-
nected by a topology that defines how information can be exchanged be-
tween neighboring processors. Heinz Mühlenbein and colleagues
(Mühlenbein et al. 1991) distinguished between the coarse-grained migra-
tion model and the fine-grained diffusion model based on the number of
individuals assigned to a slave processor.

To ensure fast communication between processors, a parallel EA may
need to reformulate its genetic operators (Salomon et al. 2000) as it be-
comes increasingly fine-grained and the demand for efficient, high-speed
communication becomes crucial (Kohlmorgen 1995). If a traditional EA
can be implemented as a coarse-grained model, then slower communica-
tion channels, like those available via a Local Area Network, may be ade-

270 5 Architectural Aspects and Computing Environments

quate. In favorable cases, run-times scale almost linearly with the number
of processors when the objective function evaluation is distributed across
the network. If the objective function is computationally intensive, this
model is often a good choice.

border of a local neighborhood around processor X

DIFFUSION MODEL

Fig. 5.3. A fine-grained, diffusion-type, distributed EA in a local area network.
Each individual is mapped to a dedicated processor. In this example, the proces-
sors are connected in a 4 × 4 grid. Each individual is surrounded by a local
neighborhood, in this case, a 3 × 3 grid around each processor (the gray-shaded
local neighborhood of the processor marked X). All genetic operations for an in-
dividual are performed within this local neighborhood. In this example, the popu-
lation is divided into multiple local neighborhoods (16 local neighborhoods here)
that are partially overlapping. A variety of topologies and neighborhood defini-
tions have been reported in the literature.

5.1 DE on Parallel Processors 271

5.1.3 Drawbacks of the Standard Model

Jouni Lampinen’s investigations into distributing DE across a cluster of
PCs (Lampinen 1999) were inspired by the encouraging results reported in
Toivanen et al. (1995), Alander et al. (1994, 1995), Alander and Lampinen
(1997) and Lampinen and Alander (1998). In the latter three investiga-
tions, the objective function evaluation was distributed to PCs connected
by a local area network, whereas Toivanen et al. employed a cluster of
workstations. Both studies relied on the standard model (Fig. 5.1) because
it is both straightforward and simple. If the slave processes run as back-
ground processes or with a low priority, then processors can also be used
for other purposes during the optimization. If the network is not dedicated
to DE, this approach allows the system to take advantage of processor ca-
pacity that is unused by the network without disrupting a processor’s nor-
mally assigned tasks.

Despite its advantages, the standard model also has shortcomings. For
example, the generational GA creates the next generation all at once. Indi-
viduals are then passed to the slave processes to be evaluated. The problem
with this approach is that the next generation cannot be created until the
previous generation has been evaluated, i.e., until the slowest slave process
has returned an objective function value. Meanwhile, the faster slave proc-
essors that have already finished run idle. The total time spent idling can
be high if the computer network is heterogeneous, the computing capacity
of slave processors varies much, or if the time required for objective func-
tion evaluation varies a lot depending on the values of the parameters. Es-
pecially when objective functions are simulation models, evaluation time
can be highly input dependent. For example, the size of the model could be
a parameter, with large models requiring more time to evaluate than small
ones. Alternatively, iterative solvers used in the simulator may execute a
different number of iterations for different inputs. Furthermore, the compu-
tational path the simulation takes may depend on its input values.

In a heterogeneous computer network, the efficiency of a parallel sys-
tem (efficiency = speedup/number of processors) may be less than 50% or
even as low as 10%. In Kohlmorgen (1995), where the standard model was
used on a homogeneous network, the efficiency of the standard model
dropped to 85% when the number of processors was raised to four and to
70% when the number of processors was raised to eight. The situation will
become even worse for a heterogeneous network because the slowest slave
determines the overall speed of the optimization process.

Another drawback associated with generational reproduction in con-
junction with the standard model distributed EA is that it is impossible to
use a greater number of slave processors than the number of individuals in

272 5 Architectural Aspects and Computing Environments

the population. Although the standard model cannot take advantage of
more processors, it can be modified for doing so, and also to improve its
efficiency. This will be described in the following sections.

5.1.4 Modifying the Standard Model

This section describes a simple, yet flexible, distributed DE algorithm
method developed by Lampinen (1999). The method is generally based on
the standard, coarse-grained model with computers distributed across a lo-
cal area network (Fig. 5.1), but modifications avoid the drawbacks of the
usual implementation. Since DE’s selection operator works differently
than those found in most GAs, earlier approaches (Alander and Lampinen
1997; Lampinen and Alander 1998) required some major changes.

Both the standard (Fig. 5.1) and migration (Fig. 5.2) models are rela-
tively easy to implement and each offers its own advantages. The migra-
tion model, for example, is able to efficiently use all the computing re-
sources available via local area network. Its network communication rate is
low since only immigrating individuals need to be transferred. Ultimately,
however, the migration model proves less adaptable to DE than the stan-
dard model.

First, the fact that the migration model can use all the processing capac-
ity available via a local area network does not mean that it can solve a
problem in the shortest time. The migration model is logically different
from the sequential DE algorithm, so it is difficult to apply knowledge
gathered with sequential DE to the migration model. There might be diffi-
culties, for example, when selecting values for DE’s control parameters.
Furthermore, designing the migration operation entails deciding which in-
dividual migrates, where it migrates to and what the migration rate should
be. Currently, no totally satisfying solutions appear to be available for
these subproblems.

In its favor, the standard model is better suited to evaluating computa-
tionally expensive objective functions than the migration model because it
can provide a quasi-linear speedup with respect to the available processor
capacity. In the migration model, the same optimization program runs on
all computers and the effectiveness of the parallelization depends on how
efficient the migration operation is. For example, there is a high risk that
all the subpopulations will converge to the same local optimum if the mi-
gration rate is too high. If the migration rate is too low, the benefit of using
more than one processor will be lost. The optimum migration scheme de-
pends on the problem to be solved, the number of slave processes and the
control variables of slave processes and other factors. Currently, there is no

5.1 DE on Parallel Processors 273

general migration operation that can efficiently solve an arbitrary optimi-
zation problem. Since the efficiency of the migration model is highly de-
pendent on the design of the migration scheme and because designing a
good scheme is a non-trivial task, the standard model is the preferable way
to implement a distributed DE algorithm.

The standard model’s higher communication rate is only a minor draw-
back. Assuming that the objective function is computationally expensive,
the communication rate will be comparatively low. Also, the time latency
to establish a contact, as well as the time required to communicate, are vir-
tually meaningless when compared to the total execution time of the opti-
mization process. In most cases, the communication speed of a 10 Mbit/s
Ethernet is high enough from both a latency and throughput point of view,
although this situation can change if the network is also being used for
other communications. Experience has shown that the modified standard
model easily achieves over 95% efficiency and even 99% or more seems
possible (Lampinen 1998).

5.1.5 The Master Process

Figure 5.4 shows a general overview of the modified standard model for a
distributed EA. The master process performs all operations needed to cre-
ate trial vectors. In addition, the master process selects trial vectors based
on their objective function values and either inserts them into the popula-
tion or rejects them. In addition, the master process evaluates trial objec-
tive function values and manages the slave processes. The slave processes
are only responsible for computing the objective function values of the in-
dividuals that the master process sends them.

The master and slave processes communicate via two, shared disk files.
Any computing resources with access to those two direct access files, e.g.,
via a local area network, can be exploited. The shared interface files can be
physically located anywhere on the network, i.e., at any hard disk, as long
as the master process and all slave processes have access to them. Table
5.1 shows the structure of the shared interface files.

The first interface file (Table 5.1) is a stack of unevaluated individuals.
A stack of evaluated individuals is kept in a different interface file. The
master process passes unevaluated trial vectors to the shared disk file of
unevaluated individuals. A slave process then picks one individual from
this file, evaluates it and returns the associated objective function value to
the shared disk file of evaluated individuals. The slave then immediately
picks a new individual, evaluates it and returns the corresponding objective
function value, and so on.

274 5 Architectural Aspects and Computing Environments

master

slave slave

slave

MODIFIED STANDARD

MODEL

Fig. 5.4. A coarse-grained distribution of DE in a local area network based on the
standard model except that shared interface files serve as a buffer for objective
function evaluation tasks. The master process and the slave processes are only
loosely coupled via these files and not synchronized to each other.

Table 5.1. The structure of shared interface files. The first file is for unevaluated
individuals and the other is for finished objective function evaluation tasks. Each
record of these files represents one trial individual.

SHARED FILE #1, unevaluated individuals

RECORD read by slave individual cost variable 1 variable 2 variable 3 variable 4

1 1 2 0.00 0.72 0.71 0.56 0.47

2 1 11 0.00 0.77 0.58 0.03 0.04

3 0 1 0.00 0.07 0.12 0.95 0.90

4 0 15 0.00 0.84 0.46 0.73 0.78

5 0 9 0.00 0.57 0.15 0.01 0.18

SHARED FILE #2, evaluated individuals

RECORD read by master individual cost variable 1 variable 2 variable 3 variable 4

1 1 19 1.99 0.53 0.58 0.72 0.17

2 1 4 2.30 0.29 0.78 0.88 0.36

3 1 2 1.48 0.75 0.36 0.02 0.35

4 0 16 1.95 0.81 0.04 0.80 0.29

5 0 7 2.12 0.24 0.66 0.28 0.94

5.1 DE on Parallel Processors 275

The master process works like ordinary DE, but with some exceptions.
Before evaluating a new trial individual, the master process checks the
shared file of unevaluated tasks. If there is space for a new task, the master
process moves an objective function evaluation task to the file of un-
evaluated individuals. If there is currently no space in the file of unevalu-
ated tasks, the master process evaluates the current trial individual itself.
After that, the master process proceeds to the next trial individual and the
process is repeated.

At the end of each generation, the master process reads the shared file of
evaluated individuals. A value of “1” in the first field of a record indicates
that the task is finished because the master process reads the file before the
end of the previous generation. To preserve DE’s one-to-one selection
scheme, each trial is assigned a unique index that pairs it with a vector in
the current population (called “individual” in Table 5.1). When the evalu-
ated trial vector returns to the master process, this index indicates the
member of the current population with which the trial is compared during
survivor selection (Sect. 2.7). Any trial with a lower objective function
value than that of the corresponding target in the current population is
transferred from the shared file to the current population where it over-
writes its competitor. Otherwise the trial from the shared file is simply ig-
nored.

In Table 5.1, the first field of records contains either zero or one. If a
one appears in the file for unevaluated tasks, the record has been read by a
slave and the task has either already been evaluated, or is currently being
evaluated. Because this record has already been read, the master process is
allowed to overwrite it with a new task. A zero indicates that a task is still
unevaluated and has not yet been assigned to a slave.

The size of files (the number of records) should be the same as the
population size of the master process, or higher. This ensures that the file
of unevaluated individuals always contains work for slave processes and
that there is always space for evaluated individuals in the shared file of
evaluated tasks. In Lampinen (1999), the number of records was set to
twice the population size, i.e., 2Np.

Because the master process uses shared files as buffers, it does not need
to be synchronized with the slave processes. For example, it is possible
that a child does not return back to the master process during the same
generation in which it was created. Preliminary tests suggest that this does
not diminish DE’s effectiveness, efficiency or robustness. Furthermore, it
seems possible that this delay slightly improves DE’s robustness by main-
taining a higher level of diversity in the population. When populations are
small, this added diversity helps DE to avoid premature convergence. This

276 5 Architectural Aspects and Computing Environments

effect, however, still needs to be investigated and supported by experimen-
tal data.

Synchronization is necessary only if two processes (master or slave) try
to access the same file simultaneously, in which case the process attempt-
ing to access the file must wait a few milliseconds and try again. Access to
shared files, by either the master process or a slave process, should be set
to deny-read/write mode; no other process may access a file that is already
open. Alternatively, some programming environments allow a single re-
cord to be locked against writing to minimize file access conflicts between
processors. The waiting times due to file access collisions, however, are
typically insignificant compared to the time required to evaluate a compu-
tationally expensive objective function. Note also that, due to fact that
master and slave processes are not synchronized on a generation level, the
number of slave processes is not limited by the population size, as is the
case for the classic standard model. For further details on master–slave
synchronization, see Lampinen (1999).

5.2 DE on Limited Resource Devices

Limited resource devices are special-purpose processors operating in envi-
ronments in which one or more of the following three categories is subject
to non-negligible limitations: available program memory, data memory
and processing capacity. Many consumer products like wireless phones,
palmtop computers, toys, etc., as well as controller units in cars, home ap-
pliances, etc., face one or more of these limitations. Often, simple proces-
sors must operate with fixed-point arithmetic so the underlying goal is to
save program memory space and processing time by avoiding divisions
and high-precision multiplication. This section gives some hints on how to
write efficient code for limited resource environments. Some of the pro-
posed, “tricks” may alter DE’s convergence behavior, so adequate testing
is important.

5.2.1 Random Numbers

Random number generators seldom receive much attention because they
are usually functions integrated into a high-level language. Their design
must be rethought, however, when random number generators are imple-
mented on devices that lack a floating-point unit or where memory space is
a limited resource. Emulating floating-point operations, especially divi-
sion, is costly in terms of both program memory and processing time.

5.2 DE on Limited Resource Devices 277

Since generating floating-point values in the interval [0, 1] requires divi-
sion, random number generators for limited resource devices need to be
carefully designed.

Random Numbers for Initialization

Populations can be initialized in a variety of ways. Initialization can spec-
ify predefined points, a collection of points around a nominal point, etc.,
but most of the time, parameters are initialized with values that are ran-
domly chosen from within the allowed range according to:

()L,U,L,)1,0(rand jjjjj xxxx −⋅+= , (5.1)

where randj(0,1) is a uniformly distributed random number from the inter-
val (0,1) that is chosen anew for each parameter. Since initialization re-
quires only Np⋅D random numbers, the generator’s sequence length is not
of primary importance. For this reason, and also because DE is fairly in-
sensitive to initial conditions, pseudo-random numbers only need be rea-
sonably random. Efficient code is more important on limited resource de-
vices than accurate random simulation. The three random number
generators described in Figs. 5.5–5.7 are both small and efficient. All three
random number generators can be found in the file simplerand.cpp on the
accompanying CD.

#define PI 3.14159265

float rand01(float *fp_seed)
//Generates random numbers from the interval [0,1].
//Initialize *fp_seed with 4.0 (for example)
{
 float f_x;

f_x = *fp_seed + PI;
f_x = f_x*f_x*f_x*f_x*f_x; //f_x^5

 *fp_seed = f_x - floor(f_x);
 return(*fp_seed);
}

Fig. 5.5. A simple floating-point random number generator from the HP-35 appli-
cation programs (Miller 1981).

278 5 Architectural Aspects and Computing Environments

unsigned int rand15(unsigned long *ulp_seed)
//Generates random numbers from the interval [0,2^15-1],
//so it is suited as a fixed point random number
//in 1.15 format.
//Initialize *ulp_seed with 1 (for example)
{
 *ulp_seed = *ulp_seed*1103515245 + 12345;
 return(unsigned int)((*ulp_seed>>16)& 32767);//modulo 2^15
}

Fig. 5.6. A simple fixed-point random number generator provided by the ANSI C
committee (Press et al. 1992). The computation modulo N is a logical AND with
N − 1, provided that N is a power of two. In this case, N = 215.

unsigned int rand15a(unsigned long *ulp_seed)
//Generates random numbers from the interval [0,2^15-1],
//so it is suited as a fixed point random number
//in 1.15 format.
//Initialize *ulp_seed with 1 (for example)
{
 *ulp_seed = *ulp_seed*1664525 + 1013904223;
 return(unsigned int)((*ulp_seed)& 32767);//modulo 2^15
}

Fig. 5.7. A simple random number generator according to Knuth (1981) and Press
et al. (1992). This generator can operate with modulo 232, in which case the return
value must be “unsigned long”.

Random Numbers for Generating Trial Vectors

To index the population vectors that will be combined into a mutant, most
DE variants only need random numbers that are integers from the range [0,
Np − 1]. The conceptually simplest method for generating random popula-
tion indices is to compute floor(r · (Np − 1)), where r ∈ [0, 1] is the float-
ing-point output of a uniform random number generator. As Fig. 5.8
shows, the multiplication, r · (Np − 1), can be avoided if Np = 2k, k integer.

If the population size does not equal a power of 2, then ui_N can be set
to the first power of 2 greater than Np. Returned values should then be
checked to see that they belong to the allowed range, [0, Np − 1]. If a re-
turned value is out of range, then new values are generated until one falls
within the permitted range. Since all numbers are equally likely, elements
of the subset [0, Np − 1] will also be generated with equal probability. A
disadvantage of this method is that generating invalid numbers steals valu-

5.2 DE on Limited Resource Devices 279

able processor time. C code for trial vector selection appears in the file
rndselect.cpp on the accompanying CD.

unsigned int randNa(unsigned long *ulp_seed, unsigned int ui_N)
//Generates random numbers from the interval [0,ui_N-1] with
//ui_N being a power of two.
{
 *ulp_seed = *ulp_seed*1103515245 + 12345;
 return(unsigned int)((*ulp_seed>>16)&(ui_N-1));//modulo ui_N
}

Fig. 5.8. This code modifies the random number generator in Fig. 5.6 to yield
numbers in [0, ui_N − 1].

unsigned int randNb(unsigned long *ulp_seed, unsigned int ui_N)
//Generates random numbers from the interval [0,ui_N-1] with
//ui_N being a power of two.
{
 *ulp_seed = *ulp_seed*1664525 + 1013904223;
 return(unsigned int)((*ulp_seed)&(ui_N-1));//modulo ui_N
}

Fig. 5.9. This code modifies the random number generator in Fig. 5.7 to yield
numbers between [0,ui_N − 1].

5.2.2 Permutation Generators

One disadvantage of generating population indices with a random number
generator is that successive indices may not be distinct. If successive indi-
ces are equal, the generator must be run until a distinct index occurs. The
random permutation generator avoids the computational expense caused
by repeated calls for a distinct index, because successive indices are al-
ways distinct. Figure 5.10 illustrates the “urn algorithm” permutation gen-
erator that was developed by C. L. Robinson and published in Herrmann
(1992). As its name implies, the process can be modeled using two urns.
The first urn contains marbles marked with the numbers from 0 to Np − 1
and the second urn is initially empty. Marbles are randomly selected from
urn number 1 and placed into urn number 2. The sequence of numbers of
marbles placed in urn number 2 defines the permutation. The operation of
the algorithm is depicted in Figs. 5.10 and 5.11.

280 5 Architectural Aspects and Computing Environments

[0, 1, 2, 3, 4, 5, 6, 7, 8]

[0, 1, 2, 8, 4, 5, 6, 7, -]

[3, -, -, -, -, -, -, -, -]

1) randomly select an index i from the interval [0,8] from x[]

2) insert x[i] into the destination array y[]

3) last item of x[] goes into x[i]

[3, 6, -, -, -, -, -, -, -]

[0, 1, 2, 8, 4, 5, 7, -, -]

[3, 6, 1, -, -, -, -, -, -]

[0, 7, 2, 8, 4, 5, -, -, -]

4) randomly ...

.

.

.
.
.
.

Fig. 5.10. Visualizing the “urn algorithm” for permuting an array

...
k = NP;
i_urn1 = 0;
i_urn2 = 0;
for (i=0; i<NP; i++) ia_urn1[i] = i; //initialize urn1

while (k >= NP-M+1)//M is the amount of indices wanted (must be <= NP)
{
 i_urn1 = (rand15a(&gul_seed)*k)>>15; //choose a random index

ia_urn2[i_urn2] = ia_urn1[i_urn1]; //move it into urn2
ia_urn1[i_urn1] = ia_urn1[k-1]; //move highest index to fill gap
k = k-1; //reduce number of accessible indices

 i_urn2 = i_urn2 + 1; //next position in urn2
}
...

Fig. 5.11. C code snippet that illustrates the “urn algorithm”

The more efficient algorithm shown in Figs. 5.12 and 5.13 implements
the urn idea with only one array. The trick is to use a bit-swap pointer that
moves upward one index with every swap. Numbers that are randomly
drawn from the upper portion of the array are recorded, then placed in the

5.2 DE on Limited Resource Devices 281

lower part of the array so that they will not be chosen again until the next
generation.

[0, 1, 2, 3, 4, 5, 6, 7, 8]

[3, 1, 2, 0, 4, 5, 6, 7, 8]

2) randomly select an index j from the
 interval [i,8] from x[]

3) swap . .

1) set swap position i=0

[3, 1, 2, 0, 4, 5, 6, 7, 8]

[3, 5, 2, 0, 4, 1, 6, 7, 8]

2) randomly select an index j from the
 interval [i,8] from x[]

3) swap

1) set swap position i=1

.

Fig. 5.12. The modified urn algorithm with just one array

...
for (i=0; i<NP; i++) ia_urn1[i] = i; //initialize urn1

for (k=0; k < M; k++)//M is the amount of indices wanted (must be <= NP)
{
 i_urn1 = ((rand15a(&gul_seed)*(NP-k))>>15) + k; //choose a random index
 i_swap = ia_urn1[i_urn1]; //element to be swapped

ia_urn1[i_urn1] = ia_urn1[k]; //swap element
ia_urn1[k] = i_swap;

}
...

Fig. 5.13. C code snippet for the modified urn algorithm with just one array

...
NP = 2<<k; //NP = 2^k
i_alpha = (rand15a(&gul_seed)*(NP-1))>>15; //choose a random multiplier
if ((i_alpha%2) == 0 || (i_alpha == 0)) //make sure i_alpha is odd
{
 i_alpha = i_alpha+1;
}
...
for (i=0; i < NP; i++)//generate permuted sequence
{
 i_perm = (i*i_alpha)&(NP-1); //bitwise AND makes mod NP if NP=2^k
}
...

Fig. 5.14. A permutation generator that needs no array memory

If memory is a serious issue, then permutations can be generated with-
out arrays. One method is based on the number-theoretic result that the se-
quence i = (α · j)mod(Np), j = 0, 1, 2, …, Np − 1, is a permutation of j = 0,

282 5 Architectural Aspects and Computing Environments

1, 2, …, Np − 1 if α and Np are relatively prime (McClellan and Rader
1979). For example, if Np is itself prime then α can be any number. Mak-
ing Np prime can be a drawback, however, because the modulo function
will be more complicated to evaluate. Choosing Np to be a power of 2, i.e.,
Np = 2k, is faster because dividing by Np just shifts the dividend k bits to
the right. As Fig. 5.14 illustrates, the modulo operation can be replaced by
a bitwise logical AND operation with 2k − 1 when Np = 2k. The permuta-
tion methods mentioned above can also be found on the accompanying CD
in the file permute.cpp.

Another, more arcane permutation generator is based on “un-sorting” an
array that is initialized with the natural numbers 0 to Np − 1 in order. In
un-sorting, a random decision, i.e. a “coin-flip”, decides whether to swap
two elements. Repeated random selections produce an unsorted array. The
“coin-flip” can be done by rounding all output from a [0, 1] random num-
ber generator less than 0.5 to “0” and numbers above or equal to 0.5 to
“1”. This method may prove useful if existing source code contains a sort-
ing routine that can be modified to either sort or un-sort.

5.2.3 Efficient Sorting

As has been shown in previous chapters, (µ + λ) is a viable alternative to
DE selection that sorts both the current and trial populations according to
their objective function value. Once the population has been initially sorted
(ranked), it never again needs to be sorted in its entirety. When a trial vec-
tor is accepted, it is merged into the population array, while the member
with the worst objective function value is eliminated. A simple sort algo-
rithm, like the bubble sort (Standish 1995), will save program memory, but
if memory is an issue, then many copy actions may be required. If, how-
ever, speed is an issue, a linked list is the most efficient approach, although
the linked list itself requires additional memory. Figure 5.15 illustrates
both approaches. Note how the highest value has to vanish because Np

must stay constant.

5.2.4 Memory-Saving DE Variants

If memory in a device is limited, it may be necessary to implement DE
with only Np·D array locations instead of 2·Np·D. In addition, a single vec-
tor holds the current trial vector, which, if it wins, immediately replaces
the target vector. With the one-array implementation, the concept of a gen-
eration becomes meaningless because there is no effective separation be-

5.2 DE on Limited Resource Devices 283

tween current and trial vectors. A new generation only means that the loop
through the population has begun again with the first individual. This form
of evolution is similar to the way in which a steady-state GA operates.
Figure 5.16 shows how to implement the DE/rand/1/bin scheme with a
single population.

24

4 6 1327 3345 7678

4 6 13 24 27 33 45 76

4 6 13 27 33 45 76 78

24

4 6 13 27 33 45 76 24

a) ordinary array b) linked list

new member
entering the
sorted list

new member
entering the
sorted list

copy action
link pointing to
the successor

Fig. 5.15. Two different approaches for organizing a sorted number sequence. The
array approach requires the least memory, while the linked list approach allows
new members to be quickly merged.

94 23 12 5 41 62 77 45

44

lower
cost ?

F

+

+

+ -

population,
continuously
evolving

1) Choose target vector
2) Random choice of two population members

3) Compute weighted
 difference vector

4) Add to randomly chosen
 third vector

6) Smaller cost survives
 and replaces target vector

cost value

parameter vector

44

x 5) Apply crossover

sequence
of
operations

Fig. 5.16. A DE variant with only one population array of Np individuals

284 5 Architectural Aspects and Computing Environments

If target vectors are always chosen in the order 0, 1, 2, …, Np − 1, then the
vector selection scheme becomes biased because vectors with lower indi-
ces will be replaced by better solutions before vectors with high indices.
Computing the target vector index according to the algorithm shown in
Fig. 5.17 mitigates this bias.

 ...
 for (k=0; k<NP; k++)
 {
 i_index = (i_iter+k)%NP; //This way of modulo computation is just
 ... //done for clarity purposes. In real code
 } //use more efficient techniques like
 //a mod b = a AND (b-1) if b=2^k, k integer.
 i_iter = i_iter+1; //iteration counter

Fig. 5.17. Computing the target vector index to equalize the mean lifetime of all
vectors

The one-array implementation is “greedier” than the two-array imple-
mentation since the current and trial populations are not isolated from each
other by a generation gap. In the one-array version, a trial vector born in
one generation can become target vector within the same generation, so its
influence on the population’s subsequent evolution is immediate. Simi-
larly, writing a new vector into a single array of Np individuals improves
the population more quickly than delaying a surviving trial vector’s par-
ticipation until the next generation. To compensate for this “greediness”,
the one-array version might require a slightly larger population than would
otherwise be required. In addition, smaller population sizes call for a
slightly higher Cr and/or F (Zaharie 2002). When Np must be small, ap-
plying either dither or jitter to F may also prove beneficial (see Sect. 2.5)
(Storn 2005; Karaboga and Ökdem 2004).

References

Alander JT (ed.) (1997) An indexed bibliography of distributed genetic algo-
rithms. Report series 94-1-PARA, University of Vaasa, Department of Infor-
mation Technology and Production Economics, Vaasa. Available via anony-
mous ftp:

 ftp.uwasa.fi directory cs/report94-1 (file gaPARAbib.ps.Z)
Alander JT, Lampinen J (1997) A distributed implementation of genetic algorithm

for cam shape optimization. In: Topping BHV (ed.): Advances in computa-
tional mechanics with parallel and distributed processing, pp 209–217, Civil-
Comp Press, Edinburgh

References 285

Alander JT, Ylinen J, Tyni T (1994) Optimizing elevator control parameters. In:
Alander, JT (ed.), Proceedings of the second Finnish workshop on genetic al-
gorithms and their applications (2FWGA), Vaasa (Finland), March 16–18,
1994. Report series 94-2. University of Vaasa, Department of Information
Technology and Production Economics, Vaasa, pp 105–114

Alander JT, Ylinen J, Tyni T (1995) Optimizing elevator group control parameters
using distributed genetic algorithms. In: Pearson DW, Steele NC, Albrecht RF
(eds) Artificial neural nets and genetic algorithms, Alés (France), April 19–21,
1995. Springer-Verlag, Vienna, pp 400–403

Herrmann D (1992) Algorithmen-Arbeitsbuch. Addison-Wesley, Bonn
Karaboga D, Ökdem S (2004) A simple and global optimization algorithm for en-

gineering problems: differential evolution algorithm. Turkish Journal of Elec-
trical Engineering & Computer Sciences 12(1): 53–60

Knuth DE (1981) The art of computer programming, vol 2, semi-numerical algo-
rithms. Addison-Wesley, Reading, MA

Kohlmorgen U (1995) Overview of parallel genetic algorithms. In: [13] of
Alander et al. (1994), pp 135–143

Lampinen J (1999) Differential evolution – new naturally parallel approach for
engineering design optimization. In: Topping BHV (ed.), Developments in
computational mechanics with high performance computing. Civil-Comp
Press, Edinburgh, pp 217–228

Lampinen J, Alander JT (1998) Shape design and optimization by genetic algo-
rithm. In: Topping BHV (ed.), Advances in computational mechanics with
high performance computing. Civil-Comp Press, Edinburgh, pp 187–196

McClellan JH, Rader CM (1979) Number theory in digital signal processing.
Prentice Hall, Englewood Cliffs, NJ

Miller AR (1981) Pascal programs for scientists and engineers. Sybex, Berkeley,
CA

Mühlenbein H, Schomisch M, Born J (1991) The parallel genetic algorithm as
function optimizer. Parallel Computing 17:619–632

Press WH et al. (1992) Numerical recipes in C. Cambridge University Press
Salomon M, Perrin G-R, Heitz F (2000) Parallelizing differential evolution for 3-

D medical image registration. Rapport de Recherche 00-06, September.
Available via Internet at:

 http://icps.u-strasbg.fr/~salomon/
Standish TA (1995) Data structures, algorithms & software principles in C. Addi-

son-Wesley, Reading, MA
Storn R (2005) FIWIZ – a versatile program for the design of digital filters using

differential evolution. Chapter 7.8 in this book
Toivanen J, Mäkinen RAE, Lahdelma R (1995) The reconstruction of an airfoil in

2D potential flow using a genetic algorithm on a parallel computer. In: [13] of
Alander et al. (1994), pp 229–240

Zaharie D (2002) Critical values for the control parameters of differential evolu-
tion algorithms. In: 8th international conference on soft computing MENDEL
2002, Brno (Czech Republic), June 5–7, pp 62–67

6 Computer Code

6.1 DeMat – Differential Evolution for MATLAB®

This chapter describes DeMat – a collection of MATLAB® m-files that
provides a framework for solving function optimization problems with dif-
ferential evolution (DE). The accompanying CD contains examples with
code that includes easily modified graphics support. The following subsec-
tions detail DeMat’s architecture.

6.1.1 General Structure of DeMat

DeMat was developed to make it easy to apply DE to an arbitrary optimi-
zation problem. DeMat also provides graphics support, since visually
monitoring an ongoing optimization is often very helpful. DeMat consists
of the files shown in Fig. 6.1 and requires no special installation routine to
run.

deopt.m objfun.m

left_win.mPlotIt.m

Rundeopt.m

needed only for graphics
support under MATLAB ®

Fig. 6.1. The DeMat files. Gray-shaded files must be adapted to each new prob-
lem. The left_win.m file may also need to be modified if the selection criterion
changes.

288 6 Computer Code

Here is a brief description of the DeMat files:

deopt.m: This file contains the main DE engine, deopt(), along with
several different DE mutation and selection operators. It
also handles crossover and implements boundary con-
straints. This file controls the output of results.

objfun.m: This file contains the objective function, objfun(), which
computes objective function (cost) values and evaluates
constraints. The results of the objective function evalua-
tion are returned in the structure S_MSE.

left_win.m: left_win() is a function that defines under what circum-
stances the trial (child) vector (corresponding to left input
argument) wins against the target vector (corresponding to
right input argument). This function takes both constraints
and objective function values into consideration when de-
ciding which vector survives.

Rundeopt.m: This is the main script file for configuring the optimization
and for experimenting with DE strategies, population
sizes, etc. All control variables are listed here. To simplify
parameter passing, control variables are handed over to the
structure variable, S_struct, that acts as a container for
information that has to be passed to deopt(), objun() and
PlotIt().

PlotIt.m: This file contains the plotting routine, PlotIt(). Plotting can
be disabled by the variable I_plotting, which is set in
Rundeopt.m.

6.1.2 Naming and Coding Conventions

Since type checking in MATLAB® is not very thorough, it is especially
important to choose a rational naming scheme to maintain the clarity and
sound structure of the program. For this reason, variable names are in
Hungarian notation (Cusumano and Selby 1995), i.e., a prefix provides in-
formation about a variable’s type. Hungarian notation also helps to identify
where assignments may lead to problems.

The prefix, which can consist of several characters, is followed by an
underscore, which is then followed by a descriptive name. The highest

6.1 DeMat – Differential Evolution for MATLAB® 289

precedence in prefix construction is assigned to the characters “I”, “F” and
“S”, which denote integer, float and structure, respectively. The next high-
est precedence goes to “Vr”, “Vc” and “M” for row vectors, column vec-
tors and matrices, respectively. For example, a row vector of floating-point
variables would have the prefix FVr_, while a matrix of integers would
have the prefix IM_. For the sake of simplicity, simple loop counter vari-
ables do not need a prefix and may be named k, l, m, etc. MATLAB®,
however, reserves the characters i and j for the imaginary constant, so
these names should not be used for counter variables (even though
MATLAB® does not forbid this).

Table 6.1 shows the prefixes used in the code. Additional prefixes may
be defined as needed.

Table 6.1. Variable naming conventions using Hungarian Notation

Variable Prefix Example Remark

Integer I I_refresh

Even though typing is not strong
in MATLAB® it is good to know
whether a variable is intended as
an integer

Float F F_cost_tol –

Structure S
S_x

Can have an arbitrary number of
attached variables, e.g.,
S_x.I_nc
S_x.I_no
S_x.FVr_ca

 S_x.FVr_oa

Row
vector

Vr FVr_lim_up Length of vector is not indicated
in the name

Column
vector

Vc FVc_test Length of vector is not indicated
in the name

Matrix M FM_pop Row and column dimensions are
not shown in the name

290 6 Computer Code

Most functions also have a comment header that provides information
about its arguments and return values.

feval()

left_win()

FM_ui

FVr_
bestmem

DE engine

FM_
pm1

FM_
pm2

FM_
pm3

FM_
pm4

Shuffling of
population

Initialization

FVr_
maxbound

PlotIt()

I_iter

I_nfeval

I_D

FVr_
minbound

I_itermax

I_NP

I_refresh

I_strategy

F_weight

F_CR
FM_meanv

deopt()

data

functionLegend:

F_VTR

Rundeopt.m

FM_
pm5

FM_pop,
FM_popold

Fig. 6.2. A data flow diagram of DeMat’s most important parts

6.1 DeMat – Differential Evolution for MATLAB® 291

94 23 12 5 41 62 77 45

44 17 55 4 43 25 89 34

F_weight

+
+

+
-

FM_popold

cost value parameter vector

1 2 3 4 5 6 7 8

3 5 2 1 8 7 4 6

3 5 2 1 8 7 46

3 5 2 1 8 74 6

Index of population member

lower
cost ?

44 17 12 4 41 25 77 34

FM_pm2

FM_pm1

FM_pm3

FM_ui

FM_pop

. . .

. . .

Fig. 6.3. A flowchart for DE/rand/1/bin (classic DE) in deopt.m. For simplicity,
the crossover operation is not shown (Cr = 1).

6.1.3 Data Flow Diagram

The data flow diagram (DFD) (Yourdon 1989) provides an overview of a
program’s functionality. In contrast to flow charts that emphasize algo-
rithmic design, a DFD shows which data is used and which functions or
processes change the data. By convention, data is indicated by two parallel
horizontal bars while functions are denoted by ellipses. Function names
followed by () are explicitly named in the program. If parentheses are
missing, then the functionality is embedded in a sequence of statements,
not an explicit function. Arrows indicate the data flow and contain addi-
tional but limited time information. In general, time increases from left to

292 6 Computer Code

right, and from top to bottom. Figure 6.2 shows the most important data
and functions of DeMat’s DFD. Here is a brief description of the meaning
of the data shown in Fig. 6.2:

F_Vr_maxbound: Vector of upper parameter bounds for initialization.
F_Vr_minbound: Vector of lower parameter bounds for initialization.
I_bnd_constr: If set to 1, upper and lower parameter bounds are

enforced as parameter constraints.
I_itermax: Maximum number of generations until optimization

stops.
I_NP: Number of population members (named Np

throughout the book).
I_D: Number of parameters (named D throughout the

book).
I_strategy: Selects the DE strategy. See the code for the as-

signment of integer values to strategies.
F_weight: Factor (named F throughout the book) used for scal-

ing the differential mutation.
F_CR: Crossover constant (named Cr throughout the

book).
F_VTR: Value to reach. Optimization stops when this objec-

tive function value is reached.
I_refresh: Output refresh cycle. After I_refresh generations, a

new set of values is plotted/printed.
I_plotting: If set to 1, the function PlotIt() renders graphical

output.
FM_popold: Np⋅D matrix containing Np D-dimensional parame-

ter vectors that comprise the current population.
FM_pop: Np⋅D matrix containing Np D-dimensional parame-

ter vectors that comprise the next population.
FM_pm1: Same as FM_popold, but with shuffled rows.

FM_pm2, 3, 4, 5 are similar, but contain a different
shuffling.

FM_meanv: Contains Np instantiations of FM_popold’s mean
vector. Note: Keeping an array of Np instantiations
of the same vector is for coding convenience and
clarity, but it is not very memory efficient.

FVr_bestmem: Best-so-far population member.
I_iter: Generation (iteration) counter.
I_nfeval: Counter for function evaluations.

Figure 6.3 illustrates how deopt.m implements DE. All random vectors
are taken from the shuffled versions FM_pm1, FM_pm2 and FM_pm3 of

6.1 DeMat – Differential Evolution for MATLAB® 293

FM_popold to exploit MATLAB®’s built-in matrix and vector manipula-
tion routines.

-1 -0.5 0 0.5 1
-2

0

2

4

6

8

10
polynomial fitting

0 2 4 6 8 10 12 14
-1

-0.5

0

0.5

1
x 10

4 Polynomial coefficients

Fig. 6.4. An example of the graphics output for the polynomial fitting problem

6.1.4 How to Use the Graphics

The graphics routines in DeMat have been kept fairly independent of the
objective function to give the user flexibility in deciding what to monitor.
MATLAB®’s powerful and versatile graphics capabilities are well suited
for this purpose. Setting the variable, I_plotting in the rundeopt.m file to
“1” enables graphical monitoring via the plot function PlotIt() in PlotIt.m.
Any other value for I_plotting disables plotting. It is good practice to dis-
able plotting while trying to get a new optimization to work. Later, the plot
function, PlotIt(), can be adapted to the new problem to provide a mean-
ingful graphical output. Figure 6.4 shows an example of DeMat’s graphi-
cal output. The example plotted is the Chebyshev polynomial fitting prob-
lem by Storn and Price (1997), which is repeated here for convenience.

294 6 Computer Code

Let

=
+ ⋅=

k

j

j
j zxzh

2

0
1),(x , k integer and >0,

(6.1)

have the coefficients xj+1 such that

[] []1,11,1),(−∈−∈ zforzh x
(6.2)

and

0;2.1)2.1(),(2 >±=+≥ εε andzforTzh kx
(6.3)

with T2k(z) being a Chebyshev polynomial of degree 2k.

Fig 6.5. An example of a DeMat plot of the “Rosenbrock Saddle” that shows the
results after generation 27.

6.2 DeWin – DE for MS Windows®: An Application in C 295

Fig. 6.6. An example of a DeMat plot for the “Rosenbrock Saddle” that shows the
results after generation 75

The Chebyshev polynomials are recursively defined according to the
difference equation Tn+1(z) = 2z⋅Tn(z) − Tn-1(z), with n > 0, integer and with
the initial conditions T0(z) = 1 and T1(z) = z. The solution to the polynomial
fitting problem is h(x,z) = T2k(z), a polynomial that oscillates between −1
and 1 when its argument, z, is between −1 and 1. Outside this “tube”, the
polynomial rises steeply in direction of high positive ordinate values. Fig-
ures 6.4, 6.5 and 6.6 illustrate the versatility of DeMat’s graphics with an
example that can be generated with the software on the accompanying CD.

6.2 DeWin – DE for MS Windows®: An Application in C

This section contains a brief overview of DeWin, a C-based application
framework for solving function optimization problems with DE. The code
provides easily modified graphics support for the MS Windows® operating
system. By setting a compiler switch, the code can also be compiled as a
console application devoid of any graphics support. After minor modifica-

296 6 Computer Code

tions, the console application should work on any operating system.
DeWin has been designed to strike a balance between being universal and
simple. Including all the ideas in this book would have cluttered the code
with many more #define and #ifdef statements. The authors hope that this
compromise between simplicity and completeness will prove useful and
that any missing ideas can be easily implemented.

6.2.1 General Structure of DeWin

DeWin has been designed to make it easy for the user to apply DE to any
given optimization problem. Since it is often helpful to visually monitor an
ongoing optimization, simple graphics support is also provided. There is
no special installation routine required to run DeWin. DeWin consists of
the files shown in Fig. 6.7.

de4_0.cpp eval.cpp

de.hrandom.h

plot.h

graphics.h

in.dat out.dat

sort.cpp

needed only for graphics
support under Microsoft Windows ®

Fig. 6.7. The files required to compile, link, and run DeWin. The gray-shaded files
must be modified to the demands of each new problem.

Here is a brief description of the DeWin files:

de4_0.cpp: This file contains the main DE engine, devol(). It also con-
tains several different mutation and selection operators and
handles both crossover and boundary constraints. In addi-
tion, this file controls the output of results. Defining the

6.2 DeWin – DE for MS Windows®: An Application in C 297

compiler switch DO_PLOTTING enables graphics support
for programs compiled under Microsoft Windows® as Mi-
crosoft Windows® applications (see Fig. 6.8). If
DO_PLOTTING is undefined, then the program must be
compiled as a console application (see Fig. 6.9). This con-
sole version should work on other operating system, al-
though tests have only been done for Microsoft Win-
dows®. Another compiler switch, BOUND_CONSTR,
enforces the parameter bounds given in fa_minbound[] and
fa_maxbound[] (for definitions see below) throughout the
optimization when BOUND_CONSTR is defined. If
BOUND_CONSTR is undefined the parameter bounds are
enforced during initialization only.

de.h: This file contains some general constants and, more impor-
tantly, the definition of a population member. The struc-
ture below defines a population member:

typedef struct
//*************************************
//** Definition of population member
//*************************************
{
 //parameter vector

 float fa_vector[MAXDIM];
 //vector of objectives (costs)
 float fa_cost[MAXCOST];
 //vector of constraints
 float fa_constraint[MAXCONST];

} t_pop;

This structure contains not only the vector components
(parameters), but also the objective function values (costs)
and constraint arrays needed for multi-objective and/or
constrained optimizations.

eval.cpp: This file contains the objective function, evaluate(), and
the left_vector_wins() function that defines the circum-
stances under which the trial vector wins against the target
vector. The left_vector_wins() function is the routine that
takes constraints and objective function (cost) values into
consideration when deciding which vector survives.

298 6 Computer Code

Fig. 6.8. An example of how to start building DeWin for Microsoft Visual C++ ®

(version 5.0) when DO_PLOTTING is defined. The Win32 application allows the
plotting routines to be used.

Fig. 6.9. An example of how to start building DeWin for Microsoft Visual C++®

(version 5.0) when DO_PLOTTING in undefined. In this case, only console out-
put will be active.

6.2 DeWin – DE for MS Windows®: An Application in C 299

random.h: This file contains the “Mersenne twister” random number
generator created by Matsumoto and Nishimura (1998).

sort.cpp: This file contains the sorting function, sort(), that ranks the
population array in ascending order where cost[0] is the
sorting criterion (even if more than one cost exists). The
sort() function is needed for the “best of parent and child”
selection, i.e., (µ + λ) selection.

in.dat: This file holds the control variables that allow the user to
experiment with various DE strategies, the number of
population members, etc., without recompiling the entire
program. An example of the values in in.dat is

3 choice of method i_strategy

10000 maximum number of iterations i_genmax
10 output refresh cycle i_refresh
19 number of parameters gi_D
200 number of parents i_NP
0.85 weighting factor f_weight
1. crossover constant f_cross
1345 random seed i_seed
1 selection flag i_bs_flag
-1000 lower parameter bound

fa_minbound[0]
-1000 lower parameter bound

fa_minbound[1]
...
-1000 lower parameter bound

fa_minbound[18]
+1000 lower parameter bound

fa_maxbound[0]
...
+1000 lower parameter bound

fa_maxbound[18]

The source code contains further details on the purpose of
these variables.

out.dat: At the end of the optimization, this file will contain infor-
mation showing the convergence behavior, i.e., the im-
provement of the best objective function value (cost) over
time. It also contains the final parameter values.

plot.h: This is the public domain graphics library written by Eric
Brasseur and enhanced by the authors.

300 6 Computer Code

graphics.h: This file contains the graphic functions graphics_init(),
draw_graph() and update_graphics(), all of which must be
adapted to the demands of each problem.

6.2.2 Naming and Coding Conventions

DeWin’s coding conventions follow a similar line of thought as those for
DeMat. Constants defined with #define are in uppercase letters to distin-
guish them from variables. Except for the graphics library in plot.h, vari-
able names are in Hungarian notation (Cusumano and Selby 1995), i.e., a
prefix gives information about a variable’s type. Hungarian notation helps
to identify where typecasting is necessary and where assignments may lead
to problems that the compiler does not report. Hungarian notation also
warns of the possibility of side effects when accessing a global variable.

The prefix, which can consist of several characters, is followed by an
underscore that is then followed by a descriptive name. The highest prece-
dence in prefix construction is assigned to the character “g”, which denotes
a global variable. The next highest precedence goes to “p” for pointer vari-
ables. The next highest precedence goes to data representations like “f” for
float, “i” for integer, etc. The lowest precedence has “a” for arrays. For ex-
ample, a global array of floating-point variables would have the prefix
gfa_, while a global pointer to a floating-point array would have the prefix
gpfa_. For the sake of simplicity, simple loop counter variables may be
named i, j, k ,etc., and do not need a prefix.

Table 6.2 shows the prefixes that this code uses. If needed, one may de-
fine additional prefixes, e.g., d_ for double-precision variables.

Most functions contain a comment header that gives information about
both global variables and those that are passed as function arguments. An
(I) indicates an input variable, whereas (I/O) stands for input/output and
means that the function will change the value of the corresponding vari-
able.

6.2.3 Data Flow Diagram

As in DeMat, the DFD indicates data by two parallel horizontal bars and
functions by ellipses. Function names followed by () are explicitly named
in the program. If () is missing, then the functionality is embedded in a se-
quence of statements, not an explicit function. Arrows indicate the data
flow and contain limited additional time information. In general, time in-
creases from left to right, or from top to bottom. Images of three-

6.2 DeWin – DE for MS Windows®: An Application in C 301

dimensional cylinders indicate files. Figure 6.10 shows the DFD of
DeWin. Here are the meanings of the data in Fig. 6.10:

i_seed: Seed value for the random number generator, which
should be positive.

fa_minbound[]: Array of upper parameter bounds.
fa_maxbound[]: Array of lower parameter bounds. All parameters of

a population vector are randomly initialized within
the limits defined by fa_minbound[] and
fa_maxbound[]. If the compiler switch
BOUND_CONSTR is defined, then these bounds
also serve as bound constraints.

i_genmax: Maximum number of generations until optimization
stops.

gi_NP: Number of population members (named Np

throughout the book).
gi_D: Number of parameters (named D throughout the

book).
i_strategy: Selects the DE strategy. See code for the assignment

of integer values to strategies.
f_weight: Factor (named F throughout the book) used for scal-

ing the differential mutation.
f_cross: Crossover constant (named Cr throughout the

book).
i_bs_flag: Flag indicating which selection method is used.

i_bs_flag = 1 (TRUE), enables “best of parent and
child selection”, i.e., (µ + λ) selection, whereas
i_bs_flag = 0 (FALSE) enables DE’s standard “trial
vs. target” selection.

i_refresh: Output refresh cycle. After i_refresh generations, a
new set of values is plotted/printed.

gla_mt[]: State array for the random number generator.
gl_mti: State variable for the random number generator.
i_r1, …, i_r4: Random variables ∈ [0, i_NP] that are mutually ex-

clusive.
t_mean: Contains the mean population vector of the current

population.
gi_gen: Generation (iteration) counter.
t_temp: Temporary structure that holds the trial vector.
gt_best: Current best population member.
ta_pop: The population array that contains the current (old)

and new populations side by side. Two pointers,

302 6 Computer Code

pta_old and pta_new, indicate the start of the corre-
sponding array (Fig. 6.11).

Table 6.2. Naming variables in Hungarian Notation.

Variable Prefix Example Remark

typedef struct t t_pop
Structure defining
a population
member

char c c_dummy –

int i i_strategy

Integer variable
where bit-width is
not a major
concern

long l l_iter
long is defined as
32 bits

float f f_x –

global g gl_nfeval
A long variable
which can be
accessed globally

pointer p pt_pold
A pointer to a
structure

array a ta_pop[2*MAXPOP]
An array of
structures

File pointer Fp Fp_out –

6.2 DeWin – DE for MS Windows®: An Application in C 303

evaluate()

left_vector_
wins()

t_temp

gt_best

ta_pop[]

DE initialization
or DE mutation

i_r1 i_r2 i_r3 i_r4

genrand()

gla_mt[] gl_mti

sgenrand()

i_seed

update_
graphics()

gi_gen

gl_nfeval

gi_D

fa_minbound[]
fa_maxbound[]

i_genmax

gi_NP

i_refresh

i_strategy

f_weight

f_cross t_mean

devol()

print results

out.dat

in.dat

Fp_in

Fp_out

File

data

functionLegend:

i_bs_flag

Fig. 6.10. A data flow graph of DeWin’s most important parts

304 6 Computer Code

pta_old

pta_old

pta_new

pta_new

gi_gen = k

gi_gen = k+1

ta_pop[2*MAXPOP]

ta_pop[2*MAXPOP]

Fig. 6.11. Assigning populations to ta_pop[]

Fig. 6.12. An example of DeWin’s graphics that plots the Chebyshev polynomial
fitting problem.

6.2.4 How To Use the Graphics

The graphics in DeWin are only loosely coupled to the objective function
so that the user can decide what the graphics should monitor. To keep code
simple, DeWin’s graphics capabilities are basic, yet zooming in and out is
possible by drawing a rectangle around the region of interest with the left

6.2 DeWin – DE for MS Windows®: An Application in C 305

mouse button clicked (zoom in). A right-click of the mouse on the graph
zooms out to the original scale. A right-click in the picture also clears out
any artifacts that may occur.

Figures 6.12 and 6.13 plot the Chebyshev polynomial fitting problem
described earlier.

Fig. 6.13. Zoomed-in graph of the Chebyshev polynomial fitting problem

The basic graphics routines are located in plot.h, which has been written
by Eric Brasseur and extended by the authors. Ordinarily, the plot.h file
should not be changed. All functions needed to modify the graphics dis-
play are located in graphics.h.

6.2.5 Functions of graphics.h

void graphics_init(void):

This function defines the plotting ranges for the x– and y–axes. See the
code for further details.

306 6 Computer Code

void draw_graph(float fa_params[], int i_D, char color):

This function defines what should be drawn on the screen. Usually
fa_params[] holds the current best parameter vector and the variable i_D
defines its dimension. The variable “color” defines the color in which the
graph is drawn. The currently available options are shown in Table 6.3:

Table 6.3. Color options for function draw_graph()

char c Color chosen
“r” Red
“b” Blue
“g” Green
“s” Black
“w” White
“y” Gray

void update_graphics(float best[], int i_D, float fa_bound[], long l_nfeval, int i_gen, float
f_emin, int i_strategy, int gi_genmax):

The update_graphics() function is usually called many times during the op-
timization. This function calls draw_graph() to address the variable aspects
of plotting. The fixed aspects, like grid lines and axes, are coded into up-
date_graphics() itself. Plotting works by erasing the old graph and replac-
ing it with the new one. The parameters are:

** Parameters :best[] (I) Parameter vector
** i_D (I) Dimension of the parameter
** vector
** fa_bound[] (I) Array defining a tolerance
** scheme for the
** current example
** l_nfeval (I) Current number of accumu-
** lated function evaluations
** i_gen (I) Current number of accumu-
** lated generations
** f_emin (I) Current best objective
** function value
** i_strategy (I) DE strategy (coded as
** a number)
** gi_genmax (I) Maximum number of genera-
** tions

Some Basic Functions from plot.h

Below are the basic drawing functions in plot.h that will be of greatest help
when writing a customized plot with draw_graph() and update_graphics().

6.3 Software on the Accompanying CD 307

void fline(float x0, float y0, float x1, float y1, char c):

Draws a line from (x0,y0) to (x1,y1) with the color defined by the charac-
ter variable c (see above).

void fcircle(float xm, float ym, float radius, char c):

Draws a circle with radius “radius” around the point (xm,ym) with the
color defined by the character variable c (see above).

void frect(float xlu, float ylu, float xrl, float yrl, char c):

Draws a rectangle from the upper left upper corner (xlu,ylu) to the lower
right corner (xrl,yrl) with the color defined by the character variable c (see
above).

void box(char c):

Draws a box around the plot with the color defined by the character vari-
able c (see above).

void grid(char c, int ix, int iy):

Draws ix and iy grid lines in the vertical and horizontal direction, respec-
tively, and prints the tic labels. Drawing is done with the color defined by
the character variable c (see above).

void myprint(float x, float y, char *s):

Prints the string pointed to by *s starting at the location (x,y).

6.3 Software on the Accompanying CD

Figure 6.14 shows how the software on the accompanying CD is organ-
ized. There is a directory with code that has been exclusively written for
this book. This code is in either MATLAB® or C, i.e., it is contained in the
DeMat and DeWin directories. There is also code that has been contributed
by various authors, which in many instances has been written before work
on this book even started. Although most of this code does not contain the
latest versions of DE, it has been included to offer a wider variety of lan-

308 6 Computer Code

guages. A third section contains demo programs that may be part of com-
mercial packages that use DE. To use this code, refer to the relevant
readme files.

Main DE code in C

Random number generating code in C

Objective function examples in C

Main DE code in MATLAB®

Objective function examples in MATLAB®

Demo programs using DE

DE-code in other programming languages

Fig. 6.14. The directory structure of the accompanying CD

Disclaimer of Warranty

THIS SOFTWARE AND THE ACCOMPANYING FILES ARE
PROVIDED “AS IS” AND WITHOUT WARRANTIES AS TO
PERFORMANCE OR MERCHANTABILITY OR ANY OTHER
WARRANTIES WHETHER EXPRESSED OR IMPLIED. NO
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE IS
OFFERED.

References 309

Good data processing procedure dictates that any program should be
thoroughly tested with non-critical data before relying on it. The user must
assume the entire risk of using the programs.

MATLAB® is a registered trademark of The Math Works, Inc.
WINDOWS® is a registered trademark of Microsoft Corporation.

References

Cusumano MA, Selby RW (1995) Microsoft secrets. The Free Press, Simon &
Schuster, New York

Matsumoto M, Nishimura T (1998) Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator. ACM Transactions
on Modeling and Computer Simulation 8(1):3–30

Storn R, Price KV (1997) Differential evolution – A simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimiza-
tion 11:341–359

Yourdon E (1989) Modern structured analysis. Prentice Hall, Englewood Cliffs,
NJ

7 Applications

The test bed of multi-modal functions is a valuable tool for benchmarking
algorithmic performance. Test functions also make it easy to study how
dimension, epistasis, the number of local optima and other variables affect
an optimizer’s performance. Even so, separable or symmetric test func-
tions are typically easier to solve than epistatic, real-world problems of
similar size, yet epistatic test functions with millions of local optima are
much more difficult to minimize than the majority of real-world optimiza-
tion tasks. Furthermore, real-world problems involve the art of objective
function design, something that is absent when it comes to predefined test
functions. A clever design of the objective function may considerably de-
crease the size of the search space, or convert the problem into one that is
easier to solve. As an outcome, often a better solution may be obtained
with less computation, and with a lower probability of failure. Therefore,
the design of the objective function is as important a success factor as is
the design of the optimization algorithm. Sometimes a good objective
function design can even be crucial for the solution of the entire problem.
This is also something to be learned from real-world examples.

Those who have real-world problems to solve are often the best judges
of an optimizer’s practical value. Their experiences more closely reflect
both the true effort that an optimizer requires and the utility of the results
that it provides. In addition, independent research with DE helps to ensure
that a balanced view of the algorithm’s abilities and potential emerges
without any bias that DE’s creators may inadvertently display in their
analysis.

Taken together, test functions and practical examples give a more com-
plete picture of DE’s abilities than test functions alone can provide. This
chapter is, therefore, devoted to presenting the experiences of scientists
and engineers who have successfully applied DE to the optimization tasks
that are central to their research. In part, these applications serve as
“worked examples” that can help answer questions about DE that are not
addressed in this book.

Several applications highlight DE’s performance on highly epistatic,
multi-modal optimization problems like the many-body problem in Sect.
7.1 and the inverse problems in Sects. 7.5, 7.10 and 7.11. In addition, sev-

312 7 Applications

eral applications compare DE’s performance to that of more traditional
techniques like Powell’s method (Sect. 7.5), the downhill simplex method
(Sect. 7.5), simulated annealing (Sect. 7.1) and the simple genetic algo-
rithm (Sects. 7.1 and 7.4). Sometimes DE is faster, sometimes not, but its
success is less dependent on initial conditions than competing algorithms
and it almost always yields an equal or better result that is more precise,
especially when handing data with a wide dynamic range.

Like all random search algorithms, DE sometimes suggests novel or un-
conventional designs. Such was the case when DE designed an air com-
pressor system with commercially available components (Sect. 7.3). On
occasion, DE arrives at a solution that was not just unexpected, but also
unintended. For example, when DE optimized a reflector’s performance,
its solution was to enclose the light source (Sect. 7.2)! DE has also found
algebraic codes that not only perform near the theoretical limit, but also
execute faster than their classically derived counterparts because they are
simpler (Sect. 7.7). In fields like digital filter design, DE has produced de-
signs that traditionally would require considerable expert knowledge (Sect.
7.8). DE’s improvements over existing designs are often significant. When
used in conjunction with finite element modeling, DE improved the per-
formance of a radial active magnetic bearing by 8% (Sect. 7.9).

A few applications adapt DE for special purposes. For example, in Sect.
7.6, DE is implemented in parallel to perform image registration. Perform-
ance scaled almost linearly as the number of processors increased. Section
7.12 outlines how DE optimized parameters on-line to control plasma for
semiconductor processing.

As these and other researchers have discovered, DE is robust, versatile,
accurate and reliable. There is every reason to believe that other applica-
tions that adopt DE can reap benefits on a par with those reported in this
chapter.

7.1 Genetic Algorithms and Related Techniques for
Optimizing Si–H Clusters: A Merit Analysis for Differential
Evolution

Nirupam Chakraborti

Abstract. Differential evolution (DE) has been successfully utilized to
predict the ground state structures of a number of Si–H clusters. The com-
putations are based upon a non-orthogonal tight-binding model developed
for the Si–H system. The energy functional constructed from this model
includes contributions of both electronic and pairwise interaction between
the atoms and the energy minimization has been carried out using DE. The
results are compared with the previous studies of these clusters where
other tight-binding models, simple genetic algorithms and simulated an-
nealing were used. Also, some specific advantages of DE over the other
techniques have been identified and highlighted in this study.

7.1.1 Introduction

The need for newer and often exotic materials now seems to be ever in-
creasing. The challenge now is not just to analyze the structure and proper-
ties of some existing materials, but to design, on the computer screen,
some hitherto unseen clusters and molecules, tailor-made for some specific
purpose. This has rendered the atomistic structure calculations of clusters
and molecules of immense practical importance. Since the ultimate objec-
tive of most of the simulations is to identify a ground state corresponding
to a global minimum of the energy functional, the problem essentially re-
quires a fast and efficient optimizer, for which techniques like simulated
annealing (SA) have been traditionally used, and genetic algorithms (GAs)
are actually late entrants. However, some of the recent success stories of
calculating the structures of large carbon molecules (Wang and Ho 1997),
large polymeric materials (Keser and Stupp 2000) and various silicon
(Morris et al. 1999) and Si–H clusters (Chakraborti et al. 1999, 2002) sim-
ply indicate that GAs are actually going to stay in this area. This indeed
has a far-reaching consequence in the area of computational material de-
sign, as the GAs have actually rendered the search for the ground state en-
ergy minimum a thorough and efficient process. They are already showing

314 7 Applications

an edge over a number of existing techniques and are definitely worthy of
further exploration.

Some of the inherent shortcomings of the simple genetic algorithm
(SGA), however, quite regularly show up in such complex computing
processes. In the case of a large number of variables, typical of many
molecules and clusters, mapping all of them in a binary format to accept-
able accuracy requires manipulating lengthy arrays containing ones and ze-
ros, and this often slows down the computation process to an unacceptable
level. Furthermore, binary arithmetic has the implicit disadvantage of
sometimes being stranded in a Hamming cliff. In this situation, as is well
known, any small change in the real space would require a very large
change in the corresponding binary. This halts progress of the solution and
often makes fine convergence impossible in a near-optimal scenario. Fur-
thermore, in SGA, the rate of mutation is not self-adjusting in nature. The
requirements of mutation at the beginning and end of the computational
process are, however, not necessarily the same. The user can, and some-
times does, induce an ad hoc adjustment of the mutation probability as the
solution progresses, but a realistic estimate of the required temporal
changes in the mutation probability still remains quite cumbersome. Fi-
nally, SGA is not geared for searching beyond the prescribed variable
bounds, which, at least in few cases, may not be precisely known.

All such problems can be easily tackled in the computing environment
prescribed by DE (Price and Storn 1997), where all the genetic operations
are performed on the real-coded variables themselves, thereby totally
eliminating the risks of ending up in a Hamming cliff. The concept of mu-

tating with vector differentials that DE proposes automatically makes mu-
tation a self-adjusting phenomenon, because the vector differential remains
quite large for the initial random population and, analogous to a noise
term, progressively decays as the population gradually converges. So far, it
appears that DE has been tested for just one materials-related problem
where it has successfully calculated the ground state structures of a number
of Si–H clusters (Chakraborti et al. 2001). Since this particular system has
also been studied by the ab initio method (Balamurugan and Prasad 2002;
Prasad 2002), SA (Gupte and Prasad 1998; Gupte 1998) and SGA with and
without Niching (Chakraborti et al. 1999, 2002), it is taken here as the
paradigm case to establish the efficacy of DE for such types of studies. We
begin with a description of the system model.

7.1 Optimizing Si–H Clusters 315

7.1.2 The System Model

The Basics and the Background

A study of Si–H clusters is quite important from a practical point of view
because hydrogenated amorphous silicon is a highly promising opto-
electronic material and during its formation through the glow discharge of
silane (SiH4) gas, various assemblages of silicon and hydrogen are known
to play very important roles (Gupte 1998). As indicated above, in order to
locate the ground state energy levels of the clusters, the computational task
of the DE algorithm is to locate the atomic coordinates corresponding to
the minimum energy values. The computing difficulties are enormous,
since it is virtually possible to construct an infinite number of candidate
solutions in a messy multi-dimensional fitness landscape, and the task of
identifying the ground state solution there is often worse than locating the
proverbial needle in a haystack! This is essentially an energy minimization
problem; therefore, the fitness value can be taken as the negative of the en-
ergy functional. One needs a rigorous description of the energy, consider-
ing the interactions between the electrons, as well as the ionic cores of the
atoms. This can be done from first principles devoid of any empirical or
adjustable parameters, as attempted in the Car–Parrinello approach (Car
and Parrinello 1985). Although known for their accuracy, such ab initio

schemes are often unmanageably computing intensive. For the covalently
bonded materials an excellent alternate is the tight-binding approach,
which has been used in conjunction with DE (Chakraborti et al. 2001).
Further details are provided below.

The Tight-Binding Model

The tight-binding approximation treats the system as consisting of ionic
cores and an electron gas and is now very widely used for studying cova-
lently bonded materials (Wang and Ho 1997). It attempts to calculate the
total energy functional for the entire system ()totalE by adding up the one -
particle eigenvalues and the individual pair potential terms, such that

paireltotal EEUE ++= 0
(7.1)

where the constant 0U shifts the cohesive energy as prescribed by the user.
elE denotes the energy associated with the occupied eigenvalues of the

electronic system and pairE is the sum of pair potential terms caused by
the repulsion between the ionic cores. Denoting the occupancy of the kth

316 7 Applications

eigenstate as kg , and occN as the number of occupied orbitals, the elec-
tronic contribution to the total energy is expressed as

.
1=

=
occN

k

kk

el gE ε
(7.2)

Furthermore, summing the pair potential terms related to repulsion be-
tween the ionic cores, pairE is obtained as

().
<

=
ji

ij

pair rE χ (7.3)

Utilizing this basic definition for total energy, the wave functions of
these eigenstates are given in terms of the non-orthogonal basis as

i

i

n

in C φψ ⋅= (7.4)

where iφ are the basis functions. In the non-orthogonal tight-binding

theory employed here the basis functions are localized on each atom re-
sembling its atomic orbital, and spherical harmonic functions ()imY are
used to describe the angular parts. The characteristic equation is then ex-
pressed as

() 0=−
i

ij

jijijij CSH ε (7.5)

where ijH denotes the Hamiltonian matrix elements between the ith and

jth orbitals, such that

.ji

ij HH φφ= (7.6)

The overlap matrix elements between them are expressed as

.ji

ijS φφ= (7.7)

Further details of calculating the Hamiltonian and the overlap elements
are provided elsewhere (Gupte 1998).

7.1 Optimizing Si–H Clusters 317

7.1.3 Computational Details

In order to apply DE to the present problem (Chakraborti et al. 2001), a
Cartesian coordinate system was adopted in a cubic search space of 5 Å
each side and a search was conducted for the atomic coordinates corre-
sponding to the ground state structure. Out of the infinite atomic arrange-
ments possible in this solution domain, the task of DE was to locate the
unique configuration leading to the ground state with minimum energy.
DE could perform this task quite satisfactorily. A DE code was tailor-made
for this particular work, following the guidelines available in the literature
(Price and Storn 1997). A population size of ten times the number of vari-
ables appeared to be adequate in most cases and a scheme for adjusting the
mutation constant and crossover probability was evolved through system-
atic trial and error. For a number of clusters DE reached the near-optimal
range rather quickly compared to the SGA-based studies performed previ-
ously (Chakraborti et al. 1999, 2002). The effect was more pronounced in
some of the larger clusters: Si6H, for example, was computed within just
350 generations. In general, however, a few hundred to over a thousand
generations were necessary to resolve a structure, and often the computa-
tion for larger assemblages took less time compared to some of the smaller
ones.

All the calculations were performed in a local area network of a number
of Silicon Graphics workstations in the SG 200 Origin series. The calcula-
tions were very computationally intensive; a few even took several months
to converge when submitted as background jobs in a multiple-users envi-
ronment, and apparently there was a nonlinear increase in the problem
stiffness with increasing problem dimension. Even then, the use of DE re-
sulted in a considerable amount of savings in terms of CPU time, as the re-
cent ab initio calculations for the same system (Balamurugan and Prasad
2002; Prasad 2002) took considerably longer than the evolutionary ap-
proach. In fact, DE could locate the near-optimal range rather quickly
compared to some other techniques – SA, for example (Gupte and Prasad
1998; Gupte 1998). An elitist feature was introduced into the DE algorithm
used in this problem, which turned out to be an absolute necessity for this
sort of calculation. The movement of the elite was closely monitored and
the decision for convergence was taken on the basis of the performance of
the best individual, rather than an average member of the population.

318 7 Applications

7.1.4 Results and Discussion

Evolution of the Three-Dimensional Clusters

Some of the hydrogenated silicon clusters were previously studied using
an empirical tight-binding (ETB) approach (Katircio lu and Erkoç 1993).
The three-dimensional nature of most of the clusters was not adequately
highlighted in that work, as the cluster geometries could not be optimized.
It has been possible to overcome this problem by coupling the DE with a
tight-binding formulation. A typical case is shown in Fig. 7.1 for Si2H2.
This is a symmetrical structure where the two silicon atoms are bound to
each other and both the hydrogen atoms are bonded strongly to a silicon
atom as the mirror image of each other.

a) b)

Fig. 7.1. The ground state structure of the Si2H2 cluster: a calculation by DE and
SGA; b prediction from ETB model

As evident from Fig. 7.1, these structural features could not be fully re-
vealed using the ETB formulation alone and, therefore, the optimization
through DE has a very special role to play. The Si–H bond length is calcu-
lated as 1.54 Å. The calculated value of cohesive energy is 10.14 eV,
which is in excellent agreement with the earlier computations using SGA
and SA (Chakraborti et al. 1999, 2002; Gupte 1998). DE was able to re-
solve this structure approximately within 500 generations and, in fact, a
near-optimal situation was obtained much sooner. A variable mutation
constant between 0.02 and 0.3 and variable crossover probability between
0.5 and 0.9 were judiciously used over a population size of 120. The
mechanisms of probability variation were evolved through systematic trial
and error.

7.1 Optimizing Si–H Clusters 319

Several Si–H clusters have been calculated fairly recently using DE
(Chakraborti et al. 2001). Here we will analyze a few selected ones, show-
ing some characteristic trends.

a) b)

Fig. 7.2. Ground state structures of a Si2H and b Si3H calculated by DE and SGA.

The Symmetric and Asymmetric Clusters

Many of the clusters calculated in a recent study (Chakraborti et al. 2001)
were highly symmetric, and a few were not. DE was successful in resolv-
ing both types, as shown in Fig. 7.2. Like other studies using SA (Gupte
1998) and SGA (Chakraborti et al. 1999, 2002), the calculations using DE
have also determined the Si2H structure as an asymmetric planar structure
with the hydrogen atom located closer to one silicon atom than the other.
The ground state cohesive energy is determined as 6.56 eV which is very
similar to the values obtained in earlier calculations. Although the cohesive
energy calculated through DE is actually identical to what was obtained
through SGA (Chakraborti et al. 1999, 2002), the bond lengths are now
slightly altered. Furthermore, some ab initio calculations (Balamurugan
and Prasad 2002; Prasad 2002) reported a symmetric structure for this
cluster. This perhaps suggests a significant multi-modality of the solution
space, an important issue that warrants further analyses. Because of the
structure’s high asymmetry, calculation of this structure was a little cum-
bersome. It was necessary to run the DE code for about 400 generations to
obtain complete convergence.

In the Si3H structure two silicon atoms are situated symmetrically with
respect to the third. The lone hydrogen atom is situated at the axis of sym-

320 7 Applications

metry. The structure is planar with an Si–H bond distance of the order of
1.8 Å, which is greater than that existing in the SiH cluster. DE determined
the cohesive energy of the ground state structure as 10.61 eV, which is
well in accord with the other predictions (Chakraborti et al. 1999, 2002;
Gupte 1998). DE calculations were run with a mutation constant of 0.25
and a crossover probability of 0.8 for approximately a thousand genera-
tions to obtain this structure, which essentially shows the same symmetry
as that observed in the recent ab initio calculations (Balamurugan and
Prasad 2002; Prasad 2002).

a) b)

c)

Fig. 7.3. The ground state structure of Si2H4 cluster: a DE and SGA calculation; b
prediction by SA; c prediction from ETB model.

7.1 Optimizing Si–H Clusters 321

The Consequences of a Complex and Multi-modal Fitness
Landscape

The energy functional that has been constructed here gives rise to a strong
multi-modality in a complicated fitness landscape, containing closely
spaced energy peaks. Negotiating such a rough terrain would be a Hercu-
lean task for any optimizer, and in this situation DE seems to have done a
very commendable job. For example, in case of Si2H4 (Fig. 7.3), DE pro-
duced a structure energetically superior to those obtained by both SA and
SGA (Gupte 1998; Chakraborti et al. 1999), fully resolving the symmetry
predicted by ETB calculations (Katircio lu and Erkoç 1993) in three di-
mensions. The structure shown in Fig. 7.3 corresponds to a cohesive en-
ergy of 17.02 eV, where the values computed through SA and SGA were

16.93 and 17.01 eV, respectively. This structure looks similar to what
has been obtained through SGA (Chakraborti et al. 1999, 2002) but in
variance with the structure determined through SA (Gupte 1998). Al-
though DE converges to a lower minimum, energetically, the minima pre-
dicted by DE and SA are just 0.09 eV apart. The existence of two different
minima at such a close proximity is indicative of a strong multi-modality,
and the success of DE in locating the better of the set, without resorting to
any niching strategy (Goldberg 1998), as was done in the case of SGA,
speaks volumes for the excellent searching ability of this scheme. To en-
sure stability of the structure, the calculations were run for about 1300
generations. A mutation constant of 0.2 was mostly used along with a
crossover probability of 0.8.

The Behavior of Hydrogen

The nature of the hydrogen bonding plays a key role in the stability of Si–
H clusters. In amorphous hydrogenated silicon, hydrogen often forms
some weak dangling bonds with silicon, which tend to deteriorate on ab-
sorption of some photon energy, rendering the material unsuitable for most
practical applications. Evolutionary computing, through both DE and GAs,
have revealed that hydrogen can be bonded to a single silicon atom or can
be made to form a bridge bond with a number of silicon atoms. Two typi-
cal clusters, Si4H and Si2H3, are shown in Fig. 7.4. In Si4H the lone hydro-
gen is bonded to an silicon atom, while in Si2H3, two hydrogen atoms form
bridge bonds with a pair of silicon atoms, and the remaining hydrogen is
bonded to a single silicon atom.

The ground state structure of Si4H is quite similar to that of Si4 dis-
cussed earlier (Gupte 1998). The presence of hydrogen causes some distor-
tion in the structure, but retains the essential geometric features of Si4. To

322 7 Applications

resolve this fully, the DE calculations were run for about 2000 generations
with a mutation constant of 0.3 and a crossover probability of 0.8. The co-
hesive energy for the ground state structure was calculated as 14.81 eV,
which is quite comparable to the values calculated by the other techniques
(Gupte 1998).

The structure of Si2H3 obtained by DE (Fig. 7.4) qualitatively shows the
same atomic arrangements as what was obtained earlier by both SGA and
SA (Chakraborti et al. 1999, 2002; Gupte 1998). However, by some quirks
of computing DE predicted the cohesive energy as 7.04 eV, as opposed to
a value of 12.87 eV computed earlier. In fact, this is the only case where
DE failed to reach the correct convergence and performed in an inferior
way compared to both SGA and SA. The calculations were continued for
about 900 generations, varying the mutation constant between 0.0001 and
0.2 and the crossover probability between 0.5 and 0.99, and an apparently
premature convergence was obtained. The reasons for the poor perform-
ance of DE in this case are not clearly understood. Due to its unique repro-
duction strategy, DE essentially remains a greedy scheme, which con-
verges really fast, but sometimes may lead to problems. However, this
result can be taken as a very rare exception rather than a rule, as this prob-
lem was not encountered for any other clusters in the study.

a) b)
Fig. 7.4. Configurations predicted by both DE and SGA: a the ground state struc-
ture of the Si4H cluster; b the ground state structure of the Si2H3 cluster

7.1 Optimizing Si–H Clusters 323

Hydrogen in Relatively Large Clusters

In all the clusters studied here by DE the hydrogen atoms were observed to
occupy positions either outside or at the surface of the clusters. In no case
was hydrogen found to be situated inside the clusters. Hydrogen also
seems to form multi-centered bonds with two or more silicon atoms, where
it is not strongly attached to any particular one of them. Also, it appears
that even a single hydrogen atom can very significantly alter the geometry
of a silicon cluster. Such findings are quite prominent, particularly in rela-
tively large clusters like Si5H (Fig. 7.5) and Si6H (Fig. 7.6).

a) b)

Fig. 7.5. Si5H cluster: a the ground state structure predicted by DE; b a slightly
higher energy structure obtained by ab initio calculations.

In the ground state configuration of Si5H revealed through DE (Fig.
7.5), three silicon atoms are situated on the same plane as the lone hydro-
gen. The structure is symmetric along this plane with two silicon atoms
symmetrically placed on two sides of it. This is quite deviant from the re-
ported structure of Si5, and in fact it is more like the structure of Si6 (Gupte
1998). The hydrogen therefore causes a very large distortion in the Si5

structure, which was also observed in the earlier studies. The cohesive en-
ergy was calculated as 23.90 eV, and with variable mutation constants
between 0.1 and 0.3 and the corresponding crossover probabilities between
0.5 and 0.85, DE was able to obtain this relatively large structure within
just 600 generations.

An alternate structure with slightly higher cohesive energy obtained in a
recent ab initio calculation (Balamurugan and Prasad 2002; Prasad 2002)
is also shown in Fig. 7.5. The hydrogen in this configuration is completely

324 7 Applications

outside the silicon lattice and is attached to just one silicon atom. The
multi-centered bonds in larger clusters therefore break with very little en-
ergy input, and this phenomenon may have some significant implications
in selecting materials for opto-electronic devices like light sensors, thin
film transistors, light-emitting diodes, etc., where hydrogenated amorphous
silicon is currently emerging as a strong candidate.

Similar trends were also observed in Si6H, and both the DE and SGA
calculations have placed the hydrogen atom at the surface of cluster (Fig.
7.6). DE quite efficiently resolved this relatively large configuration. The
ground state structure shown in Fig. 7.6 was obtained within just 350 gen-
erations with a mutation constant of 0.2 and a crossover probability of 0.9.
The cohesive energy was calculated as 23.90 eV, which is identical to
what was obtained with SA (Gupte 1998) and better than that predicted
with SGA (Chakraborti et al. 1999, 2002).

The ground state structure of Si6H appears to be a slightly distorted bi-
capped tetrahedron. The distortion, as expected, is caused by the presence
of hydrogen in the lattice, which shifts the silicon atoms in its immediate
neighborhood.

a) b)

Fig. 7.6. The ground state structure of the Si6H cluster: a DE calculation; b SGA
calculation

An Evaluation of the Performance of DE

From the experience of studying Si–H (Chakraborti et al. 2001), a clear
picture emerges regarding the efficacy of DE. A few salient points are
highlighted below.

7.1 Optimizing Si–H Clusters 325

• Real coding in DE requires far less data storage, and the absence of any
mapping between binary and real numbers makes it execute faster.
These features make DE an ideal candidate for the calculation of large
clusters, where the CPU time is crucial.

• Except for one single exception, DE in the present context always pro-
duced results either comparable to or better than those obtained by SGA
and SA.

• DE effectively is a greedy scheme, preferring either the better child or
the better parent. This leads to a speedy convergence in most cases, but
may backfire in some.

• The self-adjusting mutation scheme in DE is a definite advantage.
• DE can negotiate non-smooth fitness landscapes, as encountered in the

present study.
• The introduction of elitism in DE was found to be highly beneficial in

the present case.
• At least during this investigation, DE resolved very closely spaced

multi-modality without resorting to any niching strategies.

For large computations of this sort, the power of DE can perhaps be
more efficiently realized by developing a parallel version of the current DE
methodology. Future researchers in this area might closely explore such an
option.

7.1.5 Concluding Remarks

The success of DE use demonstrated here could be of immense signifi-
cance to the general area of computational materials science, because the
methodology described here can be easily extended to materials like giant
fullerenes and carbon nanotubes and can be effectively tried out for a large
number of hitherto unsolved materials-related problems. Applications of
GAs have opened up a new pathway in materials research, particularly in
materials design. This can now be further enriched by the adoption of DE,
and the time is quite ripe for its vigorous promotion by materials research-
ers at large.

References

Balamurugan D, Prasad R (2002). Ground state structures and properties of Si2Hn

Clusters. In: Chakraborti N, Chatterjee UK (eds.), International conference in
advances in materials and materials processing (ICAMMP-2002), February 1–

326 7 Applications

3, 2002, Indian Institute of Technology, Kharagpur, India. Tata-McGraw-
Hill, New Delhi, pp 609–613

Car R, Parrinello M (1985) Unified approach for molecular dynamics and density-
functional theory. Physical Review Letters 55(22):2471–2474

Chakraborti N, De PS, Prasad R (1999) A study of Si-H system using genetic al-
gorithms and a tight binding approach. Zeitschrift für Metallkund 9093:508–
513

Chakraborti N, Misra K, Bhatt P, Barman N, Prasad R (2001). Tight-binding cal-
culations of Si-H clusters using genetic algorithms and related techniques:
studies using differential evolution. Journal of Phase Equilibria 22(5):525–530

Chakraborti N, De PS, Prasad R (2002) Genetic algorithms based structure calcu-
lations for hydrogenated silicon clusters. Materials Letters 55():20-26

Goldberg DE (1989) Genetic algorithms in search, optimization and machine
learning. Addison-Wesley, Reading, MA

Gupte GR (1998) Molecular dynamics studies of small hydrogenated silicon clus-
ters and hydrogenated amorphous silicon. Ph.D. dissertation, Indian Institute
of Technology, Kanpur

Gupte GR, Prasad R (1998) Ground state geometries and vibrational spectra of
small hydrogenated silicon clusters using nonorthogonal tight-binding mo-
lecular dynamics. International Journal of Modern Physics B 12(15):1607–
1622

Katircio lu S, Erkoç S (1993) Empirical tight-binding total energy calculation for
SinH2m (n = 1 to 6, m = 1 to 3) Clusters. Physica Status Solidi (b),
177(373):373–378

Keser M, Stupp SI (2000) Genetic algorithms in computational materials science
and engineering: simulations and design of self-assembling materials. Com-
puter Methods in Applied Mechanical Engineering 186:373–385

Morris JR, Deaven DM, Ho KM, Wang CZ, Pan BC, Wacker JG, Turner DE
(1999) Genetic algorithm optimization of atomic clusters. In: Davis LD, De-
Jong K, Vose MD, Whitley LD (eds.), Evolutionary algorithms. IMA volumes
in mathematics and its applications, vol 111. Springer, Berlin Heidelberg New
York

Prasad R (2002) Ground state structures of small hydrogenated silicon clusters. In:
Chakraborti N, Chatterjee UK (eds.), International conference on advances in
materials and materials processing (ICAMMP-2002), February 1–3, 2002, In-
dian Institute of Technology, Kharagpur, India. Tata-McGraw-Hill, New
Delhi, pp 741–748

Price K, Storn R (1997) Differential evolution: a simple evolution strategy for fast
optimization. Dr. Dobb’s Journal 22(April):18–24

Wang CZ, Ho KM (1997) Materials simulations with tight-binding molecular dy-
namics. Journal of Phase Equilibria 18(6):516–529

7.2 Non-Imaging Optical Design Using Differential
Evolution

David Corcoran and Steven Doyle

Abstract. The application of differential evolution to non-imaging optical
design is explored here. The objective is to create a mirror shape which re-
flects light from a source to produce a desired light distribution in some
target region. Differential evolution uses a cost measure to numerically de-
termine the quality of a proposed solution against a desired solution and
various cost measures specific to non-imaging optical design are exam-
ined. A reverse engineering strategy is used to test the design methodology
for a point light source, which lends insight into the differential evolution
approach, and validates it for two geometric classes of problems. In these
the target distribution comes from either a parabolic mirror shape or an el-
liptical mirror shape. The methodology is also validated for an extended
light source.

7.2.1 Introduction

Luminaire reflectors can be found in car head-lamps, lighting fixtures, in-
deed anywhere there is some form of artificial lighting. It may be surpris-
ing but the design of such reflectors can be a time-consuming and costly
exercise taking of the order of years to complete in the case of car head-
lamps. The reason is the trial and error approach which is adopted by the
designer. Software packages which aid in the design process exist, yet they
still require an interactive procedure of varying the design and then testing
it over many iterations, a process which is not just time consuming but
must eventually fail as the complexity of a design increases. Observation
of the design search space for such problems demonstrates the necessity
for a global optimization process (Doyle et al. 1999a). Prompted by the
genetic algorithm work of Ashdown (1994), we have explored the use of
differential evolution (DE) to automate non-imaging optical design and
found that the technique is not only valid but also feasible (Doyle et al.
1999a, 1999b, 2001).

328 7 Applications

7.2.2 Objective Function

The task of a non-imaging optical designer is that, given a light source, a
reflector design is required which will cast a desired distribution of light
on some target surface (henceforth referred to as the target distribution).
The objective function must therefore provide a means of calculating a
light distribution and measuring the difference between this and the target
distribution. In this regard the key elements of the objective function are a
ray tracer and a cost measurement.

Ray Tracer

The distribution from a light source reflector combination can be calcu-
lated using a ray-tracing approach as illustrated in Fig. 7.7.

Fig. 7.7. Ray tracing a Bezier curve

In ray tracing one makes use of the geometric nature of light: that is,
light travels in straight lines and upon reflection from a smooth surface the
angle of incidence of a light ray is equal to its angle of reflection. A light
source can then be considered a source of light rays with each ray being
described by a parametric vector of the form

R = S + tRU (7.8)

where R is the ray position, S is a vector locating the source of the ray,
U is the ray direction and tR is the ray parameter with tR ∈ [0, 1].

7.2 Non-Imaging Optical Design 329

Mathematically a mirror can be represented by a Bezier curve (Bezier
1974), a continuous parametric curve determined by a small number of pa-
rameters called control points (see Fig. 7.7). In two dimensions a cubic
Bezier curve can be written as

() () () () 4

3

3

2

2
2

1
3

13131
)(

)(
PPPPQ BBBBBB tttttt

B
ty
B

tx
+−+−+−==Bt

(7.9)

where Pi are the control points
iy

ix

P

P
 and tB is the Bezier parameter, tB ∈

[0, 1].
The parameters P1, P4 and P2, P3 determine the end position points of

the curve/mirror and the magnitude and direction to the curve at these
points. Changing the control parameters thus allows a continuum of poten-
tial mirror designs P = [P1, P2, P3, P4] to be generated. The objective func-
tion can then be written in general terms as f(P) = C, which is a cost (C)-
based function to be minimized using DE.

To calculate the resultant light distribution for a particular mirror de-
sign, P, rays are launched discretely and are reflected from the mirror ac-
cording to

−=
2

.

N

NU
NUU

inc
incref 2

(7.10)

where N is the normal to the mirror at the point of intersection, the latter
obtained from solving for the incident ray Rinc = Q(tinc). The reflected ray
is then described by

refrefref USR Rt+= where ().ref inctQS = (7.11)

Multiple reflections are also allowed by iteration in which Rinc becomes
Rref and the process continues to some desired limit imposed by computa-
tional constraints. The resultant distribution can then be determined by cal-
culating the intersection of the reflected rays with bins or ray-collecting
elements distributed over the target surface. The area for ray collection is
called the intercept region (see Fig. 7.8 for an example). As the purpose
here is mirror and not source design, rays that are cast directly from the
source to the target surface without reflection are not considered in the cal-
culation of the resultant distribution.

330 7 Applications

Cost Measurement

A figure of cost for a particular mirror design can be based in general
terms on some numerate difference between the target and resultant distri-
butions. We have investigated various cost measurements (Doyle et al.
2001) and it is instructive to examine a few examples to gain an insight
into the operation of DE for design problems.

In preliminary work, problem-specific cost measurements were used
(Doyle et al. 2001). For example, a focusing solution could be achieved by
requiring DE to maximize the number of reflected rays in a single intercept
bin, of narrow angular width with respect to the source, accomplished by
applying the cost measurement

C = T R (7.12)

where T is the total number of rays and R is the number of intercepting
rays. Interestingly, observation revealed that DE first attempted mirror de-
signs that would result in any rays being directed toward the intercept re-
gion, then later attempted designs that maximized the reflected ray num-
ber. This points toward an inherent strength of DE: that is, it is capable of
finding not only an optimum solution but also developing a solution strat-
egy.

To generalize the approach to non-specific design problems, the angular
width of the intercept region was extended and divided into a number of
ray-collecting bins. The following simple cost measurement was applied
where Ti is now the desired number of rays in a collecting bin, Ri the num-
ber reflected into that bin and N the number of bins:

=
−=

N

i

ii RTC
1

.
(7.13)

There is, however, an underlying difficulty with this approach: that is,
the cost biases the selection of mirror solutions toward those with diver-
gent ray reflections. A mirror design proposed by DE which casts rays out-
side the intercept region can potentially have a lower cost than one which
casts rays into the region but in the wrong bins. To circumvent this the
number of these outer rays was added as a penalty to the cost:

∞
=

+= − RRTC

N

i

ii

1

.
(7.14)

The ray number ∞R is determined by counting those reflected rays that
intersect the target surface but not the finite region in which the intercept
bins are located. This is equivalent to including an infinite intercept region,

7.2 Non-Imaging Optical Design 331

though note that individual mirror shape ultimately determines how much
of this region is available.

Remarkably, with the new cost measurement implemented, it was found
that when the target was in the far field (taken to be a distance several
times the mirror dimension) the generated optimum mirror shapes often
enclosed the light source preventing any rays from reaching the intercept
region. To understand this, consider first that the initial population of trial
mirrors used by DE is generated randomly. As the binning region, i.e., the
region containing the N collecting elements, is small in comparison to the
intercept region, one might expect the initial cost of the population mem-
bers to be

() ()RTCRRTC

N

i

i

N

i

i

==

−+−+−
11

211 ~or~ ααα
(7.15)

where R is the total number of rays reflected and α is the fraction of these
rays in the binning region. It is assumed here that α ≤ 0.5 and Ri, the num-
ber of rays reflected into each bin, is less than Ti. A closed mirror solution
will therefore have the lower cost

=

N

i

iTC
1

~
(7.16)

particularly in the far field (as α decreases with distance) and DE simply
selects the optimum solution. It must be stressed that DE is working cor-
rectly; the issue is that a simple cost measurement may have hidden unex-
pected behavior. The final version of the cost measurement and the one
used in the results detailed below (unless otherwise stated) solves this
problem by the inclusion of a component that penalizes any difference be-
tween the total desired ray number in the binning region and the total re-
flected ray number which reaches the entire intercept region:

.
1 1 1= = =

∞∞ −−++−=
N

i

N

i

N

i

iiii RRTRRTC
(7.17)

7.2.3 A Reverse Engineering Approach to Testing

To investigate the DE approach to non-imaging optical design, it is useful
to choose test problems for which the solution is already known. In this re-
gard two classes of mirror design problems have been examined (Doyle et
al. 1999a), one in which the output light distribution diverges/converges

332 7 Applications

and one in which the light distribution is maintained. These correspond to
elliptical and parabolic mirror designs respectively. Casting the light dis-
tribution from either of these mirrors on a distant surface produces a target
distribution for a known mirror shape. Using this as the target for the ob-
jective function, DE should in principle be capable of reverse engineering
the problem to determine the original mirror shape. A DE algorithm (Storn
and Price 1997) was implemented initially with a population size of 40, a
crossover constant of 0.2 and a noise scaling factor of 0.8. Target distribu-
tions were generated on planes from point light sources at near, middle and
far fields defined by the reducing angular width of the distributions with
respect to the source. Further details of the parameters for the parabolic
and elliptical problems can be found in our earlier work (Doyle et al.
1999a).

Sample results are presented in Fig. 7.8 for a near-target distribution
generated by a parabolic mirror with the point source located at its focus.
In this figure the generating mirror is presented with the solution obtained
by DE. Overall for this problem the average cost (from ten computational
runs), after a maximum of 104 iterations and expressed as a percentage of
rays launched, was 2%. The low average cost and visual inspection of Fig.
7.8 demonstrate that the DE approach has performed exceptionally well.
Interestingly, while all mirror solutions presented produce close to, and in
Fig. 7.8c exactly, the desired distribution, only in one of these cases is the
mirror close to being the generating parabolic shape. This is a recurrent
feature of the DE solutions. It arises because there is more than one solu-
tion to the design problem and the DE strategy is general enough to be able
to find these solutions. From the point of view of a designer this offers the
very beneficial property of flexibility. For instance, in addition to meeting
a physical requirement one might choose from the collection of designs
one which is aesthetically pleasing. As the target distribution is removed to
further distances and its angular width decreases with respect to the source,
the design problem becomes more difficult. It has been observed that at the
benchmark 104 iterations the average cost increases to 18% and 38% in the
middle and far field. Nevertheless by increasing the number of iterations
by a factor of four it has been shown that the cost for a middle-field prob-
lem can be reduced to 5% (Doyle et al. 1999a).

7.2 Non-Imaging Optical Design 333

a)

b)

(c)

Fig. 7.8. Sample results from the DE approach to mirror design. On the left a se-
lection of ray-traced optimum mirror designs proposed by the strategy. The para-
bolic mirror used to generate the target distribution is also shown. On the right the
overlaid target distribution and resultant distributions are shown. Black and white
boxes represent an excess and deficit respectively.

334 7 Applications

For elliptical test problems the point source was located at the first focal
point. Provided the target was located beyond the second focal point of the
generating ellipse, the cost for the DE solutions was typically ≤ 2% regard-
less of the distance to the target. The reason is, in contrast to the above
parabolic problem, the angular width of the target distribution here remains
constant irrespective of its distance. As before, it was found that a number
of potential solutions existed for this problem, which in the main were
scaled versions of the generating ellipse (see Fig. 7.9). The DE strategy
does appear to have increased difficulty if the target distribution is placed
at the second focal point and this can be understood in terms of its reduced
angular width (Doyle et al. 1999a). Nevertheless, it is found that while the
average cost is 23%, optimum solutions of cost ≤ 10% can still be gener-
ated at the 104 iteration benchmark, an example of which is shown in Fig.
7.9.

Fig. 7.9. As Fig. 7.8 but for an elliptical mirror, with the target distribution at the
second focal point.

7.2.4 A More Difficult Problem: An Extended Source

The more practical problem of non-imaging optical design for an extended
light source is now examined. One can think of an extended light source,
such as a fluorescence tube, as simply being a conglomerate of point light
sources. The greater complexity, however, will be expected to increase the
number of computations necessary for ray tracing a mirror design.

The choice of DE strategy and corresponding crossover and scaling fac-
tors was considered with the objective of improving computational effi-
ciency. To this end a parabolic middle-field distribution with point light
source (see above) was selected as the desired or target distribution and a

7.2 Non-Imaging Optical Design 335

selection of eight DE strategies applied (Doyle et al. 1999b). For each
strategy, three values, 0.5, 0.7 and 0.9, were used for both the crossover
and noise scaling factor, and a cost was established based on an average of
eight computational runs benchmarked at 5 × 103 iterations. The
DE/best/2/bin strategy produced the lowest average cost of 3%, for a
crossover of 0.9 and noise weighting of 0.7. This is the method used to
generate the results presented below. Within statistical error the strategy
DE/rand/1/bin would also have been acceptable giving an average cost of
3.4% for a crossover of 0.9 and noise weighting of 0.9. The large values
for the crossover and noise in both cases indicate a bias toward the random
exploration of the problem search space.

Fig. 7.10. A circular light source model

A circular light source model was selected as the extended source (see
Fig. 7.10). In photometry the quantity of light power is the luminous flux
Φ (Pedrotti and Pedrotti 1993). The circular source here was discretely
sampled at a number of equally spaced points and each point allowed to
generate a Lambertian distribution of rays at regular angular intervals, i.e.,
one following a luminous flux profile of Φ = Φo cos θ. The geometry se-
lected for the target region was also circular, centered on the source, and
consequently the angle subtended by the ray-collecting bins remained con-
stant. Accordingly, the initial cost measurement used for the extended
source was

= = =
∞∞ −−++−=

N

i

N

i

N

i

iiii TTC
1 1 1

ΦΦΦΦ

Term 1 Term 2

(7.18)

336 7 Applications

where in each element Ti is the target flux, iΦ the reflected flux and ∞Φ is
the reflected flux outside the ray-collecting region.

An implication of an extended source is that by virtue of its size, it may
obstruct reflected rays and in reality might prevent them from reaching the
target region. To allow for this, any reflected rays found to intersect the
circular source were excluded. In addition, it was recognized that a mirror
design which reduced the ray number from reaching the target would be a
poorer design than one that does not. The second term in the cost meas-
urement above already penalizes such mirror designs implicitly, as a re-
duction in luminous flux reaching the overall intercept region would cause
this term to increase. An explicit penalty scheme was also explored:

RET

N

i

N

i

N

i

iiii TTC ΦΦΦΦΦ +−−++−=
= = =

∞∞
1 1 1

(7.19)

where RETΦ , the flux intercepted by the source, was added to the cost.
The test problem selected for the extended source was to determine a

mirror shape capable of producing a limited Lambertian output defined by
us to be one where iΦ obeyed the following relationship:

() ()

()
θθαΦ

α

α

d
T

i

i

i

−

−1−

=
2

1

2
1

cos

2sin2

(7.20)

where α is the angular width of the target distribution, T is the total lumi-
nous flux in the target distribution, θ is the angular position in the target
(with respect to the source) and N is the number of ray-collecting elements.
In addition, we have explored the behavior of DE strategy as the source
size is increased, α is decreased and T is increased. Details can be found in
our earlier work (Doyle et al. 1999b).

As in the case of the point source, over a wide range of the parameters
explored DE performed exceptionally well with typical costs of ~6%. For
80% of the cases studied it was found that the costs of the mirror solutions
proposed by the explicit scheme were lower than those from the implicit
scheme. Moreover, the fraction of luminous flux returned to source was
also always lowest in the explicit approach. While the cost was observed to
increase with target size reduction and source size increase, this was un-
derstood in terms of the limitations imposed on the search space size. For
example, if we restrict the size of the mirror to be comparable to a mirror
size, clearly there is a physical limitation to the optimum solution DE can
provide.

7.2 Non-Imaging Optical Design 337

7.2.5 Conclusion

The use of DE has been explored as a design methodology for non-
imaging optics, in which the objective is to generate a mirror shape, for a
given light source, that produces a desired light distribution. Overall it ap-
pears that the approach is adept at generating mirror solutions for two
broad classes of design problem, namely parabolic and elliptical target dis-
tributions produced for a point light source. The approach has also been
validated for a more realistic extended light source.

The investigation has revealed some interesting features with regard to
the general application of DE to design problems. It has been observed, for
example, that in addition to generating a solution, design strategies for ob-
taining a solution may emerge. With regard to the cost measure, one must
caution against naively choosing a measure that simply indicates a numeri-
cal difference between a desired design quantity and a solution-generated
quantity. As has been seen here, this can lead to unexpected results which,
although meeting the cost measure criteria, fall far short of the design cri-
teria. The case in point is where DE generates a mirror design that simply
encloses the light source to achieve a minimum cost. Lastly, one should be
aware that for certain design problems there may be more than one poten-
tial solution in the search space. The distinct advantage of DE here is that
its stochastic nature allows these to be discovered, presenting the designer
with a possible choice of potential designs.

References

Ashdown I (1994) Non-imaging optics design using genetic algorithms. Journal of
the Illumination Engineering Society 3(1):12–21

Bezier P (1974) Mathematical and practical possibilities of UNISURF. In: Barn-
hill RE, Riesenfeld RF (eds.), Computer aided design. Academic Press, New
York, pp 127–152

Doyle S, Corcoran D, Connell J (1999a) Automated mirror design using an evolu-
tion strategy. Optical Engineering 38(2):323–333

Doyle S, Corcoran D, Connell J (1999b) Automated mirror design for an extended
light source. Proceedings of the SPIE 3781:94–102

Doyle S, Corcoran D, Connell J (2001) A merit function for automated mirror de-
sign. Journal of the Illumination Engineering Society 30(2):3–11

Pedrotti FL, Pedrotti LS (1993) Introduction to optics. Prentice Hall International,
London

Storn R, Price K (1997) Differential evolution – A simple evolution strategy for
fast optimization. Dr. Dobb’s Journal 22(4):18–24 and 78

7.3 Optimization of an Industrial Compressor Supply
System

Evan P. Hancox and Robert W. Derksen

Abstract. This section demonstrates a modified version of differential
evolution (MDE) that produces the n best solutions for the real-world
problem of selecting the optimum combination of compressor supply sys-
tem components. The selection is based on the plant’s unique compressed-
air requirements. The cost function considers the initial purchase price and
the cost of operating over a user-specified number of years. The results
demonstrate MDE’s ability to produce non-intuitive solutions. Data repre-
senting 4060 unique industrial plants is presented to demonstrate the effect
of various settings of F, K, and population size on convergence rates. The
performance of MDE was verified using test cases with known solutions in
order to obtain 100% certainty of the results presented here.

7.3.1 Introduction

Differential evolution (DE) was applied to the real-world engineering
problem of selecting equipment for an industrial compressor system. Due
to the fact that compressor system components are available in discrete
sizes, databases of actual components available in the marketplace were
created that represented each of the parameters in the population vectors.
Databases were created using information retrieved from freely distributed
catalogue software from ZeksProTM (ZEKSPRO 2002) and Compressed

Air Systems (Compressed Air Systems 1999).
The industrial compressor system can be broken into two parts: the sup-

ply side and demand side. For the system studied here, the supply side
(Fig. 7.11) consisted of air compressors, pre-filters to remove any com-
pressor oil or other mists from the air stream that may damage the desic-
cant material in the air dryer, desiccant air dryers that remove moisture
from the air stream down to a dew point of 40oC, after-filters to remove
any desiccant dust that may carry over from the dryer, storage receivers
(tanks), and a proportional–integral–derivative (PID) flow controller. The
flow controller facilitates high-pressure storage in the receiver on the sup-
ply side and precise supply to the low-pressure demand side. The demand
side represents the remaining system piping and end use equipment.

340 7 Applications

Desiccant Air Dryer

Compressor

Pre-filter

After-filter

High
Pressure
Receiver

Flow Controller

Demand Side Air,
Regulated Pressure

Atmospheric
Air

Supply Side Air

Fig. 7.11. A schematic layout of the components in a pneumatic supply system.
Air enters the system from the atmosphere and passes through each component
bank in the sequence indicated. The bank consists of an array of a sufficient num-
ber of identical components to meet demand. This problem has six degrees of
freedom as we have five separate discrete values that we can select, namely the
compressor, pre-filter, desiccant air dryer, after-filter and flow controller; and one
continuous value, the receiver volume.

7.3.2 Background Information on the Test Problem

Typically, industrial compressors are sized according the largest expected
flow conditions plus a safety factor to ensure adequate supply. Other air
treatment equipment is then sized to allow maximum delivery rates of the
compressors. Where downtime is seen as unacceptable, one or more addi-
tional compressors of full capacity are installed for backup purposes. Fi-
nally, the sizing of storage receivers is often based on a rule of 1 US gallon
for each standard cubic foot per minute (scfm) of compressor capacity
(Compressed Air Systems 1999). This approach simply does not afford the
optimum setup.

7.3.3 System Optimization

Engineers are beginning to recognize the importance of improving condi-
tions on the demand side, along with the need for flow controllers and in-
creased supply side storage (Foss 2002). These improvements increase the
efficiency of the system and reduce operating costs. However, the overall
system is not as efficient as it could be: system designers still rely on rules

7.3 Optimization of an Industrial Compressor Supply System 341

of thumb and the advice of equipment suppliers when it comes to sizing
receivers and other supply equipment. It is the authors’ contention that in
order to achieve a complete peak operating efficiency, the entire system
must be optimized. The test case presented here considers optimization of
the supply side of the system and assumes the demand side has been effec-
tively designed or upgraded.

It is only necessary to consider one type of industrial compressor sys-
tem, to show that DE can be easily applied to a real-world application such
as this. Including other system types would require expansion of the objec-
tive function and mean little to the investigation. The test problem assumes
the use of rotary screw compressors, mist/oil eliminator pre-filters, desic-
cant air dryers, after-filters, storage receivers and flow controllers. Further,
the addition of a wider range of component types only serves to make the
number of catalogue entries larger and make the search take longer. We
elected to limit both the number of components within a catalogue and the
types of components considered, as characteristics of the search should be
the same.

While the test program optimizes the supply side, it does so according to
the fluctuating compressed-air requirements of the demand side. We can
construe the demand as a variable that can be broken into different con-
stituents made up of profiles.

7.3.4 Demand Profiles

For purposes of the test program, a demand profile is described as the de-
mand for compressed air over a given period and is rated in scfm (standard
cubic feet per minute). The operational workweek is divided into different
segments in an attempt to define the overall consumption rates into unique
flow profiles: off hours, base and peak demand.

Off hours represents the smallest consumption rate and may occur over-
night or on weekends. Base demand represents the overall average con-
sumption rate that occurs during normal operation. Peak demand depicts
the enduring highest consumption rate that can occur at peak times of op-
eration. For example, peak rate can occur at the beginning or end of any
shift or while a high-demand process runs.

After determining the demand rates for each of the above flow profiles,
it is necessary to determine the accumulated hours per week over which
each profile occurs. The hours are accumulated and are not necessarily
contiguous. In other words, peak hours are a summation of timed events
added up over the week and can occur during base and off hours flow pro-
files, or they can include long-duration events that may represent an entire

342 7 Applications

work shift. Finally, the test program requires the total number of hours per
year for each of the above profiles.

The test program requires three more flow types that must be identified
in order to fully describe typical flow conditions. Maximum plant flow is
the absolute maximum sustained demand that can be created at any given
time. Spike demand is demand that may occur for a very short duration, on
the order of a few minutes, that surpasses the output capacity of all com-
pressors. Surge demand is a similarly sudden, short-duration increase in
demand that surpasses currently loaded compressors.

7.3.5 Modified Differential Evolution; Extending the Generality
of DE

The optimization method selected for this project was DE. The theory and
details of DE are thoroughly discussed in Price (1999) and will not be ex-
panded on here. This selection was based on previous experience of find-
ing the optimum shape of turbo machinery cascade aerofoil profiles (see
Rogalsky et al. 2000). The conclusion of this work was that DE was highly
effective at finding the global minimum, as it did so without fail in a com-
parison with other optimization methods. This becomes more important as
the topology of the solution space becomes more complex. As is the case
when the number of degrees of freedom and nonlinearity increase, the
number of minima and maxima also increase. This, as well as the ability to
deal with integer and discrete parameters, stimulated the interest in this
work.

Modified differential evolution (MDE) extends the generality of DE for
engineering design, by seeking more than a single best solution. In the case
of the test program, producing n best solutions allows an engineer to deal
with unique circumstances after the fact simply by selecting the appropri-
ate best solution that fits that set of circumstances.

The main advantage of finding the n best solutions is that the designer
has more choices. For example, the test program often produced results
that showed that different component combinations had minor differences
in overall costs over the test period, leaving the final selection to the de-
signers’ preference. Preference cannot easily be modeled into an objective
function.

Table 7.1 lists the ten best solutions from one of the test cases. Each so-
lution is a unique combination of components that vary in model, size or
number of specific components, and is capable of meeting operational re-
quirements. The narrow range of total costs clearly demonstrates the value
of the n-best approach.

7.3 Optimization of an Industrial Compressor Supply System 343

Table 7.1. An example of the n-best solutions (n = 10) obtained using MDE

Configuration Total
costs

Component change from global best

Best $207,053 Best system

2nd $207,290 Larger after-filter, fewer replacement cartridges <
service

3rd $207,385 Single larger receiver (18 ft high) (best had two
smaller units, 13.8 ft high)

4th $207,386 Six smaller receivers (8 ft high)

. .

. .

10th $207,738 Single larger receiver (18 ft high), larger after-filter,
fewer replacement cartridges

7.3.6 Component Selection from the Database

Separate databases were created for each of the components, based on sup-
plier catalogues, with information such as brake horse power (BHP), pres-
sure drops (∆P), throughput capacities and list prices. Each parameter was
represented by a floating-point value equal to its integer index in the cata-
logue. This allows the parameter to be treated as a continuous variable.
Checking that the value is within the appropriate range for the parameter,
and randomly selecting a value within the range if it is outside, ensures
that the boundary constraints of the database are maintained. To avoid a
downward bias and ensure that the final database entries can be selected,
the floating-point value is incremented by 0.5 and converted to integer
value when the database was referenced.

7.3.7 Crossover Approaches

Biased Toward the Best-So-Far Vector

Initial trials focused on simply tracking the n best-so-far candidates in an
array, but still relied on the single best-so-far for mutation purposes. Tests
began with the following crossover function (Storn and Price 2002)
DE/rand-to-best/exp:

344 7 Applications

child[n] = child[n] + F · (Current_best[n] - child[n]) +

F · (Parent[r1][n] - Parent[r2][n]).

(7.21)

While the single best solution was consistently located, this approach
often missed some of the n best values. This behavior was due to the effect
of the current best vector, which pulled the entire population in its direc-
tion very quickly. This of course was the intended purpose of DE’s inven-
tors Storn and Price. However, this influence proved too great to ensure
finding all n local minima along with the global minimum.

Non-Biased Approach

Another test was devised using a non-biased approach, which used the fol-
lowing crossover function (Storn and Price 2002) DE/rand/1/exp:

child[n] = child[n] + F· (Parent[r1][n] - Parent[r2][n]). (7.22)

While a non-biased crossover method showed some success in prelimi-
nary investigations, it was very slow to converge to all n-best solutions and
was soon abandoned. The question became, how could DE be forced to
find all n minima, while doing so with the speed and accuracy the original
inventors intended for the absolute minimum?

New Approach

To resolve the speed/accuracy convergence problem for n best solutions, a
solution was devised based on one of Storn and Price’s original ap-
proaches, namely “DE/rand-to-best/exp”. The new approach uses a biased
crossover method, but randomly biases the search toward one of the n best-

so-far as opposed to the single best-so-far. This has the effect of speeding
up the search while maintaining the integrity and spirit of the original
scheme.

The new version, which we can denote “DE/rand-to-rand-n_best/exp” in
keeping with the nomenclature set out by Storn and Price (Price 1999), is
as follows:

child[n] = child[n] + K · (n_best[m][n] - child[n]) +

F · (Parent[r1][n] - Parent[r2][n]).

(7.23)

Note that the [m] in the two-dimensional array represents the random se-
lection from the n best list, which causes the population to converge to-
ward all n best minima and not just the global minimum. This new ap-
proach proved to be successful and was used for the data collection and

7.3 Optimization of an Industrial Compressor Supply System 345

analysis of F and K. The n best list was maintained in a fashion depicted
by the following pseudo-code:

if(current < n_best) insert_candidate(); (7.24)

where the insert_candidate() function places the candidate in the list ac-
cording to cost.

Objective Function

Once a component is selected the number of components was computed to
satisfy minimum capacities based on demand requirements. In this case,
compressors are added until their combined output exceeds the peak output
required during plant operation. Finally, the number of compressors is
saved. A similar approach is repeated for each component except the re-
ceiver.

The volume of the receiver was calculated as the sum of the spike and
surge volumes. The spike and surge volumes were calculated using

scfm)flow(spike
 volumespike

allowableP

SFatmPspiket ⋅⋅⋅
=

(7.25)

where the spike volume is the volume to be added to the receiver capacity
in ft3, tspike is the duration of spike in minutes, spike flow scfm is the flow
rate above total compressor capacity, Patm is atmospheric pressure, SF is a
user-defined safety factor, and ∆Pallowable is the allowable pressure drop in
the receiver. A similar formula was defined for the surge volume, but
surge flow scfm represents the flow rate above that of the currently loaded
compressors.

Now that there are enough components to assemble a workable system,
the cost of the system is determined across the three main flow regimes.
The objective function determines the cost of the system by summing the
initial capital requirements and the accumulated cost of operating the sys-
tem for a given time period – five years for the test program. The opera-
tional costs include the cost of electricity and replacement filters.

The off hours flow profile performance and cost is computed as follows.
First the total capacity of operating compressors must be equal to or
greater than off hours demand. This approach allows us to tailor the num-
ber of operating compressors for each demand profile. Now, the portion of
the trim compressor output that will contribute to repressurizing the re-
ceiver is given by

346 7 Applications

Xscfm = (# operating compressors) · (compressor scfm) -
 (off hours demand scfm)

(7.26)

The flow the receiver will contribute to the system demand while the
trim compressor is in the unloaded state is given by

Yscfm = (off hours demand scfm) - ((# operating compressors) -1) ·
(compressor scfm).

(7.27)

We can find the time required to repressurize the receiver from

t1 = (receiver volume) · ∆Pallowable / (Xscfm · Pa), (7.28)

and the time that the receiver will supply the trim portion of the air with
the trim compressor in the unloaded state from

t2 = (receiver volume) · ∆Pallowable / (Yscfm · Pa) (7.29)

The cycle time of the trim compressor is t1 + t2, and must be within the
compressor manufacturer’s specifications to prevent overloading of the
motor.

We assume a proportional pressure drop occurs across units and calcu-
late the drop as

+
= high

P
low

P

prefilters
P

scfmprefilter

scfmhoursoff

2prefilters#

1 (7.30)

The pressure drops for the dryers and after-filters are found in the same
way. Then the total pressure drop becomes

.rsafterfiltePdryersPprefiltersPtotalP ∆+∆+∆=∆ (7.31)

The cost of operating the compressors while refilling the receiver occurs
during t1, which was found earlier. The actual BHP load during this time
must account for an extra 0.5% to overcome each 1 psig pressure drop
(Compressed Air Systems 1999):

BHPactual_1 = t1 · (# operating compressors) · BHPloaded · ∆Ptotal ·
1.005

(7.32)

The units for BHPactual_1 are (BHP · minutes). The actual BHP load dur-
ing t2 must account for the unloaded trim compressor and the remaining
fully loaded compressors. An unloaded compressor is running but not pro-
ducing air. Hence

BHPactual_2 = t2 · [(# operating compressors - 1) · BHPloaded · ∆Ptotal

· 1.005 + BHPunloaded].
(7.33)

7.3 Optimization of an Industrial Compressor Supply System 347

The cost of purged air from the heat-less desiccant dryers is based on
the volume and cost of air purged for a given profile:

%purged1

 volumeprofile%purged
 volumepurge

−
⋅= (7.34)

()yrs
yr

hrsprofile

hr

min60

min

3ft
 volumepurge volumepurgetotal =

(7.35)

=
min60

hr
3ftcompressor

min3ft volumepurgetotalairpurgedproduce tohrs
(7.36)

()
⋅

⋅⋅

=

motor
loaded η

1

hrkW

$

HP

kW0.7457
BHPproduce tohrs

airpurgedofcost (7.37)

where motor is motor efficiency, and BHPloaded is the horse power draw of
the compressor while the unit is producing air. The total cost of the profile
becomes

air.purgedofcost
yrs

hr·kW

$

 timecycle

BHPBHP

yr

hrsprofile

hoursoffofcost

+
+

=

motor

actual_2actual_1

η

(7.38)

The calculations shown to this point for the off hours profile are re-
peated for the base and peak profiles. Finally, the total cost of operating
the components (during each profile) over the study period is added to the
total capital cost of all components along with the replacement cost of all
filter elements.

The number of filter elements required for the pre-filters and after-filters
is determined for the study period. The replacement interval will be the
rated element life scaled by the ratio of total rated throughput to total ac-
tual profile flow rate. The total number of elements required over the study
period is simply the time multiplied by the element life.

Thus, the study period has a direct effect on the selection of the compo-
nents in that as the years of the study increase, the effect of the purchase
price reduces and the effect of operating the components increases.

No consideration was given to interest rates and the cost of electricity
was fixed. However, this is a minor point considering that the test software
is meant simply to demonstrate that MDE will work on a real-world indus-
trial problem.

348 7 Applications

7.3.8 Testing Procedures

Population sizes were tested at increments of 60, from 120 up to 3000
members. Each population size was tested on (up to) 4060 unique input
profiles which were defined to cover the full range of the databases, and
represented 4060 separate and unique industrial compressed-air demand
profiles. In order to speed data collection, MDE was required to converge
to all n best values within an arbitrary ceiling of 8,064,000 objective func-
tion evaluations. This number matched the complete comparison of all
possible parameter combinations for the test program.

If the modified DE failed to converge (within the arbitrary ceiling) to
the n best for any one of the 4060 input variations during the testing of a
given population size, that population size was discarded. This is not to say
that MDE would have failed to converge for the given population size
without the arbitrary ceiling, but no further testing was conducted in this
direction. Upon successful convergence for all 4060 input variations or
failure for one, the population size was incremented and the inputs began
again from the initial settings. Figure 7.12 shows the results of the data
collection.

7.3.9 Obtaining 100% Certainty of the Results

To facilitate data collection when testing for multiple best solutions, it be-
came necessary to know ahead of time, with 100% certainty, the n best so-
lutions that the MDE software would hunt for. Therefore, a separate pro-
gram was written using the same input parameters, settings and objective
function that the MDE program would use, but that evaluated every possi-
ble combination of components. An arbitrary value of 10 was chosen for n,
thus the ten best solutions for each input profile were saved in a uniquely
named file that was subsequently loaded for the MDE trials with the corre-
sponding input profile. This way the ten best solutions were known prior to
testing the MDE approach. This approach also meant that each unique pro-
file setting required only one analysis with the separate program that com-
pared all combinations of components

Extensive testing was not conducted with other values of n. The known
solution of the ten best vectors had no influence on the MDE process and
was accessed simply to verify convergence and reduce the time it took to
collect data. To that end, code was modified so that the MDE version of
the program would load the correct answers and, after each generation, it
would compare the list of values it had found with the correct values.
When all values matched, the MDE program would cease to run. The

7.3 Optimization of an Industrial Compressor Supply System 349

number of objective function evaluations required to converge to the ten
best solutions was tracked by updating the current convergence count at
the time of each cost improvement. A standalone version of the test pro-
gram limits the number of function evaluations to some arbitrary number
greater than the expected convergence rate based on experimentation.

Fig. 7.12. Test results showing the average number of function evaluations
required to find the ten best solutions as a function of population size, F and K.

7.3.10 Results

The results of this test program showed that the optimum system changes
from favoring single compressor systems to dual compressor systems
when longer time intervals were examined. This is not what an engineer
would intuitively expect, and indicates the importance of DE as a design
tool.

Each point on the graph in Fig. 7.12 represents the average number of
function evaluations it took to converge to the ten best solutions in 4060
unique tests of a given population size.

The tested values of F = 0.5 with K = 0.5 failed to converge within the
arbitrary ceiling for at least one of the 4060 input variations for each popu-
lation size tested – hence the absence of representative data for that setting.

350 7 Applications

Similarly, the absence of data depicting a setting of F = 0.8 and K = 0.6 is
due to the same cause.

The results seem to indicate some of the outer limits of the values of F
and K that can ensure convergence under the test conditions enforced here.
It is quite likely that exact limitations will be problem specific and others
will find success with different population sizes than those shown in Fig.
7.12. However, it is expected that the general influence of F and K will
remain the same.

In general, increasing the value of K increases the convergence rate but
requires a larger population to ensure convergence consistency under test-
ing conditions. Increasing the value of F has the opposite effect; moreover,
increasing the population size tends to slow convergence.

The setting of F = 0.8 and K = 0.45 proved to be the best setting of those
tested for this problem. This setting, coupled with a population size of
1620 members, converged to the ten best solutions at a mean of less than
40,000 function evaluations for all inputs tested. When one compares this
with the 8,064,000 function evaluations it took to find solutions while
comparing all possible combinations of components, the power of MDE
becomes clear. The effectiveness of MDE increases with the increase in
the size of the databases, increase in the number of parameters or the in-
clusion of continuous variables.

7.3.11 Summary

The results of this work clearly show the beneficial value of MDE for de-
sign optimization. The method maintains the speed and properties of DE,
and reliably retrieves the n best solutions to the component selection. The
n best multiple solutions allow the designer choice without having to code
preference into the objective function. Ultimately, the designer can easily
select the most effective combination of components without giving up the
flexibility of preference.

The results demonstrated that DE and its offspring MDE can result in
the natural discovery of non-intuitive solutions to a design optimization.
This was demonstrated by the finding that the optimum number of com-
pressors would change as the study period increased; using current design
methods most engineers would assume that number to be constant. We
have concluded that DE and MDE are the most appropriate choice for the
construction of design optimization codes.

This section also demonstrated that increasing the value of K increases
convergence rate but requires a larger population to ensure convergence
consistency. Increasing the value of F has the opposite effect and increas-

7.3 Optimization of an Industrial Compressor Supply System 351

ing the population size tends to slow convergence. These findings should
be valid for any version of DE but the precise values of F, K and popula-
tion size that prove the most effective will be problem specific.

References

Compressed Air Systems (1999) 1999 Buying guide and technical handbook.
Compressed Air Systems, Division of Hydra-Pak, Inc.

Foss S (2002) Compressed air systems workshop. Dissertation, Greenwood Inn,
Winnipeg, Manitoba, Canada, May 1 & 2

Price KV (1999) An introduction to differential evolution. In: Corne D, Dorigo M,
Glover F (eds.), New ideas in optimization. McGraw-Hill, London, pp 79–108

Rogalsky T, Kocabiyik S, Derksen R (2000) Differential evolution in aerodynamic
optimization. Canadian Aeronautics and Space Journal 46(4):178–183

Storn R, Price KV (2002) C code for differential evolution. Available at:
 www.icsi.berkeley.edu
ZEKSPROTM (2002) Compressed air treatment specifier, Version 2.1, ZEKS

COMPRESSED AIR SOLUTIONSTM, West Chester, PA 19380, USA

7.4 Minimal Representation Multi-Sensor Fusion Using
Differential Evolution

Rajive Joshi and Arthur C. Sanderson

Abstract. We present the application of differential evolution to solve a
class of multi-sensor fusion problems commonly encountered in building
intelligent robotic systems. The class of multi-sensor fusion problems is
characterized by a set of sensors observing a common environment model.
The observed data features are modeled as a projection or a “view” of an
(unknown) underlying environment model into the sensor space, with un-
known uncertainty and correspondence transformation injected in the ob-
servation process. The observed features may include outliers or may cor-
respond to environment model features, via an unknown correspondence
mapping.

The goal of multi-sensor fusion is to find the best environment model
identity, transformation parameters and the correspondence mapping that
map the model features to observed data features. We use the minimal rep-
resentation size criterion to formulate the model search problem. The
minimal representation approach is based on an information measure as a
universal yardstick for fusion, and provides a framework for integrating
information from a variety of sources. The minimal representation size cri-
terion favors the selection of the simplest explanation that is the most
likely explanation of the observed multi-sensor data.

We develop a differential evolution approach to the search for minimal
representation multi-sensor fusion solutions. Laboratory experiments in
robot manipulation using both tactile and visual sensing demonstrate that
differential evolution is effective at finding useful and practical solutions
to this problem for real systems. Comparison of this differential evolution
algorithm to traditional genetic algorithms shows distinct advantages in
both accuracy and efficiency.

7.4.1 Introduction

Multi-Sensor Fusion and Model Selection in Robotics

Multi-sensor fusion is a central problem in robotic systems, where interac-
tion with the environment is critical to successful operation. It is a key

354 7 Applications

component in systems capable of interacting with their environments and
making semi-autonomous decisions based on sensory data to accomplish
various manipulation, navigation and assembly tasks.

Figure 7.13 shows an example of multi-sensor fusion used to guide ma-
nipulation of an object, taken from our laboratory setup. The Anthrobot

(Ali and Engler 1991) five-fingered hand grasps an object, and senses the
contact points with the surface of the object using tactile sensors. The tac-
tile sensors extract a touch position in the kinematic reference frame of the
hand. In addition, a CCD camera views the position of the same object and
extracts vertex/edge features of the object image. Both the tactile features
and the visual features are related to the position and orientation (“pose”)
of the object, and in practice we wish to combine these two sources of in-
formation to improve our ability to accurately manipulate the object.

In this setup, the hand is visible in the field of view of the camera, and
introduces extraneous vertex features in the image. Typically, about half of
the image vertex features are due to the hand occluding parts of the object
– thus the vision data alone may not be sufficient to estimate the three-
dimensional pose of the object. We used a five-fingered hand, and for
typical grasps, at most three distinct object surfaces are contacted by the
fingertips. The tactile data from these contacts is usually not rich enough to
uniquely estimate the three-dimensional object pose by itself. By fusing
the vertex features from the image and the contact points from the finger-
tips, we expect to correctly estimate the object pose and also the feature
correspondence in the two data sets. The fusion of the tactile and image
feature data is used to derive an improved estimate of the object pose
which guides the manipulation. In general, the object shape must also be
identified, from a library of possible object shapes.

In a typical multi-sensor fusion problem in robotics, such as the tactile–
visual example above, we can choose from a number of environment
model structures, environment model parameters, uncertainty models and
correspondence models. The uncertainty and the registration/calibration
models are often chosen a priori, whereas the sensor constraints can be ob-
tained from physical modeling. However, in complex robotic environ-
ments, the a priori choice of the environment model structure, parameters
and correspondences is difficult. The object may belong to some library of
parameterized object models with corresponding choices of data scaling
and data subsample selection as precursors to the pose estimation itself. In
this context, three important model selection issues must be addressed:

• Environment model class selection: What is the environment model
class? How many parameters are required to specify it? What is the pa-
rameter resolution?

7.4 Minimal Representation Multi-Sensor Fusion 355

• Environment model parameterization and data scaling: What are the
values of the environment parameters? How should the data from differ-
ent sensors be scaled to determine these parameter values?

• Data subsample selection: Which data features are used to determine
the environment model parameters? What subset of the data is consis-
tent in the definition of the pose for a given estimator? What data fea-
tures should be considered outliers?

Fig. 7.13. The Anthrobot five-fingered hand holding an object in the field of view
of a fixed camera. The contact data obtained from tactile sensors mounted on the
fingertips is fused with the processed image data obtained from the camera, to es-
timate the position and orientation of the object.

Much of the recent progress in multi-sensor fusion (Luo and Kay 1989;
Hager 1990; Abidi and Gonzalez 1992; Kokar and Kim 1993; Dekhil and
Henderson 1998; Joshi and Sanderson 1999b) for robotics has been based
on the application of existing statistical tools to (a) estimate the position of
objects with known geometric models (Smith and Cheeseman 1986; Dur-
rant-Whyte 1987; Nakamura 1992), (b) estimate the parameterized shape
of an object from sensor information (Bolle and Cooper 1986; Allen 1988;
Porill 1988; Shashank et al. 1988; Eason and Gonzalez 1992) and (c) esti-
mate a probability distribution of objects or object features (e.g., surfaces)

356 7 Applications

based on sensor models (Elfes 1989). These methods require a priori selec-
tion of the model class, number of parameters and data subsamples used in
estimation. The model selection problem is complementary to the estima-
tion process itself and is intended to choose an effective combination of
model structure and estimation method for a given class of problems.

The multi-sensor fusion and model selection framework (Joshi and San-
derson 1994, 1996; Joshi 1996) uses a minimal representation size crite-
rion (Segen and Sanderson 1981) to choose among alternative models,
number of parameters, parameter resolutions and correspondences. The
representation size or description length of an entity is defined as the
length of the shortest length program that reconstructs the entity. The ob-
served data, thought to be arising from a library of environment models, is
encoded with respect to one of these models. The minimal representation
size criterion selects the model which minimizes the total multi-sensor data
representation size, and leads to a choice among alternative models which
trades off between the size of the model (e.g., number of parameters) and
the representation size of the (encoded) residuals, or errors. Intuitively, the
“smaller”, less complex, representation is selected as the preferred model
for a given estimator.

Searching for the Best Interpretation

The minimal representation size interpretation is obtained by minimizing
the multi-sensor fusion criterion. For the tactile–visual multi-sensor fusion
problem (Fig. 7.13), the search space is the cross-product of the continuous
six-dimensional pose parameter space (Sect. 7.4.3), the discrete space of
possible correspondences between the observed vision data and the object
vertices, and the possible correspondences between the observed tactile
data and the object faces. Finding the best pose and correspondences is
generally recognized to be a difficult search problem (Grimson and
Lozano-Pérez 1984; Linnainmaa et al. 1988; Huttenlocher and Ullman
1990; Joshi 1996; Joshi and Sanderson 1999b).

We use a differential evolution program to search for the best interpreta-
tion from the data collected in the laboratory experiments. As developed in
this work, the search problem is difficult because we have posed it as a
broad search over many general pose configurations (local minimal), and
have chosen not to impose heuristic constraints to simplify the search. In
practice, there are many such heuristics which may be imposed for specific
problems, and they would often improve the execution time of the search.

The methodology presented here is a general approach to fusion which
is not restricted to geometric pose estimation, and in fact may be applied to
a variety of problems in model identification from a wide perspective, in-

7.4 Minimal Representation Multi-Sensor Fusion 357

cluding model-based identification of parameters from noisy data and pri-
oritization in noisy data sets.

7.4.2 Minimal Representation Multi-Sensor Fusion

Generic Multi-Sensor Fusion Framework

The general model-based multi-sensor fusion problem (Joshi 1996; Joshi
and Sanderson 1999b) is summarized in Fig. 7.14 which shows S sensors
observing an unknown environment, described by an environment model,

()θΞ=Eq , where Ξ denotes the model structure, and θ denotes a particu-
lar parameter instantiation. In our representative problem, an environment
model is a polyhedral-shaped object with six associated pose parameters.

Each sensor observes some set of M model features, { } MyY ,1= , and

produces a set of N data features, denoted by { } NzZ ,1= . A data feature, z,

may be related to a model feature, y, by a general constraint equation h:

() .0; =zyh (7.39)

Some observed data features may not be related to the underlying envi-
ronment model; these are referred to as outliers or unmodeled data fea-
tures, with a symbol 0y , and may lie anywhere in the sensor measurement

space .
The association between the observed data features and the model fea-

tures (or 0y) is given by a correspondence, ω , that maps data feature in-
dices to model feature indices:

{ } { }MN .,,1,0,,1: →ω (7.40)

where the special index 0 is used to denote outliers. The correspondence is
often unknown, and may be many-to-one, as is the case for tactile sensors
where several contact points may correspond to the same object face; or
one-to-one as is the case for vision sensors where at most one image vertex
point may correspond to an object vertex.

The mapping from an environment model to the model features is de-
noted by a model feature extractor, F, where { } ()α;EqFy = is a function
of the environment model and the sensor calibration. Thus, for the tactile
sensor, this mapping extracts the object faces from the instantiated shape
structure, while for a vision sensor it extracts the visible object vertices.

358 7 Applications

Fig. 7.14. Environment and sensor models

7.4 Minimal Representation Multi-Sensor Fusion 359

The model feature extractor F, the sensor constraint h and the corre-
spondence ω are collectively referred to as a sensing channel

()ω,, hFH = ; they define the sensor structure which has the same form for
all sensors of a given type. However, the uncertainty, the measurement
range and the calibration parameters differ between different sensors of the
same type and must be determined for each sensor; they define the sensor

coefficients ()α,, ΥΨ=Sq . The sensing channel and the sensor coefficients
constitute a sensor model.

Minimal Representation Multi-Sensor Fusion

The minimal representation approach (Joshi 1996; Joshi and Sanderson
1996, 1999b) is based on the principle of building the shortest length pro-
gram which reconstructs the observed data. The length of this program or
representation size is well defined for sensors, and may be regarded as the
“information”, in bits, contained in the data. It depends on the system’s
“knowledge” of the environment, specified by an environment model li-
brary – hence the approach is inherently model based. The “best interpreta-
tion” minimizes the total representation size of the observed multi-sensor
data.

The total representation size is obtained by adding the model representa-
tion size and the data representation size for each sensor as shown in Fig.
7.15. Details can be found in Joshi (1996) and Joshi and Sanderson (1996,
1999a, 1999b).

The “best interpretation” is an instantiated environment model and cor-
respondences, found by minimizing the total representation size of ob-
served multi-sensor data. The multi-sensor fusion algorithm searches for
the minimal representation size interpretation, in the space of all possible
environment models and their parameterizations, and the space of all pos-
sible legal correspondences.

The search space is the cross-product of the environment model space
and the correspondence spaces, which may be part discrete and part con-
tinuous; often the general search problem quickly becomes computation-
ally impractical.

There are three basic components of the search problem:

1. Environment model instantiation: An environment model structure,
chosen from the library, must be instantiated with specific parameters.
Thus, ()θΞ=Eq , where the structure, ()⋅Ξ , and the parameters, θ , must
be somehow instantiated.

360 7 Applications

Fig. 7.15. Minimal representation size of the multi-sensor data fusion scheme

7.4 Minimal Representation Multi-Sensor Fusion 361

2. Correspondence computation: The minimal representation size corre-
spondences can be computed, given an instantiated environment model.
One approach to computing the correspondence for a given instantiated
environment model is based on using a minimum weight assignment al-
gorithm; it operates in cubic time of the number of features (Joshi 1996;
Joshi and Sanderson 1999b).

3. Search engine: A search engine systematically instantiates environment
models, computing the minimal representation size correspondences for
each one, in order to find the minimal representation size interpretation
in the space of possible model parameters and correspondences.

We utilize evolution programs, in particular differential evolution (DE),
to drive the search, and find the minimal representation interpretation of
the observed multi-sensor data.

7.4.3 Differential Evolution for Multi-Sensor Fusion

A search can sequentially iterate through the structures in the environment
model library, and compute the minimal representation data correspon-
dences for each instantiated environment model (Joshi 1996; Joshi and
Sanderson 1999b). A DE program is used to search the space of environ-
ment model parameters. The DE as applied to the tactile–visual fusion
problem (Fig. 7.13) is summarized below. Details can be found in Joshi
(1996) and Joshi and Sanderson (1996, 1999a, 1999b).

Representation. Given a preselected environment model structure, an in-
dividual p in the population represents the environment model parameters:

() .θ=pS (7.41)

All points in the parameter space Θ must be representable by the spe-
cific form chosen for the environment model parameters.

For the tactile–visual sensor fusion problem (Fig. 7.13), the environment
model library consists of rigid polyhedral objects, parameterized by the ob-

ject pose. The three-dimensional pose is described by a translation, t , and

a rotation, exp(n̂ φ /2), of angle [)πφ 2,0∈ about an axis n̂ (Fig. 7.16a).
This pose representation is expressed as a six-parameter vector in the DE,
as shown in Fig. 7.16b, and results in a uniform sampling of the orientation
and translation space (Joshi 1996; Joshi and Sanderson 1996, 1999b).

362 7 Applications

ϕ ∈ [-π, π) cos ψ ∈ [0,1] φ ∈ [0, 2π] tx ty tz

b) Pose representation

 Rotation Translation

a) Orientation

Z

Y

X

cos ψ

ψ φ

sin ϕ sin ψ

cos ϕ sin ψ
ϕ

n

Fig. 7.16. The object rotation is given by a rotation of angle φ around an axis n̂ .

Fitness Evaluation. The fitness function is the total multi-sensor represen-
tation size (Fig. 7.15):

()() [].,,,)()1(QZZqLpS S=Φ (7.42)

For an individual, () θ=pS , the fitness is evaluated as follows:

1. If Θ∉θ , the total multi-sensor representation size is defined to be .
2. Otherwise, for Θ∈θ :

a) For each sensor:
i. Extract the model features.
ii. Compute the minimal representation size correspondence, using
graph matching algorithms (Gondran and Minoux 1984; Joshi
1996; Joshi and Sanderson 1999b).

7.4 Minimal Representation Multi-Sensor Fusion 363

b) Compute the total minimal representation size for this parameter vec-
tor (for the minimal representation size correspondences just computed).

For the vision sensors (Fig. 7.13) the representation size is calculated by
encoding the errors between features predicted by an instantiated model
and the observed data as follows. The digital image, obtained from a fixed
calibrated camera, is processed to extract vertex features, expressed in
pixel coordinates. The intrinsic camera calibration is used to convert these
pixel coordinates into image coordinates expressed in the camera frame,
and constitute the vision data features. These are related to the object verti-
ces (model features), according to the perspective projection constraint, for
a pin-hole camera model. The observation errors are described by an ellip-
soidal sensor accuracy (Joshi 1996; Joshi and Sanderson 1999b), equal to
the size of a pixel. The measurement space is equal to the image size. At
most one vision image vertex can correspond to an object vertex, i.e., the
vision correspondence must be one-to-one (Joshi 1996; Joshi and Sander-
son 1999b).

Similarly, for tactile sensors (Fig. 7.13) the representation size is calcu-
lated by encoding the errors between features predicted by an instantiated
model and the observed data as follows. Tactile sensors mounted on the
hand’s fingertips provide contact locations relative to the fingertips. The
forward kinematics of the calibrated arm–hand kinematic chain is used to
compute the location of these contact points relative to the base of the ro-
bot, and constitute the touch data features. These are related to the object
faces (model features) according to a containment constraint, i.e., contact
points must lie within an object face. The observation errors are described
by an ellipsoidal sensor accuracy, whose diameter is equal to the position-
ing accuracy of the arm–hand manipulator. The measurement space is
equal to the workspace volume accessible by the robot hand. Several con-
tacts may be made on an object face, resulting in a many-to-one corre-
spondence (Joshi 1996; Joshi and Sanderson 1999b).

Reproduction. The standard DE crossover operator is used. Typically, K =
2 differentials are used, the scale factor []2,0∈F and the greediness

[]1,0∈γ .

Selection. The standard DE selection operator is used: each offspring
competes with its parent and survives only if its fitness is better.

Initialization. The parameter vectors are drawn randomly from the space
of legal environment model parameters .Θ∈θ This ensures a diverse ini-
tial population.

364 7 Applications

Termination Condition. A parameter is considered η % converged if at

least η % of the population shares the same value (within some pre-
specified parameter tolerance) as the best individual in the population, for
that parameter. The population is considered to be η % converged when all

the parameters have η % converged.
The evolution is terminated when (a) the population reaches a certain

desired level of convergence, or (b) the maximum number of generations
is exceeded, or (c) the maximum time limit is exceeded.

7.4.4 Experimental Results

Setup

Experiments were conducted on simulated data and laboratory data. Two
different objects, Lwedge and Pedestal (Fig. 7.17), were used. A 100-
member DE/best/2 DE algorithm with 8.0=F and 8.0=Cr was used to
search for the minimal representation size pose and the correspondences
for each sensor. The search is terminated when the population reaches 50%
convergence (parameter tolerance of 0.1), or when the maximum time
limit of 900 CPU seconds is exceeded, or when a maximum of 1000 gen-
erations has been completed.

a) Lwedge b) Pedestal

Fig. 7.17. The object library

7.4 Minimal Representation Multi-Sensor Fusion 365

For simulated data, a typical problem size was chosen, consisting of 16
vision data features of which 50% were spurious, and 9 tactile data fea-
tures of which 15% were spurious. The search is considered to have cor-
rectly converged (to the global minimum), if it reaches within 14 bits of
the simulated multi-sensor data representation size.

For laboratory data, the translation search space was restricted to a
505050 ×× cube, in the interest of computation time. The entire space of

orientations and correspondences was searched. The vision preprocessing
and the DE search parameters were kept the same for all the experiments
with laboratory data.

Quality of Solutions

For simulated data, the results on 100 randomly generated problems for an
environment library containing Lwedge and Pedestal are given in Table
7.2. The mean errors and standard deviations are tabulated among those
DE searches which correctly converged, and the correct object shape was
chosen.

For laboratory data, the results from Experiment 1, using the Lwedge

object, are shown in Figs. 7.18a, 7.18b and 7.18c. The interpretation errors
for the six experiments, using both vision and touch sensors, touch sensor
alone and vision sensor alone, are summarized in Table 7.3.

Table 7.2. Model selection performance of an environment model library contain-
ing two object models, on 100 randomly generated problems. Each problem had
16 vision data features with 50% outliers, and 9 touch data features with 15% out-
liers.

Trials = 100 Correctly converged = 81 Misclassified = 0
 Mean Standard deviation
Rotation axis error 0.033372° 0.184239°
Rotation angle error 0.028648° 0.165689°
Translation error 0.165613 0.100419
Vision correspondence error 2.222222 1.151086
Touch correspondence error 0.172840 0.380464
Representation size deviation 6.340123 3.828411

Environment Model Class Selection. As Tables 7.2 and 7.3 illustrate, the
object shape was correctly selected in these experiments, thus demonstrat-
ing that representation size is effectively used to trade off between the
model class and data error residuals.

Environment Model Parameterization and Data Scaling. From Table
7.2 and 7.3, it can be seen that the estimated interpretation produced by the

366 7 Applications

multi-sensor fusion of touch and vision data was close to the reference in-
terpretation for almost all the experiments. The multi-sensor pose estima-
tion errors are comparable in magnitude to the sensor errors themselves.

Table 7.3. Summary of experimental results

7.4 Minimal Representation Multi-Sensor Fusion 367

a) Camera image and vertex features

b) World and camera reference frames

c) Estimation error

Fig. 7.18. Laboratory Experiment 1 results

368 7 Applications

2 64 8 10 161412

Number of Outliers

170

230

220

210

200

190

180

R
ep

re
se

n
ta

ti
o
n

 S
iz

e

Fig. 7.19. Representation size vs. the number of vision outliers for Experiment 1
multi-sensor data. The minimal representation size interpretation with four outliers
corresponds to the underlying model itself, and gives the best trade-off between
the number of unmodeled features (model size) and the encoded error residuals.

The multi-sensor fusion estimate dramatically improved the pose esti-
mates obtained from either sensor used independently (Table 7.3). Closer
examination of the data reveals that the tactile data is incomplete since at
most three different surfaces are contacted by the fingers, in these experi-
ments. Several different poses of the object may result in the same contact
configuration – therefore multiple solutions exist. The vision data set con-
tains spurious data features introduced by the presence of the hand holding
the object, as can be seen from Table 7.3 and Fig. 7.18a. In Experiments 1,
4 and 6, at least 50% of the vision data features were spurious, and can
lead to incorrect interpretations when the vision data is used alone.

Multi-sensor fusion of tactile and vision sensors compensates for the de-
ficiencies in using either sensor alone – the minimal representation size
framework automatically selects an appropriate combination of the vision
and touch sensor constraints to correctly determine the pose parameters.

Data Subsample Selection. The vision and touch data correspondences
were meaningfully selected in all the experiments (Tables 7.2 and 7.3). In
our implementation, the hidden object vertices were not removed, and

7.4 Minimal Representation Multi-Sensor Fusion 369

some of the spurious vision data features got matched to these “extra” vi-
sion model features.

The correspondence selection/data subsampling property of the frame-
work is illustrated by a plot in Fig. 7.19 of minimal representation size vs.
the number of outliers. The minimum of this plot corresponds to the under-
lying interpretation which best explains the observed data, reported in Ta-
ble 7.3. The minimal representation size solution trades-off between the
number of unmodeled data features and the modeled error residuals, and
automatically selects a subset of the data features consistent with the object
pose.

Convergence

Figure 7.20 shows the progress of the DE algorithm on Experiment 1
multi-sensor data. The algorithm starts with a population of 100 randomly
chosen individuals. The population cluster shrinks around the minimal rep-
resentation size interpretation.

Fig. 7.20. Progress of the 100-member DE algorithm on Experiment 1 multi-
sensor data. DE/best/2, F = 0.8, Cr = 0.8.

Figure 7.21a shows the plots of representation size versus the number of
generations, for the DE search on the six laboratory experiments. As can
be seen from these plots, the DE fully converged within 400 generations in
all cases. The run-times are of the order of a few minutes on a SPARC 20
(Table 7.3). Figure 7.21b shows a plot of the percentage convergence ver-
sus the number of generations for the DE. As can be seen from this plot,
the orientation parameters converge first followed by the translational pose
parameters. This is typical of the DE for this application.

When the observed data is incomplete or inconsistent, multiple interpre-
tations result in nearly the same representation size. In such cases, succes-
sive runs of the DE may produce varying results, due to the multiple global
minima. As the noise in the observed data increases, or as the number of
observed data features increases, the DE converges correctly more often,
and is more reliable. This is due to the minimal representation size search

370 7 Applications

landscape becoming smoother with deeper valleys, when the observation
errors or the number of data features increase.

a) Representation size

b) Percentage convergence

Fig. 7.21. DE progress on experimental data. Using a 100-member algorithm
DE/best/2, F = 0.8, Cr = 0.8. The DE ran until the population reached 99% con-
vergence. The parameter tolerance for convergence was set to 0.01, and checked
every ten generations.

7.4 Minimal Representation Multi-Sensor Fusion 371

a) Vision data: 20 features, 50% outliers.

b) Touch data: 10 features, 15% outliers.

Fig. 7.22. CPU time (SPARC 20) and DE generations vs. the number of data fea-
tures for the DE search algorithm.

As seen from Table 7.2, 81% of the DE searches correctly converged to
the global minimum. This number may be further improved by tuning the

372 7 Applications

DE search parameters Np, F and Cr. In practice, several DE searches may
be executed (in parallel) to improve the reliability of the search.

Time Complexity

Figures 7.22a and 7.22b show the CPU time versus the number of data fea-
tures for an environment model library containing just the Lwedge object.

From these plots, we can see that the DE converges in approximately
200 generations, and requires approximately 16,000 minimal representa-
tion size correspondence evaluations. These values seem to change very
little with problem size. The CPU time increases linearly with the number
of data features N. This is consistent with the theoretical analysis (Joshi
1996; Joshi and Sanderson 1999b).

7.4.5 Comparison with a Binary Genetic Algorithm

We compared the performance of the DE algorithm to that of a simple bi-
nary genetic algorithm (GA), which uses the one-point crossover and mu-
tation operators for reproduction, and stochastic universal sampling for
natural selection (Goldberg 1989; Michalewicz 1996). The environment
model parameter vector is represented as a binary string, with 32 bits per
element and arranged linearly, as shown in Fig. 7.16b. A population of 100
individuals was used, and the crossover probability was 0.5, while the mu-
tation probability was chosen to be 0.05. These GA parameters were se-
lected after some trial and error, to minimize the representation size at the
end of the search.

The performance of this GA is compared with the 100-member
DE/best/2 algorithm, with F = 0.8, Cr = 0.8, on Experiment 1 multi-sensor
data. Both the GA and DE were run until the population reached 99% con-
vergence, or the maximum time limit of 900 CPU seconds was exceeded,
or a maximum of 1000 generations was exceeded. The parameter tolerance
for the DE convergence was set to 0.01. The convergence was checked
every ten generations.

Figure 7.23a shows a plot of the representation size against the number
of generations for the DE and GA. The GA ran until the maximum time
limit of 900 CPU seconds was exceeded, while the DE terminated upon
reaching 99% convergence in 634 CPU seconds. These times are on a
SPARC 20 Sun workstation. The DE found a much smaller value of repre-
sentation size in less time and a fewer number of minimal representation
size correspondence evaluations than the GA. The interpretation errors for

7.4 Minimal Representation Multi-Sensor Fusion 373

the DE and GA are given in Table 7.4. The DE solution had smaller inter-
pretation errors.

a) Representation size

b) Percentage convergence

Fig. 7.23. DE vs. GA progress on Experiment 1 multi-sensor data, showing a 100-
member DE/best/2 algorithm, F = 0.8, Cr = 0.8, and a 100-member binary GA
with crossover probability 0.5 and mutation probability 0.05. The GA ran until the
time limit of 900 CPU seconds expired. The convergence was checked every ten
generations.

374 7 Applications

Table 7.4. Comparison of the interpretation error using a DE and GA for Experi-
ment 1 multi-sensor data

 DE GA
Rotation axis error 0.05605° 0.16949°
Rotation angle error 2.2022° 4.0203°
Translation error 1.867 27.092
Vision correspondence error 4 8
Touch correspondence error 0 0
Representation size deviation 73.102 24.064
CPU time (seconds) 634 >900

Figure 7.23b shows a plot of the percentage convergence against the
number of generations for the GA. As can be seen from this plot, it is diffi-
cult to discern any regular convergence pattern for the pose parameters.

In our experience, the GA convergence was less consistent than that of
the DE – successive runs of the GA produced widely varying solutions
when compared to the DE, on the same problem. Decreasing the number
of bits per element in the GA binary string representation resulted in pre-
mature convergence. This can be explained by the coarser parameter reso-
lution, due to the fewer number of bits. Increasing the number of bits per
parameter resulted in very long computation times with very slow conver-
gence, if at all. This can be explained by the higher dimensionality of the
GA binary search space, in which the more significant bits of the parame-
ter vector are treated the same as the less significant bits.

7.4.6 Conclusion

We have examined the use of differential evolution to solve the minimal
representation problem in multi-sensor fusion.

In this study the focus has been on the nature of the representation itself
and the associated search algorithms, rather than on building a practical
system. The understanding and performance of these measures and algo-
rithms provides the basis for further improvement in practical systems. The
differential evolution search algorithm has been implemented in a “ge-
neric” form: that is, no additional heuristics or specific problem knowledge
has been added. This approach permits a more objective assessment of the
minimal representation size criterion for multi-sensor fusion. In practice,
problem-specific heuristics might be added to improve the efficiency of
implementation for a particular problem domain. For example, in object
recognition problems, typical heuristics might include: (a) pose space clus-
tering to reduce the search space (Linnainmaa et al. 1988; Grimson and

7.4 Minimal Representation Multi-Sensor Fusion 375

Huttenlocher 1990), (b) using transform space geometry to prune pose pa-
rameters (Breuel 1992; Cass 1988), (c) pruning matches based on relations
which must be satisfied by both data and model features (Fischler and
Bolles 1981; Grimson and Lozano-Pérez 1984; Faugeras and Hebert
1986), and (d) using a fixed-size subset of data features for generating
pose hypothesis (Chen and Kak 1989; Huttenlocher and Ullman 1990).

The laboratory experiments demonstrate the automatic selection of envi-
ronment model class (object identity), the environment parameter values
(object pose) and the sensor data correspondences (touch and vision corre-
spondences), in the minimal representation size framework for multi-
sensor fusion and model selection. Differential evolution search run-times
are a few hundred seconds on a SPARC 20 (Table 7.3). In practice, robotic
manipulation using multi-sensor data must be done in real time, and it be-
came clear that the general evolutionary algorithms are too slow to esti-
mate pose at sampling speeds for continuous motion. For practical use of
the method in “real-time” control applications, this global search proce-
dure should be augmented with an incremental search procedure, which
sequentially updates the estimated model as data is acquired during the
execution of the real-time control task.

A major advantage of the minimal representation approach is the at-
tainment of consistent results without the introduction of problem-specific
heuristics or arbitrary weight factors. The use of an information-based cri-
terion provides a type of universal yardstick for sensor data from many
disparate sources, and therefore supports efficient implementation to new
domains. The model selection properties of this framework are comple-
mentary to the estimation process itself, and the framework chooses an ef-
fective combination of model structure and estimation method for a given
class of problems.

The extension of this approach to many different types of models and
estimation problems is an important element of this methodology, and its
use for general parametric model estimation with noisy data is open for
further research.

References

Abidi MA, Gonzalez RC (eds.) (1992) Data fusion in robotics and machine intel-
ligence. Academic Press, New York

Ali MS, Engler C (1991) System description document for the Anthrobot-2: a dex-
terous robot hand. Technical memorandum 104535, NASA Goddard Space
Flight Center, Maryland

Allen PK (1988) Integrating vision and touch for object recognition tasks. The In-
ternational Journal of Robotics Research 7(6):15–33

376 7 Applications

Bolle RM, Cooper DB (1986) On optimally combining pieces of information, with
application to estimating 3-D complex-object position from range data. IEEE
Transactions on Pattern Analysis and Machine Intelligence 8(5):619–638

Breuel TM (1992) Fast recognition using adaptive subdivisions of transformation
space. In: Proceedings of the IEEE Computer Society conference on computer
vision and pattern recognition, Champaign, IL, June 1992. IEEE Computer
Society Press, Silver Spring, Maryland, pp 445–451

Cass TA (1988) A robust parallel implementation of 2D model-based recognition.
In: Proceedings of the Computer Society conference on computer vision and
pattern recognition, Ann Arbor, MI, June 1988. IEEE Computer Society
Press, Silver Spring, Maryland, pp 879–884

Chen CH, Kak AC (1989) A robot vision system for recognizing 3-D objects in
low-order polynomial time. IEEE Transactions on Systems, Man, and Cyber-
netics 19(6):1535–1563

Dekhil M, Henderson TC (1998) Instrumented sensor system architecture. The In-
ternational Journal of Robotics Research 17(4):402–417

Durrant-Whyte HF (1987) Consistent integration and propagation of disparate
sensor observations. The International Journal of Robotics Research 6(3):3–24

Eason RO, Gonzalez RC (1992) Least-squares fusion of multisensory data. In:
(Abidi and Gonzalez 1992), Chap. 9, pp 367–413

Elfes A (1989) Using occupancy grids for mobile robot navigation and perception.
IEEE Computer 22(6):46–58

Faugeras OD, Hebert M (1986) The representation, recognition, and locating of 3-
D objects. The International Journal of Robotics Research 5(3):27–52

Fischler MA, Bolles RC (1981) Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography. Com-
munications of the ACM 24(6):381–395

Goldberg DE (1989) Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley, Reading, MA

Gondran M, Minoux M (1984) Graphs and algorithms. Wiley, New York
Grimson WEL, Huttenlocher DP (1990) On the sensitivity of the Hough transform

for object recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence 12(3):255–274

Grimson WEL, Lozano-Pérez T (1984) Model based recognition and localization
from sparse range or tactile data. The International Journal of Robotics Re-
search 3(3):3–35

Hager GD (1990) Task-directed sensor fusion and planning: a computational ap-
proach. Kluwer, Norwell, MA

Huttenlocher DP, Ullman S (1990) Recognizing solid objects by alignment with
an image. International Journal of Computer Vision 5(2):195–212

Joshi R (1996) A minimal representation framework for multisensor fusion and
model selection. Ph.D. thesis, Rensselaer Polytechnic Institute

Joshi R, Sanderson AC (1994) Model-based multisensor data fusion: A minimal
representation approach. In: Proceedings of the 1994 IEEE international con-
ference on robotics and automation, vol 1, San Diego, CA, May, pp 477–484

7.4 Minimal Representation Multi-Sensor Fusion 377

Joshi R, Sanderson AC (1996) Multisensor fusion and model selection using a
minimal representation size framework. In: Proceedings of the 1996 IEEE
conference on multisensor fusion, Washington, DC, December, pp 25–32

Joshi R, Sanderson AC (1999a) Minimal representation multisensor fusion using
differential evolution. IEEE Transactions on Systems, Man, and Cybernetics,
Part A: Systems and Humans 29(1):63–76

Joshi R, Sanderson AC (1999b) Multisensor fusion: a minimal representation
framework. Series in intelligent control and intelligent automation, vol 11.
World Scientific, Singapore

Kokar M, Kim K (1993) Review of multisensor data fusion architectures and
techniques. In: Proceedings of the 1993 IEEE international symposium on in-
telligent control, Chicago, IL, August

Linnainmaa S, Harwood D, Davis LS (1988) Pose determination of a three-
dimensional object using triangle pairs. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 10(5):634–646

Luo RC, Kay MG (1989) Multisensor integration and fusion in intelligent sys-
tems. IEEE Transactions on Systems, Man, and Cybernetics 19(5):901–931

Michalewicz Z (1996) Genetic algorithms + data structures = evolution programs.
Springer, Berlin Heidelberg New York

Nakamura Y (1992) Geometric fusion: Minimizing uncertainty ellipsoid volumes.
In: (Abidi and Gonzalez 1992), Chap. 11, pp 457–479

Porill J (1988) Optimal combination and constraints for geometrical sensor data.
The International Journal of Robotics Research 7(6):66–77

Segen J, Sanderson AC (1981) Model inference and pattern discovery by minimal
representation method. Technical report CMU-RI-TR-82-2, The Robotics In-
stitute, Carnegie-Mellon University, Pittsburgh, PA

Shashank S, Oussama K, Makoto S (1988) Object localization with multiple sen-
sors. The International Journal of Robotics Research 7(6):34–44

Smith RC, Cheeseman P (1986) On the representation and estimation of spatial
uncertainty. The International Journal of Robotics Research 5(4):56–68

7.5 Determination of the Earthquake Hypocenter: A
Challenge for the Differential Evolution Algorithm

Bohuslav R žek and Michal Kvasni ka

Abstract. Determination of the earthquake hypocenter represents a basic
problem routinely solved in seismology. The problem belongs to the class
of simpler problems in geophysics, but it is still difficult to solve. The
dimension of the model space is low (three coordinates of the hypocenter
plus origin time, resulting in four parameters to be searched for), but the
forward problem exhibits a case-to-case-dependent degree of nonlinearity.
The standard solution is based on minimizing the time residuals
(differences between observed and computed arrivals of seismic waves) in
the common L2 norm. We have compiled a set of 56 synthetic earthquake
hypocenter location tasks, which was submitted to three different
optimizers for solution: (i) Powell’s method, (ii) the downhill simplex
algorithm and (iii) the differential evolution (DE) algorithm. Each
localization process listed was performed two times using exact and
approximate forward modeling. Our analysis has shown that the DE
algorithm has worked with 100 % reliability, while other optimizing
algorithms have often failed. The accuracy achieved by using the DE
algorithm was at least the same or better than that achieved by competing
algorithms. The only minor disadvantage of the DE algorithm is a higher
computational effort needed to reach the solution.

7.5.1 Introduction

The localization of the focus of an earthquake belongs to the oldest inverse
problems ever solved in geophysics. Reliable knowledge of the
coordinates of the focus and origin time is extremely important for most of
the more advanced studies, e.g., for the determination of earthquake
magnitude, focal mechanism, stress conditions around the focus, etc. A
proper solution to the location problem is therefore of significant
importance. The standard location procedures are based on kinematic
principles. The focus of an earthquake is supposed to be a point from
which seismic waves radiate in all directions. Basically, two types of
seismic waves (P and S waves) can propagate from the source to the
receivers at different velocities. The arrival times of these waves can be

380 7 Applications

picked out on seismograms recorded at a number of surface seismic
stations distributed in seismogenic regions. Using appropriate knowledge
of the geological structure of the region traversed by the rays, synthetic
arrival times may be theoretically calculated. The correct position of the
hypocenter and origin time are indicated by the close agreement between
the observed and computed arrival times of selected seismic phases.

The earthquake location problem is represented as an optimization task
in a four-dimensional model space. Let X0, Y0, Z0 be the Cartesian coordi-
nates of the hypocenter, and T0 the origin time of the earthquake. Then our
four unknown parameters form a model vector m = (X0, Y0, Z0, T0). Let ti

be the ith observed arrival time (i.e., the time at which some seismic wave
has reached a recording station), and i the corresponding calculated (theo-
retical) counterpart. Both ti and i can be arranged as components of n-
dimensional vectors t and , respectively. Obviously, i depends on all hy-
pocentral coordinates including origin time, i = i(m). Observed and cal-
culated arrival times are used to form a data vector d = t , whose com-
ponents (time residuals) should be as small as possible. The dimension of
the data space is n = dim(d) m = dim(m) = 4 in order to ensure formally
uniqueness of the solution. In real cases, many stations (10–100) contrib-
ute to the location process of an earthquake and the problem is overdeter-
mined as a rule. Commonly, the problem is solved in the L2 norm; the fol-
lowing minimization represents the search for the optimum solution:

)min(..)]([
1 1-T

1

222
mdCd ===

=

n

i

iii /m - t
ν

(7.43)

where C is the data covariance matrix (Cii = (i)
2, Cij = 0 for i j) and i

are standard (Gaussian) deviations, and = n 4 is the number of degrees
of freedom. The anticipated idea appeared originally in 1910 (Geiger
1910), and has been used widely in many standard location programs (Lee
and Lahr 1972; Klein 1978; Herrmann 1979; Lienert et al. 1986). Due to
the nonlinearity of the problem (= (m) represents a system of nonlinear
equations often available in numerical form only, i.e., the system is not
given analytically), Eq. 7.43 should be solved iteratively. The standard
approach is based on an iterative least squares search:

d.CGGGmmm ..).(, T-1T=+→m (7.44)

In Eq. 7.44, G is the matrix of partial derivatives Gij = i/ mj and m is
the correction term. The above outlined approach is fast, but suffers from
at least the following drawbacks:

7.5 Determination of the Earthquake Hypocenter 381

1. Linearization of an essentially nonlinear problem is acceptable only if
the available starting model is not very far from the true solution.

2. Real data times ti are frequently contaminated by reading errors, and the
obligatory implicit L2 norm is rather restrictive (Shearer 1997).

3. There are cases (even if not very frequent) when the G
T.G matrix is

nearly singular – the condition number may be of order 1029 (Buland
1976) and numerical difficulties can arise.

4. Evaluation of the derivatives is problematic; in some parts of the model
space they may be discontinuous or may not exist at all due to a
complicated velocity structure.

There is an alternate approach: Eq. 7.43 may be solved using another
search algorithm. Those algorithms that do not rely on the gradient of 2

are especially potential candidates for successful implementation. The
downhill simplex algorithm (Nelder and Mead 1965; Olsson and Nelson
1975; Press et al. 1992) was used in Rabinowitz (1988). The genetic algo-
rithm (Sambridge and Gallagher 1993; Billings et al. 1994; Bondar 1994),
simulated annealing (Billings 1994), interval arithmetic (Tarvainen et al.
1999) and grid search (Sambridge and Kennett 1986; Fischer and Horálek
2000; Janský et al. 2000) are also known to have been utilized in earth-
quake hypocenter location problems. According to our experience (R žek
and Kvasni ka 2001), the DE algorithm represents a suitable compromise
between the reliability of getting a true and accurate solution, and the ef-
fectiveness of the search.

Nevertheless, the location problem includes a further difficulty. Evalua-
tion of the theoretical arrival times requires perfect knowledge of the ve-
locity model. Unfortunately, the actual geologic medium is very complex.
As a consequence, the corresponding velocity model is potentially discon-
tinuous, inhomogeneous and anisotropic. Many rays may then connect se-
lected two points within such a medium and “multi-pathing” takes place.
The opposite case is also possible: no ray exists which could connect two
points in our model. Despite the problems with the evaluation of arrival
times in a complex medium, even more problems are posed by the fact that
“perfect knowledge” of the underlying velocity model is very rarely
achieved. These problems may be partially overcome by introducing a
formal, artificial model for evaluation of the arrival times as described by
Xie et al. (1996). The latter approach gives a relatively good solution for
the position of the epicenter, but the depth of the focus is rather imperfect.
In many situations, such a restricted solution is valuable at least as a first
step in the data processing sequence. Simplified and approximate formulas
have another unwanted property: the optimized 2 functional (Eq. 7.43) is
probably multimodal, has flat valleys and is surely difficult to solve.

382 7 Applications

Originally, the use of a genetic algorithm was recommended. In the fol-
lowing, we shall discuss the possibility of introducing a much more power-
ful DE algorithm.

0 10 20 30 40 50 60 70 80 90 100
Distance [km]

0

5

10

15

20

25

30

D
ep

th
 [

km
]

layer I.
layer II.
layer III.
layer IV.

layer V.

direct wave

head wave

focus

Station A Station B

direct wave

surface

Fig. 7.24. An example demonstrating the propagation of direct and head waves
from the focus to the surface stations within a layered medium. Station A may be
illuminated by a direct wave due only to the relatively small epicentral distance.
Station B may record both direct and head waves. Scales for information only.

Table 7.5. The one-dimensional P-wave model used for location

Depth (km) Velocity (km/s)

0–5 5.7

5–18 6.0

18–39 6.4

>39 7.9

7.5.2 Brief Outline of Direct Problem Solution

Probably the best way to study and demonstrate the properties of a selected
inverse problem is to generate synthetic examples with a priori known
solutions and submit them to the inversion. We shall follow this way as
well. In order to keep our analysis as simple as possible, we shall use only
one-dimensional layered velocity models (i.e., models consisting of a
sequence of homogeneous isotropic layers separated by horizontal
interfaces). The focus of the earthquake may be anywhere inside the

7.5 Determination of the Earthquake Hypocenter 383

model, and recording seismic stations will be distributed irregularly along
the surface. Each station will report only one fastest P-wave arrival. Under
such simplifications, the ray corresponding to the direct (refracted) wave
and the appropriate time of propagation may be calculated for any possible
source–station pair. Under specific conditions (sufficiently great epicentral
distance, high-velocity layer below the focus) another “head” wave may
exist and may reach the same station along a different ray and at a different
arrival time. Any one of the direct or head waves may be the faster one
(see Fig. 7.24). While the head wave may be determined analytically in a
finite number of steps, the direct wave must be calculated iteratively using
the shooting or bending method. A rigorous explanation of how to
construct the rays and how to calculate the propagation times is beyond the
scope of this section, and may be found in, for example, ervený et al.
(1977).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

AKA
BAR

CLZ
DER

DOD

EGZ

FIL

GUM

KAZ

NAF

NEO

PAP

PRG

VOL
VUN

ZAK

0

100

200

300

Epicentra
l distance [km]

<- west east ->

0

10

20

30

40

50

D
ep

th
[k

m
]

100

200

300

400

Epicentral distance [km
]

<- north
south

->

0

10

20

30

40

50

5.7
km

/s

6.0
km

/s

6.4
km

/s

7.9
km

/s

Fig. 7.25. Configuration of our synthetic location test. Earthquake foci are num-
bered 1–56 (shown in projection on the surface) and are at a depth of 40 km.
Seismic stations are marked by full triangles and labeled by three-character codes.
Some rays from focus 1 are drawn in two perpendicular vertical planes at the bor-
ders of the model.

384 7 Applications

 7.5.3 Synthetic Location Test

In order to keep our numerical experiments on a realistic basis we tried to
simulate typical location problems for seismic events originating in the
Gulf of Corinth, Greece. The routinely used velocity model recommended
in Tselentis et al. (1996) consists of three homogeneous isotropic layers
and a homogeneous isotropic half-space with the parameters given in Ta-
ble 7.5. The lowermost interface of our model corresponds to the Moho
discontinuity separating the Earth’s crust and the upper mantle, therefore
the velocity model is of regional validity. As long as the velocity in all lay-
ers increases with depth, all interfaces potentially generate head waves. We
decided to initiate 56 fictitious earthquakes with foci in a regular 50×50
km grid at a depth of 40 km. Hypothetical recordings were enabled by 16
seismic stations, distributed on the surface according to the actual distribu-
tion of real field seismic stations in Greece (Fig. 7.25). All arrivals from 56
events at the 16 stations were exactly computed for the predefined velocity
model. Then, we had to run more or less different location problems for 56
times in order to make one test set. We have completed many variants of
testing, but only a few typical results will be presented here. The search
space for hypocenters was a box with dimensions 350×400×80 km (the last
one is depth).

We shall present an optimization equivalent to the minimization of Eq.
7.43 using three different standard optimizers in the following:

1. Powell’s method for nonlinear optimization (Press et al. 1992).
2. The downhill simplex algorithm (Nelder and Mead 1965; Olsson and

Nelson 1975; Press et al. 1992).
3. The original DE algorithm presented in Price and Storn (1997) and

Storn and Price (1997).

Both methods 1 and 2 do not require special tuning or adjusting control
parameters. As for method 3, it was found empirically that the location
problem is nearly insensitive to the adjustment of internal parameters
(R žek and Kvasni ka 2001). Then, we fixed the population size at Np =
10 × model_space_dimension, with a crossover probability Cr = 0.5 and
scale factor F = 0.7. The starting position of each hypocenter was chosen
randomly. We calculated the theoretical arrival times i using two methods:

1. Arrivals were calculated exactly using the same velocity model and the
same algorithm employed in the preparation of the synthetic problem

2. Arrivals were calculated approximately using the algorithm given in Xie
et al. (1996), which has the great practical advantage that the actual
velocity model need not be known. On the other hand, two extra

7.5 Determination of the Earthquake Hypocenter 385

artificial parameters must be added to the parameter space and the
inversion becomes more difficult due to the unfavorable topography of
the optimized functional.

In conclusion, we shall present results obtained by the three optimizers
applied to two clones of the optimized functional; that is, six different
modes will be discussed.

7.5.4 Convergence Properties

We monitored the current value of 2 in the course of minimization,
depending on the number of misfit evaluations. The corresponding graphs
are arranged in triplets in Fig. 7.26. Each graph contains 56 curves
connected with the location of 56 synthetic earthquakes.

The left part of Fig. 7.26 represents the location of error-free data using
consistent forward modeling. Ideally, each curve should then reach exactly
zero at the end (perfect fit achieved). Due to rounding errors, the iterative
method of refracted wave computations and the scaling, final values of
misfit around 10 4–10 3 may be considered as sufficiently accurate
solutions.

• If Powell’s method is used (Fig. 7.26, upper right), only 46 events out of
56 are satisfactorily located. In 10 cases, the search terminates far from
the correct position. In successful cases, this method needs a broad
range of 5.102–104 function evaluations in order to achieve convergence.

• Downhill simplex exhibits fast convergence (up to 3.102 function
evaluations), but the probability of getting the correct solution is even
lower (45 cases out of 56). Often the algorithm is unable to make any
improvement on the current position in the model space and the
procedure stagnates.

• DE convergence curves show a relatively uniform pattern (Fig. 7.26,
lower left). The solution is found in all cases, but the computational
effort is higher: we need to evaluate the forward problem around 5.103

times in order to decrease the misfit value to a satisfactory level ~10 4.

The same triplet of optimizers was then applied to the same physical
problem but formulated differently (right part of Fig. 7.26). Now the arri-
vals of seismic waves are calculated approximately. This is useful in prac-
tice, because we do not speculate on the validity of the velocity model
used. On the other hand, the dimension of the model space is now six (four
for the hypocenter and two additional formal parameters for the velocity
model approximation). It can be shown that the optimization is much

386 7 Applications

harder. Because forward and inverse modeling are now not exactly
consistent, good solutions are indicated by final misfit values around 1.

1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6

1.0E-5
1.0E-4
1.0E-3
1.0E-2
1.0E-1
1.0E+0
1.0E+1
1.0E+2
1.0E+3
1.0E+4
1.0E+5
1.0E+6

1.0E-5
1.0E-4
1.0E-3
1.0E-2
1.0E-1
1.0E+0
1.0E+1
1.0E+2
1.0E+3
1.0E+4
1.0E+5
1.0E+6

1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6

1.0E-5
1.0E-4
1.0E-3
1.0E-2
1.0E-1
1.0E+0
1.0E+1
1.0E+2
1.0E+3
1.0E+4
1.0E+5

1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6
Number of function evaluation

Powell's method

Downhill simplex

Differential evolution

a)

1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6

1.0E-1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E-1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6

1.0E-1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

1.0E+1 1.0E+2 1.0E+3 1.0E+4 1.0E+5 1.0E+6
Number of function evaluation

Powell's method

Downhill simplex

Differential evolution

b)

Fig. 7.26. Convergence curves (dependence of the 2 value on the number of func-
tion evaluations) for two variants of forward modeling: a) consistent (exact) for-
ward modeling, b) approximate forward modeling. A label indicates the optimizer
used. Approximate forward modeling is much harder, but does not require perfect
knowledge of the velocity model. The stagnation of the optimization process is
apparent if the 2 value is not reduced appropriately.

7.5 Determination of the Earthquake Hypocenter 387

• As we can see from the upper right part of Fig. 7.26, Powell’s algorithm
needs around 104 misfit function evaluations in order to achieve
convergence. Nevertheless, there are two cases when the procedure fails
completely and the solution is not found. The convergence is also rather
irregular: from time to time the misfit value falls quickly and then stays
at nearly the same level for a long time and for a great number of
calculations.

• The downhill simplex procedure (Fig. 7.26, middle right) behaves worse
than Powell’s method. The solution is found in 20 cases only; for the
others the inversion stagnates. Convergence curves are even more
irregular than in the case of Powell’s optimization. In a successful case,
downhill simplex requires ~104 misfit function evaluations until
convergence.

• DE yields quite another picture (Fig. 7.26, lower right). The
optimization is regular, all curves are relatively smooth and they
decrease very similarly to each other. The convergence is 100% reliable.
The only disadvantage in comparison with the previous two optimizing
algorithms (if any comparison is at all possible) is a higher number of
function evaluations until convergence: the minimized function has to
be called ~5.104 times (i.e., the computations may be up to five times
slower).

Table 7.6. Probability of discovering the solution

Method of forward modeling Optimizing

algorithm Exact
calculations

Approximate
calculations

Powell’s
algorithm

82% 96%

Downhill simplex 79% 64%

DE 100% 100%

A summary of the reliability of obtaining good solutions for different
kinds of optimization is given in Table 7.6. Further, we may discuss the
accuracy in those lucky cases when a “satisfactory solution” is found. This
accuracy may be quantified by the Euclidean distance between the
determined hypocenter and the true hypocenter (which is known by
solving the synthetic problem). This approach would be consistent if our
model space contained parameters of the same physical units only. The
actual model space has parameters of either two physical units (distance

388 7 Applications

and time in the case of exact forward modeling) or three physical units
(distance, time and velocity in the case of approximate forward modeling).
The concept of Euclidean distance is therefore rather problematic.
However, an alternate and consistent measure of the precision is given by
discussing the magnitude of the final 2 value.

1.0E-1 1.0E+0 1.0E+1
Chi**2 DE

1.0E-1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

C
hi

**
2

sm
/p

w

1.0E-5 1.0E-4 1.0E-3 1.0E-2 1.0E-1
Chi**2 DE

1.0E-5

1.0E-4

1.0E-3

1.0E-2

1.0E-1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

1.0E+6

C
hi

**
2

sm
/p

w

Simplex vers. DE

Powell vers. DE

1.0E-1 1.0E+0 1.0E+1

1.0E-1

1.0E+0

1.0E+1

1.0E+2

1.0E+3

1.0E+4

1.0E+5

a) b)

DE better

DE worse

Fig. 7.27. Final measures of the accuracy obtained for exact forward modeling
(left) and approximate forward modeling (right). The display compares the accu-
racy reached by DE and the downhill simplex algorithm or by DE and Powell’s
method. It can be clearly seen that DE is never worse than either of the two com-
peting optimizing methods.

We have plotted 2 values for corresponding solutions obtained in a
pair-wise manner by Powell’s method and DE or by downhill simplex and
DE in Fig. 7.27. It can be seen in the figure that DE never yields worse
results than either of the two competing methods. Especially when

7.5 Determination of the Earthquake Hypocenter 389

approximate forward modeling is used, DE behaves excellently in finding
very accurate solutions.

7.5.5 Conclusions

Inverse problems in geophysics are mostly hard problems to solve. They
are nearly always nonlinear, non-unique, medium or high dimensional, and
applied to noisy data. Calculation of the forward problem is time
consuming and sometimes only approximate. Therefore good
minimizing/optimizing algorithms are of great importance.

The problem of earthquake hypocenter determination belongs to the
relatively simple geophysical problems. Nevertheless, we can see that
“classic” or “standard” optimizing algorithms sometimes give inaccurate
or incorrect results. We have demonstrated that the DE algorithm
introduces an attractive way to perform geophysical inversions. A set of 56
synthetic location problems was submitted for solution by three different
optimizing algorithms. The DE algorithm output correct results in all
cases, while the competing algorithms often failed. Of course, there is a
price for DE reliability: a greater computational effort is needed to achieve
convergence. Nevertheless, continuous development of computing
technologies makes this aspect of minor importance. Even if the problem
solutions were found by all the tested optimizers, the DE solution would
nearly always be characterized by the lowest 2 value and therefore by the
best fit.

DE has many pleasant and elegant features: it is simple, easy to use,
does not insist on evaluations of derivatives, works with continuous
parameters which need not be bound and their starting positions are not
necessary. The only disadvantage of DE is the already-mentioned slightly
higher number of misfit evaluations. We believe that DE will be broadly
used in geophysics in the near future, especially when considering that DE
itself will probably be further developed as well.

References

Billings SD (1994) Simulated annealing for earthquake location. Geophysical
Journal International 118:680–692

Billings SD, Kennett BLN, Sambridge MS (1994) Hypocenter location: genetic
algorithms incorporating problem-specific information. Geophysical Journal
International 118:693–706

Bondar I (1994) Hypocenter determination of local earthquake using genetic
algorithm. Acta Geodaetica et Geophysica Hungarica 29:39–56

390 7 Applications

Buland R (1976) The mechanics of locating earthquakes. Bulletin of the
Seismology Society of America 66:173–187

ervený V, Molotkov IA, Pšen ík I (1977) Ray method in seismology. Charles
University Press, Prague

Fischer T, Horálek J (2000) Refined locations of the swarm earthquakes in the
Nový Kostel focal zone and spatial distribution of the January 1997 swarm in
Western Bohemia, Czech Republic. Studia Geophysica et Geodaetica 44:210–
226

Geiger L (1910) Herdbestimmung der Erdbeben aus den Ankunftzeiten. Der
Königlichen Gesellschaft der Wissenschaften zu Göttingen 4:331–349

Herrmann RB (1979) FASTHYPO – A hypocentre location program. Earthquake
Notes 50:25–37

Janský J, Horálek J, Málek J, Boušková A (2000) Homogeneous velocity models
of the West Bohemian swarm region obtained by grid search. Studia
Geophysica et Geodaetica 44:158–174

Klein RW (1978) Hypocenter location program HYPOINVERSE part I: Users
guide to versions 1, 2, 3 and 4. US Geological Survey Open-File Report 78-
694

Lee WHK, Lahr JC (1972) HYPO71: A computer program for determining
hypocenter, magnitude, and first motion pattern of local earthquakes. US
Geological Survey Open-File Report 75-311

Lienert BR, Berg E, Frazer LN (1986) HYPOCENTER: An earthquake location
method using centered, scaled, and adaptively damped least squares. Bulletin
of the Seismology Society of America 76:771–783

Nelder JA, Mead R (1965) A simplex method for function minimization.
Computer Journal 7:308-313

Olsson DM, Nelson LS (1975) The Nelder-Mead simplex procedure for function
minimization. Technometrics 17:45–51

Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes
in C: The art of scientific computing, 2nd ed. Cambridge University Press

Price K, Storn R (1997) Differential evolution. Dr. Dobb’s Journal April:18–24
Rabinowitz N (1988) Microearthquake location by means of nonlinear simplex

procedure. Bulletin of the Seismology Society of America 78:380–384
R žek B, Kvasni ka M (2001) Differential evolution algorithm in the earthquake

hypocenter location. Pure and Applied Geophysics 158:667–693
Sambridge M, Gallagher K (1993) Earthquake hypocenter location using genetic

algorithm. Bulletin of the Seismology Society of America 83:1467–1491
Sambridge MS, Kennett BLN (1986) A novel method of hypocenter location.

Geophysical Journal of the Royal Astronomical Society 87:679–697
Shearer PM (1997) Improving local earthquake locations using the L1 norm and

waveform cross correlation: Application to the Whittier Narrows, California,
aftershock sequence. Journal of Geophysics Research 102:8269–8283

Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global
Optimization 11:241–354

7.5 Determination of the Earthquake Hypocenter 391

Tarvainen M, Tiira T, Husebye ES (1999) Locating regional seismic events with
global optimization based on interval arithmetic. Geophysics Joural
International 138:879–885

Tselentis GA, Melis NS, Sokos E, Papatsimpa K (1996) The Egion June 15, 1995
(6.2 ML) earthquake, Western Greece. PAGEOPH 147(1):83–97

Xie Z, Spencer TW, Rabinowitz PD, Fahlquist DA (1996) A new regional
hypocenter location method. Bulletin of the Seismology Society of America
86:946–958

7.6 Parallel Differential Evolution: Application to 3-D
Medical Image Registration

Michel Salomon, Guy-René Perrin, Fabrice Heitz and J.-P. Armspach

Abstract. A common framework for 3-D image registration consists in
minimizing a cost (or energy) function that expresses the pixel or voxel
similarity of the images to be aligned. Standard cost functions, based on
voxel similarity measures, are highly nonlinear, non-convex, exhibit many
local minima and thus yield hard optimization problems. Local, determi-
nistic optimization algorithms are known to be sensitive to local minima.
Global optimization methods (like simulated annealing or evolutionary al-
gorithms) yield better solutions often close to the optimal ones, but are
time consuming. In this section we consider the parallelization of a gen-
eral-purpose global optimization algorithm based on random sampling and
evolutionary principles: the differential evolution algorithm. The inherent
parallelism of evolutionary algorithms is used to devise a data-parallel im-
plementation of differential evolution. The performances of the parallel
version are assessed on a 3-D medical image registration problem. Besides
yielding accurate registrations, parallel differential evolution exhibits fast
convergence and a speedup almost growing linearly with respect to the
number of processors.

7.6.1 Introduction

Global optimization problems are encountered in many areas of science
and engineering. In particular, many problems in 2-D and 3-D image proc-
essing and computer vision have been expressed as global optimization
problems. The general issue is to find the global minimum of an objective
function (also called cost or energy function) describing the interactions
between the different variables modeling the image features in a given ap-
plication (Heitz et al. 1994). Image restoration (Geman and Geman 1984),
image segmentation, image registration, image motion measurement, tex-
ture analysis as well as scene interpretation have for instance been recast
into this framework. Due to the large volume of data, the large number of
variables involved and the generalized use of nonlinear interaction models,
the optimization problems under consideration are generally hard ones, in-
volving non-convex objective functions and many local minima.

394 7 Applications

A typical example is image registration. The purpose of image registra-
tion (also called image matching) is to geometrically align one image (the
floating or source image) with another (the reference or target image) so
that voxels (or pixels) representing the same underlying structure may be
superimposed. A standard framework for image registration consists in
minimizing a cost function or maximizing a “similarity measure” that ex-
presses the pixel or voxel similarity of the images to be aligned. During the
last decade, image registration has become an important preliminary step
in a wide range of image analysis and computer vision tasks. Due to its
large variety of sensors, 3-D medical imaging is certainly one of the first
application fields, as are remote sensing, military imaging or multi-sensor
robot vision. Applications range from computer-assisted surgery to the
analysis of sequences of functional images used for instance to follow the
evolution of diseases.

Standard cost functions, based on voxel similarity measures (Woods et
al. 1993; Nikou et al. 1998), are highly nonlinear, non-convex and exhibit
many local minima. Like NP-complete problems, they yield challenging
optimization problems, with large and irregular search spaces, and thus re-
quire computationally demanding global optimization algorithms to com-
pute close to optimal solutions. Less CPU-intensive deterministic algo-
rithms may be used instead, but they are sensitive to local minima and
require a good initial guess (Nikou et al. 1998).

In this section we consider differential evolution as an appealing candi-
date for general-purpose global optimization (Storn and Price 1996; Storn
1996). We show that differential evolution is particularly suited for the
registration of medical images using similarity measures. To register
medical images with computational times suited to clinical applications,
we develop comprehensive parallelization schemes for this class of algo-
rithm. Standard parallelizations of evolutionary algorithms consist in dis-
tributing the population of candidate solutions maintained by the algo-
rithms, making it evolve in parallel. In our approach we have one potential
solution per processor, thereby defining a novel, fully synchronous data-
parallel algorithm. The parallel algorithm has been applied successfully to
register 3-D magnetic resonance images of the brain, exhibiting a nearly
linear speedup.

The remainder of this section is organized as follows. After introducing
the similarity-based registration model (Sect. 7.6.2), we briefly describe
the particular differential evolution algorithm used here and show the re-
sults obtained with a sequential version of this algorithm (Sect. 7.6.3). In
Sect. 7.6.4, comprehensive parallel solutions are proposed for evolutionary
algorithms and the adopted parallelization scheme, relying on a data-
parallel programming model, is described. Section 7.6.5 is devoted to the

7.6 3-D Medical Image Registration 395

experimental assessment of the performances of the proposed parallel al-
gorithm, compared to the reference, sequential version.

7.6.2 Medical Image Registration Using Similarity Measures

A general review of image registration may be found in Brown (1992).
Recent updates of the state of the art in this field, specifically devoted to
medical image analysis, have been proposed in van den Elsen et al. (1993),
Hill and Hawkes (2000) and Woods (2000b).

To define a medical image registration algorithm, several points must be
considered:

1. The imaging modalities involved.
2. The feature space used to describe the image content.
3. The similarity measure used.
4. The nature and domain of transformation.
5. The algorithm used to find the optimal transformation.

The registration may concern images from the same modality (single
modal image matching) or images stemming from different modalities
(multi-modal image matching). To compare these images, many features
(voxels, edges, surfaces, etc.) and similarity measures are now available.
Besides, transformations range from rigid transformations, with a small
number of parameters (see Fig. 7.32 below), to deformable image warps,
depending on several thousands or millions of parameters (Christensen et
al. 1996; Musse et al. 1999; Woods 2000a).

Imaging Modalities and Feature Space

Medical imaging modalities can be divided into two categories: anatomical
and functional. The first category primarily depicts morphology, whereas
the second one highlights metabolic information of the underlying anat-
omy. The classical medical imaging modalities include:

• Anatomical modalities: X-ray, CT (Computerized Tomography), MRI
(Magnetic Resonance Imaging).

• Functional modalities: PET (Positron Emission Tomography), SPECT
(Single-Photon Emission Computed Tomography), fMRI (functional
Magnetic Resonance Imaging).

A typical application of single modality image registration is the follow-
ing one on the evolution of lesions on temporal sequences (see Fig. 7.33
below). On the other hand, multi-modal registration is generally used to in-

396 7 Applications

tegrate anatomical and functional information. Obviously the registration
problem is far more difficult when considering images from different mo-
dalities (which generally may not be compared on a voxel-by-voxel basis).

The features used in image registration may be raw pixel/voxel intensi-
ties, characteristic points, edges or lines, surfaces or volumes, or even
high-level image representations such as statistical models or graph-based
representations. In this work, we consider the standard case of single mo-
dal image registration based on voxel similarity measures, which is now
used routinely on a daily basis in many hospitals.

Similarity Measures and Image Transformations

Similarity measure-based approaches rely on the minimization of cost
functions that express the pixel (2-D) or voxel (3-D) similarity of the im-
ages to be aligned. Similarity measures have been introduced for both sin-
gle and multi-modal image registration (for recent reviews see Hill and
Hawkes 2000; Woods 2000b). Standard similarity metrics used in single
modal image registration are related to least squares estimation or to the
maximization of the correlation function. For multi-modal images, the
definition of similarity generally relies on first- or second-order image sta-
tistics such as mean, variance, entropy or mutual information.

Many transformations, from rigid transforms to elastic warps, may be
considered in image registration (Woods 2000a). In this work the trans-
formation is assumed to be rigid, therefore the output of the registration
process is a set of six independent parameters: three rotation parameters
and three translation parameters (see Fig. 7.32 below). Rigid registration is
routinely used in order to compensate for the difference of patient position
between successive scans. Within this framework, voxel similarity metric-
based registration consists in estimating the parameter vector of the rigid
transformation T minimizing a cost function C that expresses the similar-
ity between the single or multi-modal image pair:

()[](.))((.),minargmin Θ
Θ

=Θ TJIC , (7.45)

where (for 3-D images)

()T,,,,, zyxzyx ttt θθθ=Θ (7.46)

is a vector containing the 3-D translation parameters (tx,ty,tz) with respect
to the X, Y and Z axes and the Euler rotation angles (x, y, z). I(.) repre-
sents the reference image and J(.) the floating image, to be registered on
the reference image. A widely used similarity measure for the registration
of single modal images is the quadratic similarity measure (Brown 1992).

7.6 3-D Medical Image Registration 397

This similarity measure assumes that the images to be matched differ only
by an additive Gaussian noise, leading to the following cost function:

() []2
))(()((.))((.), ΘΘ −=

s

sTJsITJIC (7.47)

where s designates the voxel (or pixel) coordinates. More sophisticated
similarity measures may be found in Nikou et al. (1998), Hill and Hawkes
(2000) and Woods (2000b).

Global Optimization Algorithm

The similarity measure presented above is highly nonlinear, non-convex
and has multiple local minima. In most image registration methods, local
deterministic optimization algorithms, such as gradient descent or Newton
optimization algorithms, are applied. They are known to be sensitive to lo-
cal minima, unless they are initialized close to the optimal solution. In
Nikou et al. (1998), for example, a first step consists in a fast global search
using simulated annealing, followed by a deterministic descent using a
Gauss–Seidel-like algorithm.

In this work we consider differential evolution as an appealing candidate
for the global optimization of the objective functions involved in image
processing. To reduce the computational burden, the optimization is con-
ducted on a multi-grid sequence of images of increasing resolution. In
practice, the cost function is calculated by successively considering one
voxel out of 81, 27, 9, 3 and finally every voxel in the 3-D MR images (for
1283 images). Multi-grid algorithms are known to be less sensitive to local
minima than single-resolution implementations, yielding fast convergence
toward good solutions (Heitz et al. 1994).

The choice of differential evolution results from a comparison of several
global search algorithms: simulated annealing (Kirkpatrick et al. 1983),
tabu search (Glover and Laguna 1993) and evolutionary algorithms (Bäck
1996). A careful experimental assessment (Salomon 2001) has shown that
evolutionary algorithms, particularly evolution strategies and differential
evolution, are best suited here. This point is also emphasized by other
work on image registration using evolutionary algorithms (Fischer et al.
1999). In our experiments, differential evolution has significantly outper-
formed the other global optimization approaches: it is faster, yields better
solutions, has fewer control parameters, and is easier to implement than
evolution strategies.

398 7 Applications

7.6.3 Optimization by Differential Evolution

It is assumed that the reader is already familiar with the differential evolu-
tion algorithm presented in Chap. 2 of this book. Therefore we will only
describe the reproduction operator (the so-called crossover operator by
Storn et al (Storn 1996), as it differs slightly from the original one.

Reproduction Operator

Among the different variants of differential evolution (DE), throughout
this investigation we used the DE/rand-to-best/1 scheme. This scheme is
briefly presented below, considering the medical image registration opti-
mization problem. We chose this scheme after preliminary experiments; in
fact it outperformed the three other schemes that we considered:
DE/rand/1, DE/best/1 and DE/best/2 (Storn 1996).

For the problem of rigid 3-D registration, a new individual

() { } ())1()1()1(

6,,1, ,,,,, +++
∈

Θ′=′′′′′′=′ G

i

G

zyxzyx

G

jji iiiiii
tttx θθθ ,

where i ∈ {1, …, npop}and G with range {0, …, Gmax}is the population in-
dex, is generated according to

() ()
≤≤∨≤≤∧>

≤≤∧≤
−⋅+−⋅+

=+

otherwise

)1()(or

)()(if

'

)(
,

1221

2121

)(
,

)(
,

)(
,

)(
min,

)(
,

)1(
,

G
ji

par

G
jT

G
jS

G
ji

G
j

G
ji

G
ji

x

njj

j

xxFxxx

x χχχχ
χχχχ

λ (7.48)

where (G)xmin represents the current minimum; popn is the number of individu-

als and parn the number of parameters; S, T ∈ {1, …, npop} satisfying (S ≠
T) ≠ i denote two randomly chosen individuals; and 21,χχ are the two
crossover points. The last variables are obtained in the following way:

() () 1mod)1(,1mod 21 +−+=+= parpar nLn χχχχ (7.49)

where and L are two integers uniformly drawn from set {1, …, npar}, for
each individual. defines the first position of the crossover whereas L is
the number of parameters to be exchanged. Integer L is chosen using the
algorithm given in Storn and Price (1996), according to the crossover
probability Cr given by the user. The control parameters and F have the
range [0.1,1.0].

7.6 3-D Medical Image Registration 399

Sequential Differential Evolution Algorithm

To evaluate the DE algorithm on a representative set of 3-D MRI/MRI reg-
istration problems of 1283 voxels, we generate a set of 20 randomly de-
fined registration problems. Each registration problem is obtained by ap-
plying a random rigid transformation on a reference MRI provided by the
Institut de Physique Biologique (Strasbourg University Hospital, UMR
CNRS 7004). The translation parameters are within the range
[20.0,+20.0] voxels, whereas the rotation angles are within [20.0,+20.0]
degrees. Let us emphasize that large rotations are usually difficult to han-
dle, leading to objective function landscapes with many local minima. Fur-
ther, many voxel interpolations are involved in the registration process: tri-
linear interpolation is adopted here, as a good compromise between
reconstruction quality and computational cost.

As stated in Sect. 7.6.2, the DE algorithm is applied on a sequence of
multi-resolution grids, using a standard top-down approach, starting from
the coarsest resolution level. We generate the same number of populations
at all resolutions, except at the final one, in which case the fitness (cost) of
each individual will be simply computed again, as is the case when for-
warding the population from a given resolution to a finer one. This step is
necessary because the cost of an individual changes with resolution. A
suitable value for λ and F has been found in some preliminary experi-
ments, whereas the termination criterion, i.e., the maximum number of
generated populations, was chosen in order to evaluate about 900 individu-
als. The total number of populations to be evaluated is thus Gmax + 5.

Figure 7.28 presents the average evolution of the minimum cost for the
20 registration problems, during the optimization process. In Fig. 7.28 the
influence of the population size according to the crossover probability
(Fig. 7.28a: Cr = 0.3, Fig. 7.28b: Cr = 0.8) is shown. It appears that a small
population is sufficient to get a good convergence: 8 individuals for a
small crossover probability, 16 individuals for a large crossover probabil-
ity. We also notice that these population sizes induce convergence curves
that are almost similar.

To evaluate the ability of the DE algorithm to achieve accurate registra-
tions (errors less than 1 voxel in translation and 1 in rotation), we compute
various error statistics on the estimated parameters, as well as the root
mean square (RMS) error. RMS corresponds to the average mis-
registration between voxels in the proposed solution and the optimal one.
It can be seen from the statistics collected from the set of 20 images (Table
7.7) that the algorithm achieves good accuracy. Considering a sampling of
voxels, we obtain an RMS error of 0.35 voxels, showing subvoxel accu-
racy.

400 7 Applications

The CPU time obtained on an MIPS R12000 processor (300 MHz) is
approximately 11 minutes. Compared to other approaches, the registration
of medical images using DE is fairly competitive.

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0 100 200 300 400 500 600 700 800 900
Cost function evaluations

4
8

16
32
64

A
ve

ra
ge

 o
f t

he
 m

in
im

um
 c

os
t

Quadratic cost function

��� � ����� � � � � ������

���������� 	�
�� ���� �

���������������������
��������������������

a)

200

300

400

500

600

700

800

900

1000

1100

1200

1300

0 100 200 300 400 500 600 700 800 900
Cost function evaluations

A
ve

ra
ge

 o
f t

he
 m

in
im

um
 c

os
t 4

8
16
32
64

Quadratic cost function

��� � ����� � � � � ������

���������� 	�
�� ���� �

���������������������
��������������������

b)

Fig. 7.28. Average evolution of the minimum cost considering different popula-
tion sizes (a Cr = 0.3 and b Cr = 0.8; λ = F = 0.525).

7.6 3-D Medical Image Registration 401

Table 7.7. Single modal (MRI/MRI) registration (3-D) {λ = F = 0.525}: error sta-
tistics (mean ± standard deviation)

npop = 8; Cr = 0.3 and Gmax = 108 npop = 16; Cr = 0.8 and Gmax = 52
∆tx 0.19 ± 0.15 ∆tx 0.20 ± 0.15
∆ty 0.14 ± 0.10 ∆ty 0.15 ± 0.10
∆tz 0.16 ± 0.09 ∆tz 0.16 ± 0.09
∆ x 0.005 ± 0.004 ∆ x 0.030 ± 0.040
∆ y 0.004 ± 0.003 ∆ y 0.020 ± 0.030
∆ z 0.009 ± 0.006 ∆ z 0.040 ± 0.080

Note: The translation errors are given in voxels and the rotation errors in degrees.

7.6.4 Parallelization of Differential Evolution

Parallelizing an algorithm can be motivated by several reasons. The main
ones are: reducing the computation time by equally dividing the computa-
tion cost over all the processors; the ability to solve larger problems than
possible in sequence; last but not least, designing new optimization strate-
gies based on sequential methods. Let us notice that the computation time
needed to solve an optimization problem is mainly related to the number of
parameters to be optimized and the smoothness of the cost function land-
scape.

How To Parallelize an Evolutionary Algorithm

Evolutionary algorithms are intrinsically parallel, since, as in nature, indi-
viduals evolve simultaneously. There are three levels of parallelization that
can be considered for an evolutionary algorithm (Tomassini 1999): the fit-
ness evaluation level, the population level and the individual level. The
first level will not be discussed, as it is a problem-dependent paralleliza-
tion, whereas the two other levels are general parallelization.

Population-based parallelization consists in dividing the population into
as many subpopulations as processors, each processor running the evolu-
tionary algorithm on its own subpopulation. This kind of parallelization is
said to be coarse-grained. The subpopulations are usually called “islands”
(or demes). They can be connected following a defined neighborhood ena-
bling the migration of individuals from a subpopulation to another one, re-
placing the worst individuals in the target subpopulation: usually it is the
individual having the best fitness that migrates. The interacting scheme is
called the “connected island model”. The background idea for allowing
migration of individuals is to ensure diversity over the subpopulations. In
the scheme without interactions, the only communications take place at the

402 7 Applications

end in order to select the best individual among all subpopulations. Unfor-
tunately, the lack of communications can result in a subpopulation explor-
ing a bad region of the search space, ignoring more promising regions ex-
plored by other processors.

Introducing the parallelization at the individual level consists in distrib-
uting the population so that each individual is assigned to one virtual proc-
essor, resulting in a data-parallel implementation with a finer granularity.
In this scheme, the processor’s network topology is very important, since it
induces the isolation degree across the population and in this way the di-
versity of the whole population. The diffusion of individuals is done by se-
lection and reproduction operators locally on each processor, considering a
neighborhood structure. Consequently the neighborhood is the major com-
ponent in this parallel algorithm: the four or eight nearest neighbors of an
individual form the most typical neighborhoods used. Local interactions
between neighboring processors prevent premature convergence, since the
diffusion of the individuals across the population is very slow, reducing
the probability of seeing a superindividual emerge.

Parallelization of evolutionary algorithms has been mainly studied on
genetic algorithms, since they are the most popular evolutionary algo-
rithms and the ones having the widest range of applications. Our contribu-
tion is to study the parallelization of DE.

Parallelizing Differential Evolution: A Data-Parallel
Implementation

In this work, we propose an individual-based parallelization for the DE al-
gorithm. In fact, as shown by the study of the sequential algorithm (Sect.
7.6.3), a population with a small size (less than 20 individuals) was enough
to give good results. Therefore a coarse-grained parallelization is irrele-
vant: the subpopulations would have been too small.

Consider a population of 16 individuals and a grid of virtual processors
(a real processor usually simulates several virtual ones), having a size 4 ×
4. We distribute the population on this grid in order to have one individual
per virtual processor. Thus parallelizing DE consists in parallelizing the
different steps of the algorithm, namely: initialization, evaluation, repro-
duction and selection.

Clearly initialization and evaluation can be simply done in parallel. For
example, the first individual on each processor results from a random sam-
pling in the search space. Furthermore, each individual)(G

ix′ , i ∈{1, …,

npop}, where npop = 4 × 4, resulting from reproduction will be located on the
same virtual processor as)(G

ix . Consequently, as the selection operator

7.6 3-D Medical Image Registration 403

consists in a comparison of these two individuals for each value of i, the
parallelization is communication free. Finally we have to parallelize the
reproduction operator. Equation 7.48 shows that generating a new individ-
ual)(G

ix′ requires three other individuals, apart from)(G
ix :

• the individual of minimum cost in the current population, denoted)(
min
Gx ;

• two individuals)(G
Sx and)(G

Tx randomly chosen in the population, mutu-

ally different and also different from)(G
ix ((S ≠ T) ≠ i).

xS

xT

x
x’i
i

Fig. 7.29. Transmission of Sx and Tx (the neighborhood is in gray).

The broadcasting of the current minimum across the grid results in ir-
regular communications, but its real cost depends on the architecture of the
parallel machine. In fact the compiler should optimize broadcast, since it is
a basic operation in data-parallelism. To draw the two individuals)(G

Sx and
)(G

Tx in parallel, we define around each virtual processor a neighborhood
corresponding to the eight-nearest neighbors of the considered processor.

)(G
Sx and)(G

Tx are then randomly chosen in this neighborhood and communi-
cated to the processor where the corresponding)(G

ix is located, as presented

404 7 Applications

in Fig. 7.29. The choice of the two individuals is done in the same way by
all the processors, yielding a regular communication pattern. Obviously,
introducing a neighborhood to choose)(G

Sx and)(G
Tx gives a parallel algo-

rithm semantically different from the sequential one.
The main question can be stated in the following words: “Has the se-

mantic modification introduced in the parallel algorithm any effect on its
results?” The next section will answer this, showing clearly the relevance
of our approach.

7.6.5 Experimental Results

Experimentation Framework

Following the same approach as for the sequential algorithm, the data-
parallel algorithm is associated with a multi-grid optimization of the simi-
larity measure. The data-parallel algorithm has been implemented on an
SGI Origin 2000 available at Strasbourg I University (32 R10000 proces-
sors, 195 MHz and 20 R12000 processors, 20 gigabyte memory), using the
data-parallel language High Performance Fortran (HPF). The Origin 2000
is a virtual shared memory computer, but physically it is a distributed
memory computer. Moreover the nodes are connected with a hypercube
topology network.

Performance of the Approach

In order to use as many processors as possible, we set the population to 16
individuals; hence the DE parameters have the following values: Cr = 0.8,
Gmax = 52 and λ = F = 0.525.

Quality of the Registration. Figure 7.30 presents the average evolution of
the minimum cost, for the 20 registration problems. The solid curve corre-
sponds to the parallel algorithm executed on eight physical processors; the
dashed line depicts the sequential version. Clearly, the sequential and the
parallel algorithms have the same average behavior, resulting in a final pa-
rameter vector with similar cost. In practice, the semantic modification in-
troduced by the data-parallel approach is without any effect. Consequently,
as highlighted by Table 7.8, the parallel algorithm is also able to achieve
registrations with subvoxel accuracy.

The good results of the data-parallel implementation may be explained
by the choice made for the neighborhood during the reproduction step,
since it is this operator that differentiates the parallel version from the se-
quential one. For the sequential version, a population of nine individuals is

7.6 3-D Medical Image Registration 405

sufficient to enable convergence toward a final parameter vector corre-
sponding to an accurate registration (in fact, as we have seen in Sect. 7.6.3,
eight individuals are enough). As we choose the eight nearest neighbors to
form the neighborhood, we see that in the parallel version during the re-
production on a virtual processor a subpopulation of nine individuals is
considered. Thus the “parallel” reproduction is locally (on each virtual
processor) almost equivalent to the sequential version with a population of
nine individuals, and, as noted above, this one yields very good results.

200

300

400

500

600

700

800

900

1000

1100

1200

0 100 200 300 400 500 600 700 800 900

A
ve

ra
ge

 o
f t

he
 m

in
im

um
 c

os
t

Number of individuals evaluated

Parallel

Sequential

Fig. 7.30. Average evolution of the minimum cost

Table 7.8. Single modal (MRI/MRI) registration (3-D): Average and standard de-
viation of the registration errors

npop = 16; Cr = 0.8 and Gmax = 52
∆tx 0.20 ± 0.14
∆ty 0.14 ± 0.10
∆tz 0.16 ± 0.09
∆ x 0.020 ± 0.020
∆ y 0.030 ± 0.040
∆ z 0.040 ± 0.030

Performance. The parallel algorithm has been executed on 2, 4, 8, 16 and
32 physical processors with different population sizes. Indeed, as can be
seen from Fig. 7.28b, a population size of 32 individuals is competitive
when the crossover probability is close to one. Note that for the population

406 7 Applications

of 16 individuals, the experiments were made on the R12000, whereas for
the 32 size population, they were done on the R10000. As a reference, we
present the sequential execution time for one processor.

Table 7.9. Single modal 3-D (MRI/MRI) registration: average run-times (seconds)
and corresponding speedup values

R12000 1 2 4 8 16

npop = 16 Gmax = 52 700.80 349.01 184.47 95.54 52.16

Speedup 2.01 3.80 7.34 13.44

R10000 1 2 4 8 16 32

npop = 32 Gmax = 24 1207.57 609.27 324.91 166.06 88.47 49.02

Speedup 1.98 3.72 7.27 13.65 24.63

Table 7.9 shows the decrease of the execution time when going from the
sequential version to the parallel versions. It appears that increasing the
number of physical processors enables a significant reduction in computa-
tion time. For a population of 16 individuals and MR images of 1283 vox-
els, the sequential version takes approximately 11 minutes 40 seconds,
whereas the parallel execution decreases regularly, taking on the 16-
processor R12000 about 52 seconds. On increasing the MR image resolu-
tion to 2563 voxels (Gmax = 40), these execution times are respectively
equal to 1 hour 51 minutes and 8 minutes 32 seconds, which are compati-
ble with clinical routines.

The good performances are also highlighted by the speedup curves
(Figs. 7.31a and 7.31b), showing a slow decrease in performance when in-
creasing the number of processors: for two processors the speedup is al-
most linear; for more processors the curves only moderately move away
from the ideal speedup (see the dashed line). For instance, on 16 proces-
sors the speedup is about 13.44 for 16 individuals and 24.63 for 32
32 individuals (32 processors).

The small loss in performance observed when increasing the number of
processors originates in the increasing number of irregular communica-
tions between physical processors needed to broadcast the current mini-
mum, even if the compiler optimizes this operation. This problem could
become cumbersome for applications requiring larger populations than the
ones considered here and that could be executed on more processors. We
think that there is certainly an upper bound on the population size, beyond
which an island-based parallelization should be preferred, and vice versa.

7.6 3-D Medical Image Registration 407

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16
Processors

S
pe

ed
up

16Population
size - ����

a)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Processors

32Population
size -

S
pe

ed
up

����

b)

Fig. 7.31. Speedup for parallel DE. Population size of a 16 individuals (R12000
processors) and b 32 individuals (R10000 processors).

Another potential problem is the fact that the crossover length L is cho-
sen randomly by each virtual processor. Therefore the crossover does not
have the same cost across the processor grid, so when the individuals con-
tain many parameters, a load balancing problem may appear. However, for
the single modal registration application considered in this section, we
were not faced with this problem.

408 7 Applications

7.6.6 Conclusions

Image registration has become a standard issue in many application areas
of computer vision, particularly in the field of medical imaging. A widely
used framework consists in measuring the quality of the registration with a
predefined cost function, called the similarity measure. The registration
problem may thus be stated as the global optimization of a nonlinear cost
function involving many local minima.

We have shown in this section that differential evolution may be con-
sidered as an appealing candidate for fast and high-quality 3-D image reg-
istrations. We have outlined a data-parallel implementation for differential
evolution that produces subvoxel registrations with a quasi-linear speedup.
The experiments show clearly that the semantic modification induced by
the parallelization scheme has no effect on the behavior of the algorithm
when compared to the sequential version. Furthermore, differential evolu-
tion is very flexible and may easily be adapted to any standard cost func-
tion used in image registration. This feature is particularly useful when
dealing with cost functions like the ones used in multi-modal image regis-
tration, for which the computation of derivatives remains tricky.

Acknowledgments

This work was supported by the Pluri-Formations Program “Analyse et
Synthèse Multi-Images”, and by the Ministry of National Education, Re-
search and Technology, France (Student grant 1997/2000).

References

Bäck T (1996) Evolutionary algorithms in theory and practice. Oxford University
Press

Brown LG (1992) A survey of image registration techniques. ACM Computing
Survey 24(4):325–376

Christensen G, Miller M, Vannier M, Grenander U (1996) Individualizing neuro-
anatomical atlases using a massively parallel computer. IEEE Computer,
January:32–38

van den Elsen PA, Paul EJD, Viergever MA (1993) Medical image matching – a
review with classification. IEEE Engineering in Medicine and Biology
12(4):26–39

Fischer D, Kohlhepp P, Bulling F (1999) An evolutionary algorithm for the regis-
tration of 3D surface representations. Pattern Recognition 32:53–69

7.6 3-D Medical Image Registration 409

Geman D, Geman S (1984) Stochastic relaxation, Gibbs distribution, Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine In-
telligence 6:721–741

Glover F, Laguna M (1993) Tabu search. In: Reeves C (ed.), Modern heuristic
techniques for combinatorial problems. Blackwell Scientific, Oxford

Heitz F, Perez P, Bouthemy P (1994) Multiscale minimization of global energy
functions in some visual recovery problems. Computer Vision, Graphics and
Image Processing 59(1):125–134

Hill DLG, Hawkes DJ (2000) Across-modality registration using intensity-based
cost functions. In: Bankman IN (ed.), Handbook of medical imaging. Aca-
demic Press, New York, Chap. 34

Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated anneal-
ing. Science 220:671–680

Musse O, Heitz F, Armspach J-P (1999) 3D deformable image matching using
multiscale minimization of global energy functions. In: IEEE international
conference on computer vision pattern recognition, CVPR’99, Fort Collins,
USA, June

Nikou C, Heitz F, Armspach J-P, Namer I-J, Grucker D (1998) Registration of
MR/MR and MR/SPECT brain images by fast stochastic optimization of ro-
bust voxel similarity measures. Neuroimage 8:30–43

Salomon M (2001) Étude de la parallélisation de méthodes heuristiques
d’optimisation combinatoire. Application au recalage d’images médicales.
Ph.D. thesis, Université Louis Pasteur (Strasbourg I University)

Storn R (1996) On the usage of differential evolution for function optimization.
In: Conference of the North American Fuzzy Information Processing Society
(NAFIPS 1996), Berkeley, CA, pp 519–423

Storn R, Price K (1996) Minimizing the real functions of the ICEC’96 contest by
differential evolution. In: IEEE international conference on evolutionary com-
putation, Nagoya , Japan, May, pp 842–844

Tomassini M (1999) Parallel and distributed evolutionary algorithms. In: Mietti-
nen K (ed.), Evolutionary algorithms in engineering and computer science.
Wiley, New York, Chap. 7

Woods RP (2000a) Spatial transformation models. In: Bankman IN (ed.), Hand-
book of medical imaging. Academic Press, New York, Chap. 29

Woods RP (2000b) Within-modality registration using intensity-based cost func-
tions. In: Bankman IN (ed.), Handbook of medical imaging. Academic Press,
New York, Chap. 33

Woods RP, Mazziotta JC, Cherry SR (1993) MRI-PET registration with auto-
mated algorithm. Journal of Computerized Assisted Tomography 17(4):536–
546

410 7 Applications

Fig. 7.32. Rigid transformation between two 3-D MR images, with segmented
brain structures. Rigid registration is used to compensate for the difference of pa-
tient position between successive scans. The goal of the registration procedure is
to estimate the six independent parameters of the rigid spatial transformation
model, in order to obtain an accurate alignment of anatomical and functional in-
formation.

7.6 3-D Medical Image Registration 411

Fig. 7.33. The automatic analysis of changes between MRI scans is an important
tool for assessing the evolution of lesions. Most systems use registration as a pre-
liminary step to obtain accurate geometrical alignment of the images before image
comparison (sequence of two 3-D MRI scans of a patient suffering from relapsing
remitting multiple sclerosis, after registration; the evolution of a lesion is visible at
the cross-hairs).

7.7 Design of Efficient Erasure Codes with Differential
Evolution

Amin Shokrollahi and Rainer Storn

Abstract. The design of practical and highly powerful codes for protection
against erasures in digital communication can be reduced to optimizing so-
lutions of a highly nonlinear constraint satisfaction problem (Luby et al.
1997). In this section we will attack this problem using the differential
evolution approach (Storn and Price 1997) and significantly improve re-
sults previously obtained using classical optimization procedures.

7.7.1 Introduction

The communication revolution initiated by the phenomenal explosion of
the Internet and wireless communication has led to an increased use of er-
ror correcting codes as a means of protecting information against commu-
nication errors. Nowadays, codes are being used in many diverse commu-
nication media such as wireless phones, satellites, hard disks, CDs,
modems and the Internet, to name a few.

The general idea of coding theory is to partition the data into blocks and
augment the blocks with redundant information so that an error recovery is
possible if some part of the information is lost. The aim is to add as little
redundancy as possible, and, at the same time, to protect against as many
errors as possible. These two requirements are obviously conflicting, and
this makes the design of good codes a challenging task.

Most of the common communication channels lead to corruption of
data: a random magnetization of a hard disk, atmospheric electric dis-
charges during a satellite digital broadcast, or interference of signals of dif-
ferent cellular phones can flip bits in random positions. The task of decod-
ing becomes a hard problem, since the receiver does not know the
positions of the errors. There are, however, other communication channels
in which data is “erased” and the receiver knows the position of the erased
data. One of the prime examples of such a channel is the Internet. Data
sent over the Internet is partitioned into so-called packets. Each such
packet has a header which identifies the entity which the packet belongs to,
as well as the position of the packet inside that entity. Packets are then
routed through the network to a designated receiver. Typically some pack-

414 7 Applications

ets are lost during the transmission, while others may be corrupted once
they arrive at their destination. There are usually so-called checksums as-
sociated with each packet which are used to detect corrupted packets. Once
a packet has been identified as corrupted, it is declared missing. So, one
can concentrate on erased packets only.

A standard solution to packet loss is retransmission of data that is not
received. When some of this retransmission is lost, another request is
made, and so on. In some applications, this introduces technical difficul-
ties. For real-time transmission this solution can lead to unacceptable de-
lays caused by several rounds of communication between sender and re-
ceiver. For a multicast protocol with one sender and many receivers,
different sets of receivers can lose different sets of packets, and this solu-
tion can add significant overhead to the protocol.

An alternative solution based on using codes is sometimes desirable. It
is a challenge to design fast enough encoding and decoding algorithms to
make coding solutions feasible in real time for high-bandwidth applica-
tions. Practical codes with these properties were first introduced in Luby et
al. (1997). Those codes can be encoded and decoded in linear time while
providing near-optimal loss protection.

Based on the theoretical results proved in Luby et al. (1997), we will in
this section attack a nonlinear constrained satisfaction problem the solu-
tions of which correspond to highly efficient codes. The optimization prob-
lem involved will be attacked by differential evolution, a robust optimizer
which has proved quite effective for similar types of problems (Storn
1996a).

The section is organized as follows. In the next subsection we will recall
the basic construction of the codes in Luby et al. (1997). In Sect. 7.7.3 we
will introduce the optimization problem related to these codes and describe
different choices for the cost function of that problem. Afterwards, we re-
call basic properties of differential evolution. Finally, in Sect. 7.7.5 we will
present our optimization results.

7.7.2 Codes from Bipartite Graphs

Construction of the Codes

The codes from Luby et al. (1997) are built from sparse bipartite graphs
and generalize a classic construction of Gallager (1963). A bipartite graph
is a graph whose set of nodes is a disjoint union of a set of left nodes and a
set of right nodes.

Suppose that the graph B has n nodes on the left and r nodes on the
right. We enumerate the left nodes of G by the numbers 1, …, n. The code

7.7 Design of Efficient Erasure Codes 415

associated to G is defined as follows: it consists of all binary n-tuples c =
(c1, …, cn) such that for any right node of G, the sum modulo 2 of the co-
ordinates of c that are connected to that node equals zero. An example is
given in Fig. 7.34. In that example, a binary vector (x1, …, x7) belongs to
the code iff the sums x1 + x4 + x5 + x7, x2 + x4 + x6 + x7 and x3 + x5 + x6 + x7

are zero modulo 2. Hence, for instance, the binary vector (1, 1, 0, 0, 1, 1,
0) belongs to the code, while (1, 1, 0, 0, 1, 0, 1) does not.

1x

2x

3x

4x

5x

6x

7x

0xxxx
!

7541 =+++

0xxxx
!

7653 =+++

0xxxx
!

7642 =+++

Fig. 7.34. Example of a code from a graph. The equality sign with exclamation
mark denotes that equality is a requirement.

It is easy to see that any codeword has at least k = n − r “free” bits of in-
formation: since we are imposing r linear conditions on the coordinates,
the code is the intersection of r hyperplanes and hence has dimension at
least n − r. We call the quantity ℜ = k/n the rate of the code. In practice,
the rate of the code is dictated by the specific application. For instance, if a
particular computer network has a peak loss rate of 60%, the rate of the
code has to be at most 0.4. This is because one cannot recover from a frac-
tion of bits which is less than the rate, i.e., one cannot recover from a loss
fraction larger than one minus the rate.

The main contribution of Luby et al. (1997) is the design and analysis of
the bipartite graph G so that the following simplistic decoding operation
recovers all the missing bits.

Algorithm 1 [Loss recovery]. We assume that a word (c1, …, cn) is re-

ceived where each ci is either 0/1, or is erased. The algorithm works with

two sets of registers, one for the left nodes and one for the right nodes in

the graph. We will identify these registers with the corresponding nodes:

416 7 Applications

(1) Initialize the contents of the right-hand nodes of the graph with zero.

(2) Collect all the non-erased coordinate positions, add their value to the

current value of their right neighbors, and delete the corresponding

left node and all edges emanating from it.

(3) Repeat the following step:

(3.1) Look for a right node in the graph of degree 1, i.e., a node that

has only one edge coming out of it. If no such node is found,

then stop and report FAILURE.

(3.2) Transport the value of that node to its unique left neighbor l

thereby recovering cl.

(3.3) Add cl to the current value of all the right neighbors of l and

delete l and all the edges emanating from it. If there are no left

nodes remaining in the graph, stop and report SUCCESS.

See Fig. 7.35 for an example of a successful recovery. Obviously, the
success of the above algorithm depends on the graph and on the specific
set of erasures.

The Fundamental Inequality

The problem with Algorithm 1 is that it might report a failure if it cannot
find any node of degree 1 on the right at Step (3.1). In Luby et al. (1997) it
is proved that, under the assumption that losses occur at random locations,
it is only the structure of the graph that decides on the success or the fail-
ure of the decoding. To express the result, we need one last piece of nota-
tion. An edge in the graph is called an edge of left degree i if it is con-
nected to a left node of degree i, and it is called of right degree i if it is
connected to a right node of degree i. Let λi denote the fraction of edges of
left degree i, and let ρi denote the fraction of edges of right degree i. Con-
sider the generating functions λ(x) := i λix

i−1 and ρ(x) := k ρkx
k−1. Note

that λ(x) and ρ(x) are polynomials depending only on the graph. We call
them the edge degree distributions of the graph.

The following theorem is essentially from Luby et al. (1997). The for-
mulation given here has been taken from Luby et al. (1998).

Theorem 1. The above loss recovery algorithm recovers a δ-fraction of

erased nodes with high probability if and only if the graph has a degree

distribution given by λ(x) and ρ(x) such that

()() xx <−− 11 ρδλ (7.50)

holds true on the interval (0,δ].

7.7 Design of Efficient Erasure Codes 417

Complete
Recovery

(a) (b) (c)

(d) (e) (f)

Fig. 7.35. Recovery from erasures; the arrow at a right node indicates that that
node is used in Step (3.1).

The task at hand is now to find appropriate polynomials λ and ρ with
non-negative coefficients that give rise to a code of a given rate such that
the fundamental inequality (Eq. 7.50) is satisfied for a large value of δ.

For future reference, we record the following formula which relates the
rate of the code with the degree distributions (Luby et al. 1997). In this
formula, and in the sequel, we denote by β the quantity 1 − ℜ.

418 7 Applications

⋅=
k i

ik

ik

λβρ
.

(7.51)

7.7.3 Code Design

For the rest of the section we assume that L and R are two fixed integers
and that β is a positive real number less than one. Further, we assume that
the degree distributions λ(x) and ρ(x) satisfy λ1 = ρ1 = 0. This means that
the corresponding graph does not have nodes of degree 1 on either of its
sides. These are reasonable assumptions from a coding-theoretic point of
view: a node of degree 1 on the right forces the coordinate position of its
left neighbor to be zero; and a node of degree 1 on the left does not lead to
the perpetuation of the erasure recovery algorithm.

In the following we will describe strategies for computing degree distri-
butions

=

−=
L

i

i
i xx

2

1)(λλ and
=

−=
R

k

k
k xx

2

1)(ρρ

that give rise to a code of rate 1 − β and satisfy the fundamental inequality
(Eq. 7.50) for a large value of δ.

Removing Dependencies

The facts that λi and ρk define distributions on the edge degrees and that
they give rise to a code of rate 1 − β lead to dependencies among these pa-
rameters. First, we have

==
−=−=

R

k

k

L

i

i

3
2

3
2 1,1 ρρλλ .

(7.52)

Next, the condition in Eq. 7.51 defines a further relation among these
parameters. Solving for λL and using Eqs. 7.52 gives

2

11

2

11

2

11

2

1 1

33

−

−−−+−

=

−

==

L

ik

L

i

i

R

k

k

L

λρβ

λ .

(7.53)

The next simplification of the problem consists of discretizing the inter-
val (0,δ] into N equidistant points δj/N, j = 1, …, N. Condition 7.50 is then
transformed into

7.7 Design of Efficient Erasure Codes 419

()() .,...,1,,11 Nj
N

j
xxx jjj =⋅=<−− δρδλ

(7.54)

By choosing N moderately large and slightly decreasing the value of
δ obtained from solving the above inequality (if necessary), we can find a
δ′ that satisfies condition 7.50. For this reason, we will concentrate on the
above set of inequalities. The results we will present later will all satisfy
inequality 7.50, however.

Condition (Eq. 7.54) can be compactly written as

() ()() 011:,,, <−−−= jjjki xxxf ρδλδρλ (7.55)

for j = 1, …, N, where we have suppressed the implicit dependency of f on
β to save a notational explosion. After going through some algebra and us-
ing Eq. 7.52, the function f can be rewritten as

() () () xxf
L

i

L

L

i

iki −−++−=
−

=

−−
1

3

11,,, ααλαααλδδρλ
(7.56)

where

() ()()
=

− +−−−=
R

k

k
k xxx

3

111ρα
(7.57)

and λL has the value defined in Eq. 7.53.

The Linear Programming Approach

Suppose that α, the value of δ and the point x are fixed. Then the function
f(λi, ρk, δ; x) is a linear form in the variables λ3, …, λL 1. This leads to the
following approach for computing a good value of δ. Fix δ and the ρk, k =
3, ..., R, and set up a linear program given by the inequalities 7.55 and λ3

,…, λL 1 ≥ 0. If there exists a feasible solution, then increase the value of δ,
otherwise decrease that value. The optimal δ is that found by binary
search. This value corresponds to the optimal δ for the specifically chosen

ρ(x). This approach was suggested in Luby et al. (1997). The disadvantage
of this idea is that one has to know a good choice for ρ(x) to start with.
This problem was partly solved in Luby et al. (1998) which derived a con-
dition equivalent and similar to Eq. 7.50, but with the nesting of λ(x) and
ρ(x) reserved. The idea is to start with a fixed ρ(x) and optimize λ(x) by
linear programming as described above. Holding this λ(x) constant allows
linear programming to be applied to a similar equation, but this time with

420 7 Applications

the ρk as parameters. Using linear programming back and forth this way
will ultimately lead to a good value of δ.

Table 7.10. Degree distributions for rate 1/2 codes with the linear programming
approach

δ λ(x) and ρ(x) ∧
δ

∧
δδ /

0.4845 λ(x) = 0.25594x + 0.37910x2 + 0.127423x10 +
0.237538x11

ρ(x) = x6

0.4959 0.9770

0.4834 λ(x) = 0.25800x + 0.32950x2 + 0.01056x4 + 0.07637x7

+ 0.32557x8

ρ(x) = 0.47013x5 + 0.41733x6 + 0.11253x20

0.4958 0.9749

0.4886 λ(x) = 0.11286x + 0.06153x2 + 0.12936x3 +
0.25559x7 + 0.24226x8 + 0.02550x24 +
0.17290x25

ρ(x) = 0.17263x5 + 0.28658x6 + 0.14805x28 +
0.39274x29

0.4998 0.9775

0.4946 λ(x) = 0.038029x + 0.195063x3 + 0.140799x4 +
0.160451x11 + 0.037743x12 + 0.172622x20 +
0.206781x57 + 0.048513x58

ρ(x) = 0.180714x6 + 0.122209x7 + 0.329968x18 +
0.104520x49 + 0.043951x70 + 0.218638x175

0.4999 0.9892

0.4943 λ(x) = 0.196050x + 0.257821x2 + 0.191453x8 +
0.046831x9 + 0.063126x23 + 0.059209x24 +
0.060652x62 + 0.124858x63

ρ(x) = 0.820342x8 + 0.177571x9 + 0.002087x199

0.4992 0.9903

However, even this scheme has a major disadvantage: one has to start
with a fixed initial distribution and it is absolutely not clear which distribu-
tion leads to an optimal value of δ . Furthermore, fixing the initial distribu-
tion fixes the average degrees of the distributions involved for the course
of the entire optimization. Hence, many potentially good degree distribu-
tions are not at all visited by the procedure. For this reason, this approach
does not have good chances of producing extraordinarily good degree dis-
tributions. Nevertheless, we have included some results of this approach
for purposes of comparison with the method described in the next section,
see Table 7.10. In that table, the last two columns correspond to a theoreti-

cal upper bound δ̂ on δ given in Eq. 7.63.
The δ values obtained from the linear programming approach above are

close to their optimal values. However, as one can see from the last two
examples in that table, very good values for δ would require an increase in
the degrees of the nodes on the left- and right-hand sides of the graph. This
prevents their realization for constructing short codes. To obtain excellent

7.7 Design of Efficient Erasure Codes 421

values of δ while preserving small node degrees, a different optimization
procedure has to be applied. This will be the topic of the remainder of this
section.

Code Design by Cost Function Minimization

Cost functions like the function f where the goal to be reached is explicitly
known belong to the class of so-called constraint satisfaction problems. A
beneficial property of this problem class is that the stopping criterion for
any optimization algorithm is unambiguous. Let D := L + R 5 denote the
number of free parameters among the λi and ρk. We can define a D-
dimensional parameter vector p = (p0, p1, …, pD 1)

T with the mapping pi =
λ3+i for i = 0, …, L 4 and pk = ρk L+6 for k = L 3, …, L + R 6. The
goal is to optimally choose the elements of this parameter vector in order
to satisfy condition 7.55 with a large value of δ.

This problem can be phrased in terms of minimizing a cost function. We
chose two approaches to this problem. These methods differed in the
choice of the cost function.

Approach A. In this approach we consider for a fixed δ the largest value
among f(λi, ρk, δ; xj). The aim of the optimization is to find a setting of the
parameters that make this value non-positive.

Approach B. In this approach the cost function is given by the largest
value of δ such that f(λi, ρk, δ; xj) < 0 for j = 1, …, N. The aim of the opti-
mization is to find a setting of the parameters that made the value of δ as
large as possible. We solved these problems using differential evolution, a
robust optimizer which is described in the next section.

7.7.4 Differential Evolution

The code design problem as described above is a nonlinear constraint satis-
faction problem with continuous space parameters, a problem class where
differential evolution (DE) (Storn and Price 1997) has proven to be very
effective (Storn 1996a, 1996b). The main properties of DE are repeated
here for convenience.

a) Initialization. DE is an evolution strategy that uses NP D-dimensional
parameter vectors

1,,2,1,0;, −= NPiP Gi (7.58)

422 7 Applications

in a generation G, with NP being constant over the entire design process.
Hence DE is similar to a (µ, λ) evolution strategy (ES) (Bäck et al. 1997)
where µ = λ = NP. We will see later, however, that there are several im-
portant differences from a standard ES approach. At the start of the proce-
dure, i.e., generation G = 0, the population of vectors is usually chosen
randomly. As a rule, we will assume a uniform probability distribution for
all random decisions unless otherwise stated.

b) Mutation. The classical variant of DE (Storn and Price 1997) uses the
following vector generation scheme: for the following generation G + 1,
new vectors vi,G+1 are generated according to the following mutation
scheme:

.1,,2,1,0

for

)(,,,1, 21

−=

−⋅+=+

NPi

F GrGrGiGi pppv (7.59)

The integers r1 and r
2
 are chosen randomly over [0,NP 1] and should

be mutually different as well as different from the running index i. F is a
real constant factor which controls the amplification of the differential
variation)(,, 21 GrGr pp − and is usually taken from the range [0.1,1].

For the problem described here, however, it has been found that another
variant of DE yielded better results with less computational expense. This
variant follows the mutation scheme

).(5.0 ,,,,,1, 4321 GrGrGrGrGbestGi pppppv −+−⋅+=+
(7.60)

The vector Gbest,p corresponds to the vector which has the lowest cost

function in generation G. The usage of two vector differentials instead of
one shifts the probability distribution of the perturbation used to mutate

Gbest,p more into the Gaussian. Therefore the variance of the perturbation

is increased, which helps to prevent the algorithm from getting stuck in a
local minimum. A notable difference of DE to known ESs, however, is the
fact that mutation is not done via some separately defined probability den-
sity function (PDF). Instead the mutation is solely derived from positional
information of the current population. This scheme provides for automatic
self-adaptation and eliminates the need to adapt standard deviations of a
PDF.

c) Recombination. In order to increase the diversity of the new parameter
vectors, discrete recombination is introduced, a common ingredient in ESs.

7.7 Design of Efficient Erasure Codes 423

There exist many variants of recombination mechanisms (Bäck et al.
1997). The one used here is to form the vector

T
1,)1(1,11,01,),...,,(+−+++ = GiDGiGiGi uuuu (7.61)

with

()

.1,...,1,0

otherwise

)(or)(

,

1,

1,

−=

=≤
=

+
+

Dj

p

irnbrjCRjrandbifv
u

Gji

Gji

Gji

(7.62)

Here, randb(j) ∈ [0,1] is the jth evaluation of a uniform random number
generator. CR is the crossover constant ∈ [0,1], which was always chosen
to be equal to 1 in our examples. The value rnbr(i) is a randomly chosen
index in {0, 1, ..., D 1} which ensures that 1, +Giu gets at least one pa-

rameter from 1, +Giv .

d) Selection. The selection scheme in DE is deterministic but still different
from the methods that are generally employed in standard ESs. DE’s selec-
tion scheme is based on local competition only, i.e., a child u

i,G+1
 will

compete against one population member p
i,G

 and the survivor will enter the

new population. Explicitly, if u
i,G+1

 yields a smaller cost function value

than p
i,G

, then p
i,G+1

 will be set to u
i,G+1

. Otherwise the old value p
i,G

 is re-

tained. In other words, DE can be regarded as a (µ, λ) ES with µ = NP and
λ = NP, local competition, and a differential-based mutation scheme.

e) Stopping criterion. The stopping criterion for DE depends on the type
of problem. If, as in our case, the goal is to find just one parameter set
which meets the constraint of the cost function, the design procedure can
be stopped as soon as one member of the vector population meets the re-
quirements.

7.7.5 Results

Results for Approach A

Our approach for finding good solutions to condition 7.54 consisted of first
starting with values δ, β, L and R where results found with linear pro-
gramming methods are available. This way we could test whether DE was
capable of reproducing these results. After having achieved this we gradu-

424 7 Applications

ally increased δ and tested whether new solutions were still possible. Once
this seemed highly improbable we slightly increased L and R. Since an in-
crease in L and R means an increase in the number of parameters D, we
also increased NP. As described above, the DE variant defined by Eqs.
7.60–7.62 turned out to be the most effective one. In all our examples, CR

was always set to 1. That way, the only control variable used in DE was
the population size NP which was varied in the range 10D, …, 20D.

In all our calculations we worked with the value β = 0.5, i.e., with codes
of rate 0.5. This resulted in a fair comparison of our results and those
available in the literature. As stated before, we wanted to find solutions to
Eq. 7.54 with δ as large as possible. At the same time it was desired that L
and R be as small as possible, so as to facilitate construction of short
codes. This is due to the results of Luby et al. (1998) which suggest that
the performance of a short code is better, the smaller the degrees involved
in the graph. Finding good solutions required some experimentation but
the crucial point here is that it was possible to find good solutions at all.
Evaluating the quality of the solutions can be done either by comparing the
solution to ones existing in the literature, or by comparing the optimal

value of δ with a theoretical upper bound δ̂ derived in Shokrollahi (1999).

For the convenience of the reader we briefly recall this upper bound: δ̂ is
the unique real number in the interval (0,1) such that

.

)(

1
,1,

1

0

=−=≤
∧∧∧

dxxρ
γδβδδδ

γ (7.63)

Our best results were obtained after 1,897,145 cost function evaluations
with a population size of 700, and the constants R = L = (D + 5)/2 = 20,
δ = 0.494. The initial values for the parameters were randomly drawn from
the interval [0.1,0.1]. The cost function used in approach A can best be
described by the C-style pseudo-code shown in Fig. 7.36.

It describes a minimax formulation of the cost function with simple
penalty terms. The penalty terms help to ensure that the parameters stay
positive. Although this cost function is very straightforward, very good re-
sults, i.e., large values of δ, could be achieved. For instance, we found de-
gree distributions λ(x) and ρ(x) having degrees less than 20 on both sides
with a maximal δ value of 0.494. All the good degree distributions we
found had the property of having negligible λi and ρk for most values of i,
k. Therefore, we experimented in approach B with degree distributions for
which certain node degrees were forced to zero; this considerably reduced

7.7 Design of Efficient Erasure Codes 425

the dimension of the problem and the running time of the algorithm. These
results and other strategies are described in the next subsection.

cost = 0;
for (i=2; i <= L; i++)
{
 if (λ

i
 < 0) cost:= cost + 100 - 10* λ

i

// penalty for negativity
}
for (i=2; i<=R; i++)
{
 if (ρ

i
 < 0) cost:= cost + 100 - 10* ρ

i

// penalty for negativity
}
if (cost == 0) cost =max(f(λ

i
 , ρ

k
 , δ , x

j
),j=1,…,N);

Fig. 7.36. Cost function used in approach A

Results for Approach B

This approach differs from the previous one in the choice of the objective
function as described in Sect. 7.7.3. Also, we incorporated some modifica-
tions to the phase of the DE which computes the initial population: note
that the conditions relating the coefficients of λ(x) and ρ(x) force the free
coefficients of these polynomials to lie in a finite polytope. Choosing the
free parameters randomly does not necessarily result in choosing a random
point from the polytope. In order to achieve the latter task, we imple-
mented a different strategy, known as the “Queen’s move”. We started
with some point inside the polytope constructed deterministically, and re-
peated the following procedure between 50 and 100 times: we randomly
selected a line through the point, and randomly selected a point on that line
inside the polytope. This gave us one population member. For the next
members, we repeated the whole procedure again, until all the population
members were generated.

Another modification with respect to approach A was that we did not let
the node degrees on the left and the right take on all possible node degrees
below L and R. As stated before, a closer inspection of the results of ap-
proach A reveals that many of the node distributions are close to zero or at
least very small. In fact only the larger values for the node distributions are
of practical interest for the construction of codes. As a further refinement
of approach A, we experimented in approach B with the idea of forcing to
zero those λi and ρk which have small values and not to treat them as free
parameters subject to optimization. This idea yielded further improvements
in the codes being constructible as well as in running times of the DE op-

426 7 Applications

timization, since it resulted in a major reduction in the dimension of the
problem, and hence a decrease in the population size. Typically, we chose
the node degrees in the following way: on the left-hand side, we chose the
degrees 2, 3, a highest degree (between 20 and 30) and one degree in be-
tween. On the right-hand side, we chose two consecutive degrees, either 7
and 8, or 8 and 9. This sort of choice was suggested by the results we ob-
tained from approach A. We find it very remarkable that the δ values ob-
tained here are extremely close to their above-mentioned upper bound (Eq.
7.63). Some results and comparisons are given in Table 7.11. The columns
NP and NFE in that table correspond to the population size and the number
of function evaluations, respectively.

Table 7.11. Some good degree distributions for codes of rate 1/2 obtained with
DE

δ λ(x) and ρ(x) NP NFE D
∧
δ

∧
δδ /

0.4939 λ(x) = 0.29730x + 0.17495x2 +
0.24419x5 + 0.28353x19

ρ(x) = 0.33181x6 + 0.66818x7

50 640 3 0.4974 0.9929

0.4948 λ(x) = 0.27692x + 0.20256x2 +
0.26207x6 + 0.25843x24

ρ(x) = 0.89468x7 + 0.10531x6

100 1400 3 0.4979 0.9939

0.4955 λ(x) = 0.26328x + 0.18020x2 +
0.27000x6 + 0.28649x29

ρ(x) = 0.63407x7 + 0.36593x8

100 1400 3 0.4985 0.9941

Acknowledgments

We would like to thank Peter Winkler and Graham Brightwell for suggest-
ing to us the Queen’s move and other strategies to uniformly sample points
from a polytope.

References

Bäck T, Hammel U, Schwefel H-P (1997) Evolutionary computation: comments
on the history and current state. IEEE Transactions on Evolutionary Computa-
tion, April:3–17

Gallager RG (1963) Low density parity-check codes. MIT Press, Cambridge, MA
Luby M, Mitzenmacher M, Shokrollahi MA, Spielman D, Stemann V (1997)

Practical loss-resilient codes. In: Proceedings of the 29th annual ACM sympo-
sium on theory of computing, pp 150–159

7.7 Design of Efficient Erasure Codes 427

Luby M, Mitzenmacher M, Shokrollahi MA, Spielman D (1998) Analysis of low
density codes and improved designs using irregular graphs. In: Proceedings of
the 30th annual ACM symposium on theory of computing, pp 249–258

Shokrollahi MA (1999) New sequences of linear time erasure codes approaching
the channel capacity. In: Proceedings of AAECC’13, Lecture Notes in Com-
puter Science 1719, pp 65-76. Springer-Verlag, New York

Storn R (1996a) Differential evolution design of an IIR-filter with requirements of
magnitude and group delay. In: Proceedings of the IEEE international confer-
ence on evolutionary computation, ICEC’96, pp 268–273

Storn R (1996b) On the usage of differential evolution for function optimization.
In: NAFIPS’96, pp 519–523

Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization
11:341–359

7.8 FIWIZ – A Versatile Program for the Design of Digital
Filters Using Differential Evolution

Rainer Storn

Abstract. FIWIZ is a constraint-based design program for recursive (IIR)
as well as transversal (FIR) digital filters which is geared toward features
which are difficult, if at all, to find in other filter design programs. The
main design tasks are elaborated, and the approach via differential evolu-
tion (DE) with emphasis on objective function design and achieving com-
putational efficiency is explained. Some design examples are presented to
show results that have been achieved with the current implementation of
FIWIZ.

7.8.1 Introduction

Digital filters are ubiquitous in signal processing circuitry and in general
have the task to shape signals in a certain desired way or remove unwanted
components. These filters come in two flavors: there are recursive filters
that have an infinite impulse response when excited with a single impulse
(IIR filters) and purely transversal filters that have a finite impulse re-
sponse (FIR filters). A more detailed introduction into digital filtering can
be found, for example, in Rabiner and Gold (1975), Antoniou (1993), Mi-
tra and Kaiser (1993) and Corne et al. (1999). In this section the back-
ground and application of digital filters will be of less concern; the focus
will be more on the mathematical intricacies of filter design and the ensu-
ing optimization task. To lay the foundation for this endeavor the mathe-
matical structure of digital filters will be described in the following.

The transfer function, H(z), of an IIR filter in its most general form is

()

()∏

∏
−

=

−

=

=

−

=

−

−

−
=

⋅+

⋅
==

1

0
,

1

0
,0

0

1

0

1
)(

)(
)(

M

m

mp

N

n

n

M

m

m
m

N

n

n
n

zz

zz

A

zb

za

zD

zU
zH

(7.64)

with

430 7 Applications

1),2sin()2cos(2 −=Ω⋅+Ω== Ω ιπιππιez
(7.65)

and

sf

f=Ω
(7.66)

with Ω stemming from the interval [0,0.5]. The variables f and fs denote
the natural frequency and the sampling frequency respectively (Rabiner
and Gold 1975). The degree of H(z) is defined as max(N,M).

The parameters an and bn are called the coefficients of the filter while
z0,n and zp,m denote the zeros and poles of the filter respectively. In the ma-
jority of cases the coefficients an and bn are real valued, for which the poles
and zeros show up in complex conjugate pairs. This property is always as-
sumed in FIWIZ. For stability reasons

1,...,1,0;1, −=< Mmz mp

(7.67)

must always hold. Note that FIR filters are a special case of Eq. 7.64 where
M = 0, i.e., the denominator is 1. Since there are only poles at z = 0 in FIR
filters, these filters are always stable.

In digital filter design the magnitude A(Ω) which is computed via

() () ()() ()()22222 ImRe Ω⋅Ω⋅Ω⋅ +==Ω πιπιπι eHeHeHA
(7.68)

is usually subject to constraints. A simple example for a low-pass filter is
provided in Fig. 7.37 which shows the set of constraints, the tolerance
scheme, which has to be met by A(Ω) in the logarithmic domain. It can be
seen that for some interval in Ω the values of A(Ω) are fairly high. This re-
gion is commonly called the pass-band. In some other region the values of
A(Ω) are low with respect to the pass-band which is why this region is
called the stop-band. In between the pass-band and the stop-band is the
transition-band. Since the pass-band in Fig. 7.37 is located in the lower re-
gion of Ω, A(Ω) is said to have a low-pass characteristic.

Other quantities that are derived from H(z) and which sometimes are
subject to constraints are the phase

() ()()
()() ()()

)()(

22

2

Ω−Ω=
−=

=Ω
Ω⋅Ω⋅

Ω⋅

du

eDarceUarc

eHarc

ϕϕ

ϕ
πιπι

πι
(7.69)

where

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters 431

<+

≥
=

0)Re(if
)Re(

)Im(
arctan

0)Re(if
)Re(

)Im(
arctan

)(

c
c

c

c
c

c

carc

π

(7.70)

or the group delay

() () () ()
Ω

Ω−
Ω

Ω=
Ω
Ω−=Ω

d

d

d

d

d

d
G ud ϕϕϕ

.
(7.71)

Ω

20∗log10(A(Ω))

stop-band
pass-
band

transition-band

Fig. 7.37. Example of a tolerance scheme for a low-pass digital filter

Most digital filter design tasks can be described as constraint satisfac-
tion problems where one or more function graphs have to fit into a toler-
ance scheme. Also FIWIZ regards all design tasks exclusively as constraint
satisfaction problems.

There is a vast body of literature (e.g., Rabiner and Gold 1975; Cappel-
lini et al. 1978; Antoniou 1993; Mitra and Kaiser 1993; Rorabaugh 1993)
and many freely or commercially available programs (QED-2000TM,
ScopeFIRTM, FilterExpressTM, SPTool for MATLABTM, etc.) dealing with
standard filter design problems like low-pass, high-pass, bandstop and
bandpass filters. While FIWIZ can also design these filter types, it was set

432 7 Applications

up to tackle unconventional problems that are difficult, if at all, to find in
available software.

7.8.2 Unconventional Design Tasks

Conventional filter design mostly deals with tolerance schemes that are
piecewise constant and exhibit only one pass-band (Mitra and Kaiser
1993). There are, however, designs which do not fit into this simple
scheme as will be shown by example. Among the more common but still
unconventional design problems are:

• Arbitrary magnitude constraints. These include multi-band filters
with multiple pass-bands, differentiators which exhibit sawtooth-like
shapes of A(Ω) for linear magnitude scaling, Hilbert filters which are
supposed to apply a phase shift of 90° to all frequencies, sinc compen-
sated filters which compensate for the magnitude roll-off of digital-to-
analog converters, and others. Pictures of two examples of unconven-
tional magnitude requirements are provided in Fig. 7.38.

a) b)

Fig. 7.38. Differentiator a and multi-band filter b

• Additional group delay constraints. Applications are mainly classical
low-pass, high-pass, bandpass and bandstop filters which should exhibit
approximately linear phase in the pass-band but not necessarily in the
stop-band. The filter degree can often be reduced considerably com-
pared to exactly linear phase FIR filters. An example for an IIR filter
with constrained group delay is shown in Fig. 7.39.

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters 433

Fig. 7.39. Example for constraints in the magnitude as well as the group delay

• Minimum phase filters. Some applications, e.g., in speech processing,
require minimum delay, which can be achieved by using minimum
phase filters. Minimum phase filters (Hess 1988) have the property

1,0 ≤nz and can generally be constructed by reflecting all zeros of a

given filter which are outside the unit circle |z| = 1 to its inside. In order
to do this, however, the zeros must be known explicitly.

• Filter design with quantized coefficients. In real-world applications
the coefficients an and bn are represented with finite precision. In FIWIZ
the quantization can be incorporated into the design as opposed to quan-
tizing the coefficients after the filter has been designed with high-
precision coefficients (Table 7.12). The filter structures currently sup-
ported are the direct forms 1 and 2, as well as second-order sections
(Mitra and Kaiser 1993).

• Definition of a pre-filter with constant coefficients. Defining a pre-
filter has many applications, like presetting specific zeros to suppress a
constant voltage bias or the 50/60Hz power line frequency, accommo-
dating filters which are already in a given design and cannot be re-
moved, or setting a frequency response for equalization. A well-known
example of the last is sinc compensation needed for digital-to-analog
conversion. An equalizer example is shown in Fig. 7.40 and Fig. 7.41.

• All-pass filters. For existing IIR filters sometimes the phase must be
linearized using all-pass filters (Hess 1988; Mitra and Kaiser 1993). All-
pass filters have a magnitude response A(Ω) = const., which is guaran-
teed by having N = M and z0,n = 1/zp,n. Figures 7.42 and Fig. 7.43 show
an example for a pre-filter already exhibiting the desired magnitude re-

434 7 Applications

sponse but not yet the desired group delay response. The group delay
tolerance scheme is allowed to float here.

21

1

prefi
z4.0z75.01

z1
)z(H −−

−

++
+=

Fig. 7.40. Magnitude response which has to be equalized

Fig. 7.41. Characteristics for the filter which equalizes the filter specified in Fig.
7.40 with an error of ±0.2 dB.

Table 7.12. Coefficients of an IIR filter which meets prescribed magnitude con-
straints but fails on the group delay constraints

i ai bi

0 0.19881558418273926 1.0
1 0.6713742017745972 0.5888696908950806
2 0.956078052520752 1.0049885511398315
3 0.7260297536849976 0.14867675304412842
4 0.29759085178375244 0.18157732486724854
5 0.0613178014755249 0.014554023742675781

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters 435

Fig. 7.42. Specification of the IIR filter the group delay of which has to be lin-
earized

a) b)

Fig. 7.43. Pole–zero plot of the all-pass filter a and resulting group delay for the
entire filter b. The poles are indicated by plus signs while the zeros are indicated
by small circles.

7.8.3 Approach

Requirements

Filter design generally requires quite a bit of experimentation since the
specifications themselves, i.e., the tolerance schemes, are often not carved
in stone but instead need to be determined in order to optimize various as-

436 7 Applications

pects of overall system performance. As several filter designs might have
to be tried, a filter design program that is useful should exhibit reasonable
design times. Hence convergence speed was of primary concern when de-
veloping FIWIZ. Of course, this design for speed should not compromise
convergence safety. Otherwise the user will not know whether the design
is infeasible or whether FIWIZ just happens to mis-converge. In case a so-
lution does not exist, at least a best match should result. Last but not least,
the computer code should be flexible and extensible in order to accommo-
date additional design tasks that are currently not built in. As DE is a very
general optimizer it is well suited to serve as a platform for a wide variety
of design tasks.

Algorithmic Details

Sampling the Frequency Axis. An important choice within FIWIZ con-
cerns the way the frequency axis Ω is sampled. It has been observed that
the optimization task is most critical when it comes to satisfying the toler-
ance schemes at the boundaries between the bands. Since the edges obvi-
ously require stronger weighting than the constraints within a band, raised
cosine sampling as shown in Fig. 7.44 was chosen.

()()xcos15.0y ⋅π+⋅=

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

. . .

equidistant sampling of a segment with unit length

ra
is

ed
 c

os
in

e
sa

m
pl

in
g

of
 a

 s
eg

m
en

t w
ith

 u
ni

t l
en

gt
h

y

x

Fig. 7.44. Illustration of raised cosine sampling

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters 437

Raised cosine sampling strikes a good balance between emphasis of the
edges and prevention of “sampling holes” within the band. FIWIZ cur-
rently provides the choice of coarse (10 samples), medium (28 samples)
and fine (64 samples) sampling granularity of a segment on the frequency
axis.

If the filter design of FIWIZ converges, i.e., the cost function goes down
to zero, but the resulting filter still violates the constraints set forth in the
magnitude and/or group delay screens, the sampling density in the design
control screen has been chosen too low. The user can pursue two basic
strategies. In the first strategy the sampling density is increased, e.g., from
coarse to medium or fine. In the second strategy the constraints are divided
into more segments. Figure 7.45 provides an example where a constant
magnitude constraint of x dB between the normalized frequencies Ω1 and
Ω2 is changed into a sequence of two constraints of x dB between the fre-
quencies Ω1 and Ω3 as well as Ω3 and Ω2 respectively. As FIWIZ applies
its sampling density to each segment individually, this procedure also in-
creases the overall sampling density.

This second strategy has also proven to be very valuable.

Ω1 Ω2

Ω1 Ω2Ω3

increase
number of
segments

x dB

x dB

Fig. 7.45. Example for increasing the number of constraint segments

Choice of Parameters. When looking at Eq. 7.64 it is evident that the po-
tential parameters that can be varied in the optimization are either the coef-
ficients an and bn, or the zeros and poles z0,n and zp,m. Using the coefficients
appears to be attractive at first because the coefficients are the values fi-
nally wanted, and if the coefficients are quantized the quantization can be
readily applied. A great disadvantage, however, is that the stability crite-
rion of Eq. 7.67 is computationally intensive to check (Antoniou 1993).
Using the zeros and poles as parameters makes the stability check almost
trivial. Zeros and poles have another advantage: their positioning with re-

438 7 Applications

spect to the unit circle |z| = 1 is directly related to pass-bands and stop-
bands. Zeros gather around stop-bands and poles gather around pass-
bands, which is why these parameters exhibit a direct relationship to the
magnitude constraints being set forth. Coefficient quantization can still be
applied easily when it comes to the computation of the objective function
which is done via H(z). The coefficients an and bn are easily calculated
from z0,n and zp,m while the reverse is not true. For FIWIZ it was chosen to
use zero and pole radii |z0,n| and |zp,m|, the zero and pole angles arc(z0,n) and
arc(zp,m), as well as the gain A0 (see Eq. 7.64) as parameters.

The Cost Function. The cost function is made up of two components, the
constraint-based part and the penalty part. The constraint-based part is
simply made up of a magnitude and a group delay component according to

() () ()xxx gdm fff += (7.72)

where the magnitude component is

() () ()
==

∆⋅∆+∆⋅∆=
lowerupper j

j

lowerjlowerj

i

i

upperiupperim ssf
max,max,

1

2
,,

1

2
,,x

(7.73)

with

()() ()()

()() ()()Ω⋅−Ω⋅=∆

Ω⋅−Ω⋅=∆

0,log20log20max

0,log20log20max

,,10,10,

,10,,10,

lowerjlowermlowerjlowerj

upperiupperiuppermupperi

CA

AC
(7.74)

and

()
≥

=
otherwise.0

0for1 δ
δs

(7.75)

The equations above simply state that the magnitude A(Ω) is sampled in
the frequency domain, and wherever a sample violates the tolerance
scheme the difference from the tolerance scheme is squared and added to
an error term. The functions Cm,upper() and Cm,lower() denote the upper and
lower magnitude constraints of the tolerance scheme respectively. ∆i,upper

and ∆j,lower are computed in the logarithmic domain so that pass-band and
stop-band have comparable weight. The group delay component fgd(x) is
computed using the same principles as fm(x). The deviations to the group

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters 439

delay tolerance scheme, however, are not computed in the logarithmic do-
main but are provided in normalized time

s
s

ft
t

t
T ⋅== .

(7.76)

Also in contrast to magnitude constraints the group delay constraints
will be floating, i.e., an arbitrary but constant group delay T0 might be
added to the given constraints by the filter design procedure as indicated in
Fig. 7.46. Floating is simply done by first computing the maximum group
delay which may occur at frequency Ωgd_max. Then the tolerance scheme is
shifted such that the upper constraint curve touches the group delay graph
at Ωgd_max.

Group Delay

Ω

Τ0

Upper constraints

Lower constraints

shifted upper constraints

shifted lower constraints

Fig. 7.46. The filter design procedure has the freedom to shift the group delay tol-
erance scheme along the ordinate.

Coefficient quantization is incorporated into the cost function simply by
quantizing A(Ω) and G(Ω) appropriately. One choice is to quantize the pa-
rameters an and bn in Eq. 7.64, which will lead to a “direct form” represen-
tation of the filter (Mitra and Kaiser 1993). Another choice is to build the
filter from a concatenation of first- and second-order filter sections. Each
second-order section consists of a complex conjugate pole–zero pair, and
each first-order section must have its pole and zero on the real axis. The
coefficients of these sections can also be quantized for the computation of
A(Ω) and G(Ω).

440 7 Applications

Constraints. FIWIZ tries to prevent unstable filter solutions, i.e., the poles
must always lie within the unit circle of the z domain. In earlier versions
this was obtained by applying a penalty for each pole that had a radius
greater than one. The penalty was applied such that the value of the cost
function f(x) was amplified for each pole radius that exceeded the unit cir-
cle. This amplification is the stronger the more a pole radius exceeds the
unit circle and the more the pole radii are violating the stability constraint.
The final cost function fM 1(x) was recursively computed via

() () () ()() pmmpmmm zfzsff ⋅+⋅⋅−+=+ 400411 xxx (7.77)

where f0(x)= f(x). It can be seen that each time a pole radius is greater than
one the step function s(|zpm| 1) becomes unity and hence adds some pen-
alty that is at least four times the preceding cost value + 400. In practice
this escalation of cost has proven to be quite effective.

Future versions of FIWIZ will dispense with this strategy and use
bounce-back (see Chap. 4 in this book). The advantage of not having to
evaluate unstable and therefore invalid pole–zero configurations should
help to increase convergence speed. Bounce-back also should prove very
effective when the poles need to be close to the unit circle. Once the opti-
mization is almost converged, further parameter vectors can stay in the vi-
cinity of the converged solution as opposed to much more randomized vec-
tors that can emerge when the random reinitialization strategy for bounds
constraints (see Chap. 4 in this book) is used.

DE Strategy. As mentioned before, a filter design program needs to be
reasonably fast to be useful in daily engineering work. To this end the goal
was to use a fast-converging DE variant which works with a small number
of population members. Eventually the following mutation method proved
to be the best performer for the particular class of problems occurring in
digital filter design:

for (i=0; i<dim; i++)
{

xtrial[i] = pop_old_best[i] +
 ((0.001*rnd()+0.85)-Np*0.0005) *
 (pop_old[r1][i] - pop_old[r2][i]);
}

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters 441

One can see that it is basically the strategy DE/best/1 with jitter to pre-
vent stagnation. Also the weighting factor of the vector difference becomes
smaller the larger NP gets. There is no special crossover treatment, i.e., CR

= 1 all the time, and the selection method is DE’s standard selection where
the trial vector has to compete against the target vector. Two populations
are used and each member of the current population has to serve once as
the target vector. The winner of target vector and trial vector goes into the
new population. In order to speed up convergence the parameters are not
quantized until the cost function belonging to the best-so-far vector is be-
low or equal to 1.E-6. If this cost value is reached then the quantization is
applied (if quantization has been chosen) which can temporarily increase
the cost function value again. For this refinement phase a number of popu-
lation members may be selected. The increase in population size is simply
done by starting from the current population and generating the additional
vectors by applying the above DE strategy. Once the additional vectors
have been produced, DE proceeds as usual.

Computational Issues. FIWIZ contains several numerical evaluations that
need to be computed not only with sufficient precision but also with the
best possible efficiency in order to facilitate a speedy convergence.

a) Coefficients an and bm. Since FIWIZ employs zeros and poles as pa-
rameters for DE but coefficient quantization must be possible to be in-
cluded, the coefficients an and bm have to be computed first before magni-
tude A(Ω) and group delay G(Ω) can be evaluated. Since only filters with
real-valued coefficients (as opposed to complex-valued) are computed, ze-
ros and poles must appear in complex conjugate pairs or otherwise be on
the real axis. For a complex conjugate zero pair the relationship

() () ()() 2
,0,0,0

2*
,0,0 cos2 nnnnn zzarczzzzzzz +⋅⋅−=−⋅− (7.78)

is used, where the superscripted asterisk denotes complex conjugation.
This procedure already yields the real-valued subcoefficients

()() 2
,0,0,0 ,cos2,1 nnn zzarcz ⋅

which either can be used directly for second-order section realization of
the filter, or are further used in polynomial multiplications to obtain the di-
rect form coefficients an. The treatment of the poles happens in just the
same way.

b) Magnitude. Magnitude computation at the discrete points Ωk as defined
by the sampling described in Sect. 7.8.1 happens via Eq. 7.64 according to

442 7 Applications

() ()

() ()
.

2sin2cos

2sin2cos

1

1

)(

21

0

21

0

21

0

21

0

1

2

0

2

1

0

2

Ω⋅+Ω⋅

Ω⋅+Ω⋅
=

⋅+

⋅
=

⋅+

⋅
=Ω

−

=

−

=

−

=

−

=

=

Ω−

=

Ω−

==

−

=

−

Ω

M

m
km

M

m
km

N

n
kn

N

n
kn

M

m

m
m

N

n

n
n

ez

M

m

m
m

N

n

n
n

k

mbmb

nana

eb

ea

zb

za

A

k

k

k

ππ

ππ

πι

πι

πι

(7.79)

The evaluation of the trigonometric sums is obviously computationally
expensive so it must be made as efficient as possible. An attractive method
seemed to be Horner’s method (Hildebrand 1987) which computes a poly-
nomial

−

=
⋅=

1

0

)(
J

j

j
j zpzp

 via the recurrence formula

.)(and0;0,...,2,1; 01 uzpuJJkpuzu Jkkk ==−−=+⋅= +
(7.80)

If

() ()
kk

k
ez Ω⋅+Ω== Ω πιππι

2sin2cos
2

and the magnitude operation is done at the end of the complex-valued
polynomial computation then the costly trigonometric evaluations are kept
at a minimum. Unfortunately the numerical properties are not satisfactory
due to error propagation, especially when N and M become large, which is
why the trigonometric sums of Eq. 7.79 have to be computed directly. The
direct way of computing A(Ωk) corresponds to an evaluation method called
the discrete Fourier transform (DFT) (Mitra and Kaiser 1993).

For plotting A(Ω) the sampling points are not tied to the sampling grid
as defined in Sect. 7.8.1 but can be chosen to be at equidistant points. This
fact is utilized to be able to employ a fast version of the DFT computation

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters 443

called the radix-2 fast Fourier transform (FFT) (Mitra and Kaiser 1993).
To this end the series of polynomial coefficients must be zero padded ac-
cording to

.2/,...,2,1,0;0;0;1

;)(

0

1

0

/2

1

0

/2

1

0

2

1

0

2

Kkbab

eb

ea

eb

ea

H

Mm
m

Nn
n

K

m

Kkm
m

K

n

Kkn
n

K

m

m
m

K

n

n
n

k

k

k

====

⋅

⋅
=

⋅

⋅
=Ω

>>

−

=

⋅−

−

=

⋅−

−

=

Ω−

−

=

Ω−

πι

πι

πι

πι (7.81)

The FFT can be applied separately to the numerator and denominator of
H(Ωk) yielding K 1 complex points for both. K is chosen to be a power of
2. Complex division of the numerator and denominator values correspond-
ing to the same frequency yields the complex result H(Ωk), the magnitude
of which can be computed by

() ()() ()() .ImRe 22
kkk HHA Ω+Ω=Ω

c) Group Delay. The group delay computation starts from Eq. 7.69 through
Eq. 7.71 and uses the shorthand notation

()() ()()Ω⋅Ω⋅ == πιπι 22 Re;Im eUReUI uu

(7.82)

to yield

()

()

() ()
.

1

1

1

1

22

22

2

uu

u
u

u
u

u

u
u

u
u

u

u

u

u

u

u

u

IR

I
d

R
dR

d

I
d

R

I
d

R
dR

d

I
d

R

I

d

R

I
d

R

Id

d

+

⋅
Ω

−⋅
Ω

=

⋅
Ω

−⋅
Ω

⋅

+

=

Ω
⋅

+

=
Ω

Ωϕ
(7.83)

By evaluating Eq. 7.83 explicitly it follows that

444 7 Applications

() () () () ()

() ()

() () () ()

() ()
21

0

21

0

1

0

1

0

1

0

1

0

21

0

21

0

1

0

1

0

1

0

1

0

2sin2cos

2sin2sin22cos2cos2

2sin2cos

2sin2cos2cos2sin

Ω⋅+Ω⋅

Ω⋅⋅Ω⋅⋅+Ω⋅⋅Ω⋅⋅
=

Ω⋅+Ω⋅

Ω⋅⋅Ω⋅
Ω

−Ω⋅⋅Ω⋅
Ω=

Ω
Ω

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

−

=

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

N

n
n

u

nana

nannananna

nana

nana
d

d
nana

d

d

d

d

ππ

ππππππ

ππ

ππππ
ϕ

(7.84)

and naturally an equivalent formula for the derivative of ()Ωdϕ can be
written. A close look at Eq. 7.84 reveals that for the evaluation of the de-
nominator, results from the magnitude computation in Eq. 7.79 might be
reused. Yet this can only be done if the sampling points of the frequency
grid are the same in the magnitude and group delay domain.

Table 7.13. Filter design examples run on a Pentium III 650 MHz PC with the
Java interpreter from JDK 1.1.8. Bounds constraints were treated with the penalty-
based approach.

Filter No. of
zeros

No. of
poles

No. of
para-
meters

NP1 NP2 No. of
function
evalua-
tions

Running
time

Low-pass
(Fig. 7.37)

4 4 9 30
(medium)

100
(12 bit)

5760 10 s

Differentiator
(Fig. 7.38)

3 4 8 30
(coarse)

60
(16 bit)

4800 28 s

Multi-band filter
(Fig. 7.38)

12 12 25 100
(coarse)

100
(12 bit)

64,100 7 min
30 s

Graphics codec
(Fig. 7.39)

18 8 27 30
(fine)

60
(24 bit)

197,1001) 27 min

Graphics codec
(Fig. 7.39 but
linear-phase FIR)

60 0 61 30
(fine)

60
(32 bit)

333,900 112 min
20 s

Equalizer
(Figs. 7.40 and
7.41)

14 6 21 30
(fine)

– 1830 5 s

All-pass filter
(Figs. 7.42 and
7.43)

12 12 25 50
(medium)

– 18,0501) 2 min
11 s

1) Took several runs to converge.

7.8.4 Examples

In Table 7.13 several examples are provided which give an impression of
the running times of typical filter design tasks undertaken with FIWIZ
which has been implemented in the Java® (Chan and Lee 1997; Coad and
Mayfield 1997) language.

7.8 FIWIZ – A Versatile Program for the Design of Digital Filters 445

7.8.5 Conclusion

FIWIZ has proven to be a versatile tool for the design of digital filters, es-
pecially if unconventional designs are encountered. The usage of DE al-
lows FIWIZ to be very flexible so that a wide variety of design tasks can
be tackled. If a filter design is not feasible at least a best approximation in
the least squares sense will be provided. The toughest problems so far pose
filters that have restrictions in both the magnitude and the group delay.
These types of problems will be the topic of future research in order to in-
crease convergence safety.

References

Antoniou A (1993) Digital filters - analysis, design, and applications. McGraw-
Hill, New York

Cappellini V, Constantinides AG, Emiliani P (1978) Digital filters and their appli-
cations. Academic Press, New York

Chan P, Lee R (1997) The Java class libraries. Addison-Wesley, Reading, MA
Coad P, Mayfield M (1997) Java design - building better apps & applets. Yourdon

Press, Englewood Cliffs, NJ
Corne D, Dorigo M, Glover F (1999) New ideas in optimization. McGraw-Hill,

New York
Hess W (1988) Digitale Filter. Teubner, Stuttgart
Hildebrand FB (1987) Introduction to numerical analysis. Dover, New York
Mitra SJ, Kaiser JF (1993) Handbook for digital signal processing. Wiley, New

York
Rabiner LR, Gold B (1975) Theory and application of digital signal processing.

Prentice Hall, Englewood Cliffs, NJ
Rorabaugh CB (1993) Digital filter designer’s handbook. McGraw-Hill, New

York

7.9 Optimization of Radial Active Magnetic Bearings by
Using Differential Evolution and the Finite Element
Method

Gorazd Štumberger, Drago Dolinar and Kay Hameyer

Abstract. Magnetic bearings are a system of electromagnets, which makes
possible contact-less suspension of a rigid body. The work presented here
deals with the optimization of radial active magnetic bearings for a spindle
drive. The bearings are optimized by differential evolution. The optimiza-
tion aim is to achieve a maximum force at a minimum mass of the entire
construction. Predefined design parameters are the bearing outer diameter,
the shaft diameter, the air gap and the minimal generated force. The de-
pendency of the objective function on the design parameters is not known
in analytical form due to the magnetically nonlinear properties of the iron
core. Therefore, the objective function of each individual parameter set in
the population of the optimization algorithm is evaluated by the finite ele-
ment method.

7.9.1 Introduction

An actively controlled magnetic bearing system is an indispensable ele-
ment when we have to satisfy the machine-tool industry’s demand for
high-speed and high-precision machining. A typical system of active mag-
netic bearings (AMBs) (Schweitzer et al. 1994) consists of controlled elec-
tromagnets which control five degrees of freedom (DOFs). A driving mo-
tor controls the sixth DOF. Two pairs of radial bearings, which control
four DOFs, are placed at the end of each rotor. The fifth DOF is controlled
by a pair of axial bearings.

Two electromagnets on opposite sides of the ferromagnetic rotor pull
the rotor in opposite directions. The total force acting on the rotor is equal
to the vector sum of forces of all electromagnets. Such a system of elec-
tromagnets together with a ferromagnetic rotor is unstable in open-loop
operation. It can be stabilized by an appropriate current and position con-
trol assuring the contact-less suspension of the rotor.

The total force of two electromagnets is a nonlinear function of the cur-
rent, the rotor position and the point of saturation of the ferromagnetic iron
(Antila et al. 1998). The nonlinear current–force dependency is efficiently

448 7 Applications

linearized by the bias and control current, while the position–force de-
pendency and iron magnetization remain nonlinear. The design of the con-
trol is usually based on a linearized dynamic model.

The design of AMBs is expected to satisfy the static and dynamic re-
quirements in the best possible way. This can be done either by experience
and trials or, as done here, by applying numerical optimization methods.
AMBs are nonlinear systems. The dependency of the objective function
and its gradients on the design parameters is unknown. For the optimiza-
tion of such constrained, nonlinear electromagnetic problems, the use of
stochastic search methods in combination with an analysis based on the fi-
nite element method (FEM) is recommended (Hameyer 1994).

In this work the numerical optimization of radial AMBs using differen-
tial evolution (DE) (Storn and Price 1996; Štumberger et al. 2000) is pre-
sented. The objective of the optimization is to achieve a maximum force at
a minimum mass of the entire construction. The objective function is
evaluated by FEM-based two-dimensional computations. This includes the
determination of the nonlinear solution of the magnetic vector potential
and the determination of forces by Maxwell’s stress tensor method.

7.9.2 Radial Active Magnetic Bearings

AMBs are a system of controlled electromagnets acting on a single rigid
body, in this case a rotor. An eight-pole radial AMB (RAMB) is schemati-
cally shown in Fig. 7.47a. It is constructed from the shaft, the ferromag-
netic rotor, the ferromagnetic stator and the stator winding. The coils are
wound around the stator poles. The magnetic field, excited by the currents
in the stator coils, crosses the air gap between stator and rotor, and gener-
ates forces which act on the ferromagnetic rotor. To achieve a stable con-
tact-less suspension of the rotor, the force acting on the rotor must be con-
trolled. This can be realized by closed-loop control of the stator currents.

The stator coils wound around adjacent poles are commonly arranged in
pairs in order to generate four (almost) independent magnetic loops as
shown in Fig. 7.47b. A pair of coils connected in series produce the mag-
neto motive force (mmf) iN2 , where N is the number of turns of an in-

dividual coil and i is the coil current. The mmf “forces” the flux φ
through the magnetic circuit. The coil connections, the directions of cur-
rents in the coil pairs and the directions of the corresponding fluxes can be
taken from Fig. 7.47b.

7.9 Optimization of Radial Active Magnetic Bearings 449

a)

b)

Fig. 7.47. An eight-pole radial active magnetic bearing a and its coils connections,
currents and flux patterns b.

In the first approximation, each of the four magnetic loops shown in Fig.
7.47b can be treated as an independent electromagnet shown in Fig. 7.48a.
The voltage balance in the coil of an electromagnet is described by Eq.
7.85:

td

xd
k

td

id
LiRu u++= 11

(7.85)

where 1u is the voltage, 1i is the current, R is the resistance, L is the in-

ductance, uk is the coefficient of induced voltage and tdxd / is the de-

rivative of the rotor displacement along the x axis.

450 7 Applications

a)

b)

Fig. 7.48. A single electromagnet a and a pair of electromagnets b

An electromagnet can only produce an attractive force F , which is
generated at the boundaries of materials with different permeability µ . To

derive the force equation, let us first determine the energy W stored in the
air gap shown in Fig. 7.49. The air gap is a part of the magnetic loop and is
enclosed by the high permeability of the ferromagnetic iron core. The vol-
ume V of the air gap is given by the air gap length g and the air gap

cross-sectional area A . If the magnetic field in the air gap is homogeneous
then the energy stored in the air gap is given by Eq. 7.86:

gAHBVHBW gg 2
1

2
1 == (7.86)

7.9 Optimization of Radial Active Magnetic Bearings 451

where H is the magnetic field strength and B is the flux density in the air
gap. It can be assumed that for small displacements dg the flux AB=φ
remains constant. To increase the air gap g by dg , the attractive force F

acting on the ferromagnetic body has to be applied. Simultaneously, in the
system without any loss of energy, the energy stored in the air gap in-
creases by dW due to the increasing volume of the air gap, which yields:

AHB
dg

dW
F g2

1== (7.87)

Fig. 7.49. Air gap enclosed by ferromagnetic material

In the case of the electromagnet in Figs. 7.48a and 7.50a, the force 1xF

(Eq. 7.88) acting in the direction of x can be calculated by Eq. 7.87, con-
sidering that both poles are displaced by the angle ϕ referring to the x

axis. The angleϕ for an eight-pole radial bearing is 8
πϕ = , while

)cos(8
π=k .

AHBkAHBFF ggx ===)cos()cos(21 ϕϕ (7.88)

Let the cross-section A be uniform everywhere in the magnetic circuit
shown in Fig. 7.50b and let the flux φ run entirely within the magnetic

loop with uniform cross-section A . In this case the flux φ and the flux

density AB φ= are constant everywhere in the magnetic loop. If the mag-
netic field within the magnetic loop shown in Fig. 7.50b is supposed to be
homogeneous in the ferromagnetic iron core and in the air gap then the
general equation, Eq. 7.89, describing magnetic conditions along the inte-
gration path l can be simplified to Eq. 7.90:

452 7 Applications

= iNdlH

l

(7.89)

NiHgHl gFeFe 1222 =+ (7.90)

where iN are the ampere turns enclosed by the closed integration path

l , H is the magnetic field strength, Fel is the mean length of the magnetic

path in the ferromagnetic iron core, g is the air gap length, Ni12 is the
mmf generated by the both coils shown in Fig. 7.50b, and FeH and gH are

the magnetic field strengths in the ferromagnetic iron core and in the air
gap, respectively. Since the flux densities in the air gap and the iron core
are identical, the field strengths FeH and gH can be replaced by Eq. 7.91:

0µµ r
Fe

B
H = and

0µ
B

H g = (7.91)

where 7
0 104 −×= πµ V s/(A m) is the permeability of vacuum, while

rµ is the relative permeability. Inserting Eq. 7.91 into Eq. 7.90 yields Eq.
7.92 and further Eq. 7.93:

Ni
B

g
B

l
r

Fe 1
00

=+
µµµ

(7.92)

.1
0

gl

Ni
B

rFe +
=

µ
µ (7.93)

Since in the iron core the relative permeability 1>>rµ , the magnetiza-
tion of the iron core is often neglected and Eq. 7.93 is simplified to Eq.
7.94:

.1
0

g

Ni
B µ= (7.94)

Inserting Eqs. 7.91 and 7.94 into Eq. 7.88 yields the force equation

.
)(

2

2
1

0
0

2

1 A
g

Ni
kA

B
kFx µ

µ
==

(7.95)

7.9 Optimization of Radial Active Magnetic Bearings 453

a)

b)

Fig. 7.50. Electromagnet pole displacement by the angle ϕ referring to the x

axis a and the magnetic circuit of an electromagnetic pole pair b

In the RAMB pairs of electromagnets are normally used. A pair of elec-
tromagnets is shown in Fig. 7.48b. Each electromagnet can generate only
an attractive force acting on the ferromagnetic rotor. Therefore, two elec-
tromagnets on the same bearing axis pull the rotor in opposite directions.
Neglecting the nonlinearity of the iron core, the force xF generated by a

pair of electromagnets on the bearing axis x is given by Eq. 7.96 as the
difference of two expressions, Eq. 7.95:

A
xg

Ni
kA

xg

Ni
k

A
B

kA
B

k

FFF xxx

2

2
2

02

2
1

0

0

2
2

0

2
1

21

)(

)(

)(

)(

+
−

−
=

−=

−=

µµ

µµ

(7.96)

where x is the rotor displacement, and B1 and B2 are the flux densities in
the air gaps of both electromagnets excited by the currents i1 and i2, respec-
tively. Let us introduce the bias current ib and the control current ip. The
same bias current ib is supplied to the coils of both electromagnets. Force
control is done by superposing a control current ip on the bias current in the
coils of one electromagnet and subtracting it from the bias current in the
coils of the other one (Eq. 7.97):

454 7 Applications

pb iii +=1 and pb iii −=2 where bp ii ≤ . (7.97)

The linear relation between the control current ip and the resultant force
Fx is obtained by inserting the expressions from Eq. 7.97 into Eq. 7.96 at
the rotor displacement 0=x :

.4

)()(

2
2

0

2

2
2

02

2
2

0

g

i
iANk

A
g

ii
NkA

g

ii
NkF

p
b

pbpb
x

µ

µµ

=

−
−

+
=

(7.98)

The motion of the mass point with mass m between two electromagnets
located on the x axis of an AMB is described by Eq. 7.99:

2

2

td

xd
mFx = .

(7.99)

One axis of the RAMB is mathematically described by a pair of voltage
equations (Eq. 7.85), the force equation (Eq. 7.96) and the equation of mo-
tion (Eq. 7.99). The complete RAMB model contains two pairs of electro-
magnets which are placed on the x and y axes. However, the described
model given by Eqs. 7.85, 7.96 and 7.99 can be simplified: the magnetic
field distribution is considered to be homogeneous, the cross-sectional ar-
eas of the magnetic loops are uniform, the coupled magnetic circuits
shown in Fig. 7.47b are considered to be independent, the leakage flux and
the magnetization of the iron core are neglected, and the magnetically
nonlinear properties of the iron core are considered to be linear. This sim-
plified model can be used to study the operational principles of the RAMB.
It is appropriate for control synthesis and the initial bearing design, but it is
not accurate enough to be used for optimization of the RAMB design.

7.9.3 Magnetic Field Distribution and Force Computed by the
Two-Dimensional FEM

The simplified model presented in the previous subsection can be used to
determine the initial RAMB design. The magnetic field distribution in the
real RAMB is quite different from the one supposed in the simplified
model. To optimize the RAMB geometry a realistic magnetic field distri-
bution is required. The two-dimensional magnetic field distribution is
close to the realistic one and can be computed using the FEM by solving
Poisson’s equation (Eq. 7.100) numerically:

7.9 Optimization of Radial Active Magnetic Bearings 455

J−=∇•∇)(A (7.100)

where ∇ is the Laplace operator, • denotes the dot product, is the mag-
netic reluctivity, A is the magnetic vector potential and J is the applied
current density. The nonlinear solution of the magnetic vector potential is
required for computation of the force. The force F acting on the ferro-
magnetic rotor can be computed by Maxwell’s stress tensor method:

[]dSdS

SS

−•== nBBnBF 2
2

11
00

)(µµ
(7.101)

where is Maxwell’s stress tensor, n is the unit vector normal to the in-
tegration surface S and B is the magnetic flux density. In the case of two-
dimensional computations, the closed integration path is a contour placed
in the air gap, which encloses the ferromagnetic rotor.

Experienced designers can improve the RAMB design by employing
their own intuition and experience in combination with FEM computa-
tions.

7.9.4 RAMB Design Optimized by DE and the FEM

The task is to design an RAMB for a spindle drive. The simplified RAMB
model is used to find the initial bearing design. The design is improved by
FEM computations using “trial and error” in order to achieve maximum
force at minimum mass of the entire construction. For any further im-
provement in the bearing design a numerical magnetic field computation in
combination with an optimization method is applied.

In the authors’ opinion, DE in combination with the FEM is at present
one of the most suitable and powerful tools for the optimization of elec-
tromagnetic devices, which are usually nonlinear and entail constrained
optimization problems. Commonly, for such a problem class, the depend-
ency of the objective function on the design parameters is unknown. Ac-
cording to Pahner (1998), for optimization of electromagnetic devices in
combination with the FEM, DE is superior to other stochastic direct search
algorithms such as simulated annealing and self-adaptive evolution strate-
gies. DE converges faster and is more stable when compared to these other
methods. The DE strategies “DE/best/1/exp” and “DE/best/2/exp” (Storn
and Price 1997) are favored for most technical problems. For details and to
study the theory of such optimization methods, the authors refer to the lit-
erature (Hameyer 1994; Storn and Price 1996, 1997; Pahner 1998).

456 7 Applications

If the number of design parameters is larger than 2, the number of popu-
lation members NP should be at least 15 (Pahner 1998). In our experience,
however, technical problems with up to 25 parameters can be successfully
solved with a population size of less than 40. The recommended setting for
the DE step size F is 0.5 and that for the crossover probability constant CR

is between 0.5 and 0.9. DE in combination with the FEM is well suited for
parallel implementation in a computer network, which can substantially
reduce the time required for optimization (Pahner et al. 1998).

To optimize an electromagnetic device with DE and the FEM, both of
them must be adapted to function and operate together. A good conver-
gence can be achieved if the optimization function parameters are inde-
pendent. To optimize an electromagnetic device, it is important to improve
the device design with respect to the given objective function. This func-
tion represents the technical device. Therefore, particular attention has to
be paid to an appropriate formulation of this function, otherwise it is pos-
sible for the algorithm get stuck in a local minimum. To allow the algo-
rithm to reach the global optimum, contradictory partial aims formulated in
the objective function have to be avoided. This can be realized by choosing
appropriate constraints for the optimization problem.

As mentioned earlier, the aim here is to achieve a maximum force at a
minimum mass of the entire construction. The bearing must generate a
maximum force of at least 500 N at the prescribed shaft diameter of 35
mm, a stator outer diameter of 105 mm and an air gap of 0.4 mm. For the
optimization, the rotor is placed in the center of the air gap. According to
Eq. 7.98, the maximum force xF is generated if one of the electromagnets

on the x axis is supplied with the current pb ii + , while the other one is

supplied with the current pb ii − . Zero force is generated on the y axis. To

achieve realistic operating conditions, both electromagnets on the y axis

are supplied with the current bi as shown in Fig. 7.51a. The RAMB design

is optimized for the currents 5=bi A and 5=pi A.

The dependency of the objective function RRf →4:)(X on its parame-
ters X is unknown, while the value of the objective function can be com-
puted by the FEM for each generated set of parameters X . The objective
of the optimization is to find the set of objective function parameters X for
which the value of the objective function is a minimum. The design pa-
rameters, whose values are to be optimized, are the stator yoke height ys ,

the rotor yoke height yr , the leg width wl and the bearing’s axial length l .

The first three of these design parameters are shown in Fig. 7.51b.

7.9 Optimization of Radial Active Magnetic Bearings 457

a)

b)

Fig. 7.51. Optimization of the radial bearing: a currents supplied to the coils, b the
objective function parameters.

The design parameters),,,(llrs wyy are transformed by normalization

(Eq. 7.102) into the set of objective function parameters),,,(4321 xxxx=X ,
which are used in DE; the inverse process is denormalization (Eq. 7.103):

)()(

)(

L
j

U
j

L
jj

j
dd

dd
x

−

−
= 4,3,2,1=j

(7.102)

)()()()(L
j

U
jj

L
jj ddxdd −+= .4,3,2,1=j (7.103)

Here jd denotes the j th design parameter, while)(L

jd and)(U
jd are its

lower and upper boundary constraints, respectively. In this way, all pa-

458 7 Applications

rameters jx of the objective function)(Xf are bounded within the inter-

val [0,1], which is used to define the lower and upper boundary con-
straints:

),,,(4321 xxxx=X]1,0[∈jx .4,3,2,1=j (7.104)

The boundary constraints are also defined for functions of the design pa-
rameters to prevent violation of physical laws. In the real bearing the rotor
cannot overlap the stator, and the stator poles cannot overlap each other.

DE works with populations of solutions and not with a single solution of
the optimization problem. Population P of generation G contains popn so-

lution sets X , called individuals of the population (Eq. 7.105). Each indi-
vidual represents a potential solution of the optimization problem. An in-
dividual is actually a set of parameters X (Eq. 7.104) which contains parn

parameters of the objective function:
)(

,
)()(G

ji
G

i
G x== XP popni ,...,1= .,...,1 parnj = (7.105)

In the case of RAMB optimization, the initial population is generated by
random values within the bounds]1,0[∈jx . Whenever DE generates an in-

dividual, the parameters of the individual are immediately denormalized
(Eq. 7.103) and checked for the boundary constraints. The computational
effort required to generate an individual by DE is negligible when com-
pared to the computational effort required to evaluate the individual’s ob-
jective function by using the FEM. Therefore, the individual that violates
the boundary constraints is reproduced as many times as required to satisfy
the boundary constraints. In the case of too many violations of the bound-
ary constraints, the DE settings such as the DE step size F and the cross-
over probability constant CR can be adjusted.

To evaluate the objective function of a design parameter set (individ-
ual), the FEM package must be able to accept parameters generated by DE,
to perform the FEM computation automatically, and to return the value of
the objective function to the DE algorithm. The parameters of the individ-
ual define the temporary bearing design. They are passed to the FEM
package where the parametrically defined FEM model of the RAMB is
updated according to the temporary design. For the bearing geometry ob-
tained, the material, the current densities and the FEM boundary condi-
tions are defined. The stator and the rotor iron core are constructed from
laminated electric steel M36, whose magnetization characteristic is plotted
in Fig. 7.52a.

7.9 Optimization of Radial Active Magnetic Bearings 459

a)

0 2 4 6 8 10
0

0.5

1

1.5

2

H [kA/m]

B
 [

T
]

b)

Fig. 7.52 B–H characteristic for laminated electric steel M36 a and the discretiza-
tion of the model b

The mesh shown in Fig. 7.52b is automatically generated by dividing
the geometry into discrete elements. Standard triangular elements are ap-
plied here. For the two-dimensional problem described by Eq. 7.100, the
nonlinear solution of the magnetic vector potential is computed by using a
conjugated gradient and the Newton–Raphson method. The errors in the
solution obtained are analyzed, the mesh is refined, and the problem is
solved again. The procedure is repeated until the solution error is smaller
than a predefined value. The force xF is computed from the obtained
nonlinear solution of the magnetic vector potential by Maxwell’s stress
tensor (Eq. 7.101). The closed contour in the middle of the air gap is used
as the path of integration. The mass of the entire construction is calculated
from the bearing geometry and the specific mass of the materials used.

460 7 Applications

The objective function)(Xf is defined by Eq. 7.106, where xF and m

are respectively the maximum force and the bearing mass of the actual de-
sign defined by X , while 0xF and 0m are the maximum force and the

bearing mass of the initial design defined by 0X . The initial bearing design
is determined by the simplified RAMB model given by Eqs. 7.85, 7.96 and
7.99 and by the FEM computations:

.)(21
0

0 pp
mF

mF
f

x

x ++=X
(7.106)

Table 7.14. DE settings, data for the initial and optimized RAMB design, and de-
sign requirements

RAMB design data DE settings
Parameter Initial Optimized

Design
requirements

DE
strategy

DE/best/1/exp Stator yoke
syy

8.5 mm 7.2 mm
Outer
diameter

105 mm

Number of
generations

60
Rotor yoke
ryy

9.0 mm 7.8 mm
Shaft di-
ameter

35 mm

Population
size

20 Leg width lww 10.0 mm 9.0 mm Air gap 0.4 mm

Number of
parameters

4
Axial length
l

53.0 mm 56.3 mm
Maximal
force

500 N at
least

DE step size 0.50
Bearing
mass m

2.691 kg 2.688 kg

Crossover
probability
constant

0.75
Maximal
force Fx

580.1 N 629.74 N

Objective
function
f(X)

1.00 0.92

The penalties 1p and 2p are used to ensure that the bearing mass of the
optimized design is not larger than the initial mass and that the maximum
force is not smaller than the initial force. The penalties are calculated by
the constraint functions (Eq. 7.107):

if
0

10
m

m
pmm => and if .0

20
x

x
xx

F

F
pFF =< (7.107)

The obtained value of the objective function is returned to the DE algo-
rithm. DE proceeds to generate new generations of individuals until the

7.9 Optimization of Radial Active Magnetic Bearings 461

desired value of the objective function or the maximum number of genera-
tions is reached.

The RAMB data and the DE settings used for optimizing the RAMB de-
sign are summarized in Table 7.14.

7.9.5 Conclusion

This work deals with the optimization of an RAMB for a spindle drive. A
simplified model of the RAMB is presented first. It is used to determine
the initial bearing design, which is improved by using experience in com-
bination with FEM computations. In this way the RAMB design obtained
is optimized by DE. Optimizing an RAMB is a nonlinear and constrained
optimization problem, where the dependency of the objective function on
the design parameters (objective function parameters) is unknown. For the
optimization of the bearing geometry, exact knowledge of the magnetic
field distribution inside the nonlinear ferromagnetic iron core and in the
bearing’s air gap is required. The magnetic field distribution can be com-
puted by the FEM. The RAMB is optimized by DE, while the objective
function of each individual is evaluated by the FEM. To work together, the
DE algorithm and the FEM package must be adapted. The FEM package
must be able to accept parameters generated by DE and to return the value
of the objective function. The FEM package must also be suitable for use
with parameterized models and to work with user-defined procedures.
Automatic mesh generation, solvers for different problems, error estima-
tion, mesh refinement and automatic acquisition of results must be a part
of the FEM package.

The results presented here show that the performance of the electromag-
netic devices can be substantially improved if DE in combination with the
FEM is applied for the optimization. In the case of the RAMB, the value of
the objective function was improved by about 8%, which means that the
force increased by 49 N at the same bearing mass.

Acknowledgments

The optimization of the RAMB was performed in a special environment
called Olympos, an FEM program package, which is tuned for numerical
optimizations (Pahner et al. 1998). Olympos was developed at Katholieke
Universiteit Leuven, Department E.E. (ESAT), Division ELEN, Leuven,
Belgium. The laboratory prototype of the optimized bearing has been real-
ized and constructed within the scope of the project “Active magnetic
bearings” supported by the Ministry of Science and Technology of the Re-

462 7 Applications

public of Slovenia and by the company Domel, now Indramat elektromo-
torji, Proizvodnja elektri nih motorjev d.o.o. Železniki, Slovenia.

References

Antila M, Lantto E, Arkkio A (1998) Determination of forces and linearized pa-
rameters of radial active magnetic bearings by finite element technique. IEEE
Transactions on Magnetics 34(3):684–694

Hameyer K (1994) Numerical optimization of finite element models in electro-
magnetics with global evolution strategy. In: Adaptive computing in engineer-
ing control 1994, Plymouth, USA, pp 61–66

Pahner U (1998) A general design tool for the numerical optimization of electro-
magnetic energy transductors. PhD thesis, Catholic University Leuven

Pahner U, Mertens R, De Gersem H, Belmans R, Hameyer K (1998) A parametric
finite element environment tuned for numerical optimization. IEEE Transac-
tions on Magnetics 34(5):2936–2939

Schweitzer G, Bleuler H, Traxler A (1994) Active magnetic bearings. Vdf
Hochschulverlag AG an der ETH Zürich, ETH Zürich

Storn R, Price KV (1996) Minimizing the real functions of the ICEC’96 contest by
differential evolution. In: IEEE international conference on evolutionary com-
putation, Nagoya, May 1996, IEEE, New York, pp 842–844

Storn R, Price KV (1997) Differential evolution – a simple evolution strategy for
fast optimization. Dr. Dobb’s Journal 22(4):18–24 and 78

Štumberger G, Dolinar D, Pahner U, Hameyer K (2000) Optimization of radial ac-
tive magnetic bearings using the finite element technique and the differential
evolution algorithm. IEEE Transactions on Magnetics 36(4):1009–1013

7.10 Application of Differential Evolution to the Analysis
of X-Ray Reflectivity Data

Matthew Wormington, Kevin M. Matney and D. Keith Bowen

Abstract. X-ray reflectivity (XRR) is a technique for characterizing the
structure of thin, multi-layer devices. This section describes the application
of the differential evolution (DE) algorithm to automatically and reliably
analyze XRR data. A data-fitting method is presented that is conceptually
simple, easy to implement and is capable of converging to a global mini-
mum in the parameter space even when there are many additional local
minima. The method is quite general and could be applied to many prob-
lems in science and engineering.

7.10.1 Introduction

X-ray reflectivity (XRR) is a technique used to characterize the structure
of thin (1–1000 nm), multi-layer devices. Such devices are used in numer-
ous high-technology products, most notably products made by the microe-
lectronics, optoelectronics and magnetic storage industries. XRR is non-
destructive and can be used to characterize crystalline, polycrystalline and
amorphous materials. The technique accurately and reproducibly measures
layer thickness, density and roughness/grading.

Until recently, the XRR technique was mainly used for research and de-
velopment because an experienced scientist was required to manually ana-
lyze the data. The development of an automated and robust data analysis
method, which is the subject of this section, has allowed the technique to
be used in manufacturing environments. For example, XRR is now being
used by the microelectronics industry to measure layer thickness in the lat-
est generation of microprocessors – from the semiconductor layers that
form the transistors on the silicon substrate to the conductors and insula-
tors that are used to connect these transistors together. The technique is
also being used by the magnetic storage industry to characterize the struc-
ture of the read-heads used in modern hard disk drives.

Figure 7.53 schematically illustrates the XRR technique. A collimated,
monochromatic beam of X-rays illuminates the surface of a sample at a
very small angle of incidence (0–5°). The specularly reflected beam (i.e.,
the beam with reflection angle equal to the incidence angle) is detected and

464 7 Applications

its intensity is measured. The reflected intensity as a function of the inci-
dence angle is related to the structure of the sample. There is, however, no
direct method for determining a sample’s structure from such a measure-
ment and so indirect methods must be used.

X-ray source

Slits

Sample

Detector

Optics

X-ray source

Slits

Sample

Detector

Optics

Fig. 7.53. Schematic of an XRR measurement. The X-ray beam is generated by a
laboratory source and passes from left to right. The optics produce a collimated,
monochromatic beam (i.e., small spread in both angle and wavelength). The beam
illuminates the sample at a small angle of incidence and is specularly reflected
from the sample. The intensity of the reflected beam is measured as the sample
and detector are scanned in a ratio of 1:2.

The most common way to determine the structure of a sample from its
measured XRR data is to create a model that we hope reasonably describes
its structure and from which we can simulate the reflected X-ray intensity.
Using the model, we then simulate the XRR intensity and calculate the dif-
ference between the experimental and simulated curves using some objec-
tive function, f. The model parameters are then adjusted by some optimiza-
tion method in order to minimize the difference between the two curves.
This procedure is repeated until the difference between the two curves is
judged to be sufficiently small, at which point we accept the model to be
an accurate representation of the structure.

The field of data-fitting and parameter optimization has a long and fruit-
ful history. The earliest successes were for linear problems that possessed
a single minimum in the objective function. The mean-squared difference
between the experimental and simulated data was commonly used as the
objective function because of its computational simplicity in the days be-
fore fast digital computers. More recent research has focused on nonlinear
problems, and on those with local minima in the objective function in addi-
tion to the global minimum. A variety of data-fitting and parameter opti-

7.10 The Analysis of X-Ray Reflectivity Data 465

mization strategies have been developed for such systems (Bevington
1969; Press et al. 1989) and those most commonly encountered are:

1. Direct search. The parameter space is divided up into small, but finite,
regions. The objective function is calculated for each region and the re-
gion that gives the smallest value for f is said to give the best-fit (opti-
mum) parameter values.

2. Downhill simplex. An initial guess at the parameter values is made. The
simplex (a geometrical construction) then moves in directions that de-
crease the value of f. The parameters that yield the smallest value of f in
the neighborhood of the initial guess are said to be the best-fit parame-
ters.

3. Levenberg–Marquardt method. An initial guess at the parameter values
is made by the user. The algorithm then combines linearization and gra-
dient searching of the objective function to minimize f in the neighbor-
hood of the initial guess. The parameter values giving the smallest value
for f are then selected as the best-fit parameters.

4. Monte Carlo method The parameter space is again divided into small
regions. Regions are selected at random and the objective function is
evaluated. After a certain number of regions have been chosen, or when
f is smaller than some specified value, the algorithm is stopped. The re-
gion with the smallest value for f is said to yield the best-fit parameter
values.

5. Simulated annealing. This uses the physical principles governing an-
nealing (i.e., the heating of a material and subsequent slow cooling such
that the material forms a crystal) to search the objective function and ob-
tain the best-fit parameters. There is a finite probability in any step that
the parameters can move in a direction so as to increase f, so the method
does escape from local minima, but slowly.

All of the above methods run into severe difficulties when fitting XRR
data. The parameter space is simply too vast for direct searches and be-
comes uncomputable for all but the simplest cases. The downhill simplex
and Levenberg–Marquardt methods work well for nonlinear problems be-
cause they are guided by the geometry of the objective function in parame-
ter space. However, the initial estimate of the parameter values needs to be
very close to the optimized values if local minima are present, as they will
become trapped in the first local minimum that they encounter. These two
methods are therefore only effective when the parameters are initially con-
tained within the multi-dimensional “well” of the global minimum, and in
most practical cases in X-ray scattering, we have found them to be of little
use. The Monte Carlo and simulated annealing methods do not get trapped
in local minima. However, they are very inefficient at searching the pa-

466 7 Applications

rameter space, since they search it randomly without taking into account
the geometry of the objective function. A successful strategy for non-linear
problems containing many local minima will combine both random and
guided elements. Recently, genetic algorithms (GAs) have attracted wide-
spread interest for nonlinear optimization problems as they overcome
many of the problems associated with the more traditional optimization
strategies mentioned above.

In this section, we apply the differential evolution (DE) algorithm (Storn
and Price 1995, 1997) to the analysis of XRR data using a data-fitting
method. We were attracted to the DE algorithm over other GAs for several
reasons: the algorithm was straightforward, it used real numbers (rather
than binary strings or integers) to encode the problem parameters, and it
was reported to be both versatile and reasonably efficient. For a more de-
tailed discussion of our application, the interested reader is referred to the
original publication (Wormington et al. 1999) on which this section is
largely based. Additional information regarding the characterization of ad-
vanced materials using X-ray techniques can be found in Bowen and Tan-
ner (1998) and Holý et al. (1999), and the references contained therein.

7.10.2 The Data-Fitting Procedure

The Differential Evolution (DE) Algorithm

Let us assume that the experimental data contains N measured points
(,)j jIθ where jθ is the incidence angle, jI is the intensity measured at jθ
and 1, 2,...,j N= . Simulated data (,)jI θ p is computed assuming a structural

model with n continuous, adjustable parameters represented by the vector

1 2[, ,...]np p p=p and is compared to the experimental data using some ob-

jective function ()f p . Guided by ()f p , the DE algorithm attempts to op-

timize the parameter vector p starting with an initial population of ran-
domly generated parameter vectors, by a repeated cycle of mutation,
recombination and selection.

As discussed in previous chapters, several versions of the basic DE al-
gorithm have been proposed. The DE/Best/1/Bin version of the algorithm
was used in this work. The population was initialized by assigning the pa-
rameter vector 0p the user’s initial guess at the structure, while the remain-
ing vectors were initialized by assigning each parameter with a randomly
chosen value from within its allowed range. The control parameters of the
DE algorithm, namely the mutation constant and crossover constants, re-
spectively designated F and rC , must be empirically determined to give

7.10 The Analysis of X-Ray Reflectivity Data 467

fast convergence (minutes). Values of F = 0.7 and rC = 0.5 were used in
this work. The population size was also determined empirically and a
population size of about 25 to 50 seemed to work well for most cases.

The recombination operation of the DE algorithm is able to produce pa-
rameter values outside of the range specified by the user (or physically im-
plausible solutions such as a thickness being less than zero). In order to
prevent this from happening we modified the basic DE algorithm such that
any temporary (trial) parameter jp′ that falls outside the specified con-

straints is replaced by a random value selected according to the expression
min max minrand()j j j jp p p p′ = + − (7.108)

where min
jp and max

jp are the minimum and maximum permissible values

of parameter j, respectively. The function rand(x) designates a real uniform
random number drawn from the range [0, x]. We found that setting the out-
of-range trial parameter to a random value within the specified constraints
improved the data-fitting performance.

Finally, we added several stopping criteria to the DE algorithm such that
the algorithm will stop if:

1. the user cancels the data-fitting procedure;
2. a specified number of simulations is reached;
3. a specified elapsed time is exceeded;
4. a specified value of the objective function is attained.

The Objective Function

The choice of an appropriate objective function is crucial for any data-
fitting procedure regardless of the optimization method used. The DE algo-
rithm gives us a great deal of flexibility in this choice since we need only
choose a continuous function and do not require the function to have con-
tinuous derivatives. When fitting XRR data, the objective function should
have the following additional properties:

1. a single deep global minimum;
2. local minima that are much less deep than the global minimum;
3. fast and simple to calculate;
4. relative insensitivity to the absolute magnitude of the data, since XRR

data often spans many orders of magnitude;
5. does not overemphasize outlying points in the experimental data, since

we expect a Poisson distribution of statistical noise.

Point 4 suggests that a logarithmic function could be appropriate since it
linearizes data spanning several orders of magnitude. Point 5 suggests that

468 7 Applications

a robust objective function (Press et al. 1989) will be one that is more suit-
able than the mean-squared objective function commonly encountered in
least squares fitting. To confirm these conjectures, we have investigated a
number of objective functions that have been applied to fitting problems,
namely:

Mean-square difference of the data:
2

1

1
() [(;)]

1

N

j j

j

f I I
N

θ
=

= −
−

p p .
(7.109)

Mean-absolute difference of the data:

1

1
() | (;) |

1

N

j j

j

f I I
N

θ
=

= −
−

p p .
(7.110)

Mean-square difference of the log transformed data:
2

1

1
() [log log (;)]

1

N

j j

j

f I I
N

θ
=

= −
−

p p .
(7.111)

Mean-absolute difference of the log transformed data:

1

1
() | log log (;) |

1

N

j j

j

f I I
N

θ
=

= −
−

p p .
(7.112)

Tests of these functions with XRR data showed that the non-logarithmic
objective functions (Eqs. 7.109 and 7.110), as expected, did not effectively
fit the data at low intensities. These occur at large scattering angles and
contain information on the smallest length scales present in the structure,
which are often those at which the X-ray characterization is aimed. The
objective functions in Eqs. 7.111 and 7.112 both could cope adequately
with such data, but Eq. 7.112 is preferred because of its lower sensitivity to
outlying data points (due mainly to statistical noise in the experimental
data). Clearly we cannot assert that Eq. 7.112 is the best possible objective
function but it is very effective, and this is sufficient.

Performance

The performance of the data-fitting procedure is primarily affected by the
following four factors:

1. The quality and size of the experimental data. If the experimental data is
noisy or contains a very large number of points it will take longer to de-
termine the best-fit parameter values.

2. The quality of the initial estimates for the parameters. If the initial val-
ues for the parameters are grossly different from the optimized values
the fitting procedure will take longer to converge.

7.10 The Analysis of X-Ray Reflectivity Data 469

3. The search range of the parameter values. If a large search range is
specified the fitting procedure may take longer to converge to the global
minimum of the objective function. However, because the DE algorithm
is rather good at finding the global minimum, without becoming trapped
in local minima, it tends not to falsely converge to incorrect values for
the parameters.

4. The number of adjustable parameters. The ability of the procedure to de-
termine the optimum parameter values decreases as the number of pa-
rameters increases. In practice we find that up to ten parameters can be
optimized in a matter of minutes, and that several tens of parameters can
be optimized during an overnight run.

We have developed an efficient program for analyzing XRR data based
on the fitting procedure presented in this section. The program, which was
developed using Borland Delphi, runs on personal computers (PCs) under
the Microsoft Windows operating system. All benchmarks reported in this
work were obtained using a 1 GHz Pentium III-based notebook computer
fitted with 512 Mbytes of memory.

7.10.3 The Model and Simulation

The simulation method used is taken from the Bede REFS program
(Wormington et al. 1992). We will consider a multi-layer on a thick sub-
strate in which the refractive index of each layer is assumed constant. For
X-rays, the refractive index of a material is slightly less than unity and can
be written as

2

1 (i) ,
2e a a a a

a

n r f f f N
λ
π

′ ′′= − + +
(7.113)

where er is the classical electron radius and λ is the X-ray wavelength.

The atomic scattering factor is denoted by af and the real and imaginary

parts of the dispersion correction are af ′ and af ′′ , respectively. Values for
the scattering factor and its corrections are tabulated in the International
Tables for Crystallography (Ibers and Hamilton 1974). The summation is
taken over all constituent atoms, a, of number density aN .

The amplitude ratio /r t

j j jX E E= of the reflected and transmitted waves

at the bottom of layer j within the multi-layer is obtained by solving Max-
well’s equations and the appropriate boundary conditions. According to
Parratt (1954), we may write

470 7 Applications

2
1 1

2
1 11

j j j

j

j j j

r X
X

r X

ϕ
ϕ

+ +

+ +

+
=

+

(7.114)

where jr is the Fresnel coefficient for reflection from the interface be-

tween layers j and j + 1. For a sharp interface, jr is given by the expression

, 1,

, 1,

j z j z

j

j z j z

k k
r

k k

+

+

−
=

+
(7.115)

where 2 2 1/ 2
, 2 / (cos)j z jk nπ λ θ= × − is the component of the wavevector in

layer j perpendicular to the surface of the multi-layer (i.e., along the z

axis), jn is the refractive index of the layer and θ is the grazing angle of

the incident plane wave. The complex phase factor for wave propagation
through the layer thickness jt is denoted by ,exp(i)j j z jk tϕ = . To include

the effects of grading (interdiffusion) and roughness within this formalism
we need only modify the form of the Fresnel coefficient. From the work of
Névot and Croce (1980) an appropriate modification is given by

, 1, 1/ 2
, 1, 1

, 1,

exp[2()]j z j z

j j z j z j

j z j z

k k
r k k

k k
σ+

+ +
+

−
= −

+
(7.116)

where 1jσ + denotes the width of the interface between layers j and j + 1

due to both grading and roughness.
To calculate the amplitude ratio at the top of the multi-layer, 0X , Eqs.

7.113 and 7.115 are applied recursively for all interfaces starting at the
substrate (layer N + 1), where N NX r= . The plane-wave reflectivity is then

given by 2
0| |R X= and is related to the reflected intensity through the cor-

relation function

0(;) () ()d bI I F R Iθ θ θ θ θ′ ′ ′= − +p (7.117)

where 0I and bI denote the incident and background intensity, respec-

tively. Here ()F θ denotes an instrument function and takes into account
the finite divergence of the incident X-ray beam. We have included both
this incident angle θ and the adjustable parameters p in our notation. Spe-
cifically p contains the following:

1. the incident intensity 0I ;

2. the background intensity bI ;

3. the densities jρ of the layers 1,2,...j N= ;

4. the thicknesses jd of the layers 1,2,...j N= ;

5. the widths 1jσ + of the interfaces between layers j and j + 1 due to grad-

ing and/or roughness.

7.10 The Analysis of X-Ray Reflectivity Data 471

Finally, we note that X-ray reflectivity measurements cannot usually
distinguish between layers of high atomic number Z and low mass density,
and those with low Z and high density. We have therefore chosen to fit the
density of layers in the structural model and assume their chemical compo-
sition.

7.10.4 Examples

Example I – Ta Layer on Al2O3

In our first example, we consider a Ta (10 nm) layer deposited on an Al2O3

substrate. Figure 7.54a shows the measured and simulated XRR curves be-
fore fitting. At very small angles of incidence, 0.5θ ≤ ° , the intensity is
very high as a result of total external reflection from the Ta layer. As the
incidence angle is increased, the reflected intensity decreases rapidly and
prominent oscillations (Kiessig fringes) are clearly visible due to the inter-
ference of the waves partially reflected from the Ta layer and the underly-
ing Al2O3 substrate. The period, θ∆ , of the Kiessig fringes is related to the
thickness, t, of the Ta layer according to the relation / 2tθ λ∆ ≈ . The am-
plitude of the Kiessig fringes depends on the difference in the refractive
index of the layer and the substrate, which is quite large in this example.
Figure 7.54b shows the measured curve together with its best-fit simula-
tion.

The time for the fitting procedure to converge was about 30 seconds, fit-
ting a total of nine adjustable parameters. The best-fit parameter values
and their uncertainties are given in Table 7.15. It should be noted that a
surface oxide layer had to be included in the structural model to obtain
close agreement of the measured and simulated curves.

Table 7.15. Best-fit parameter values for the Ta layer on Al2O3

Layer Material t (nm) (nm) (g/cm3)
2 Ta2O5 2.70 ± 0.05 0.71 ± 0.03 8.6 ± 0.2
1 Ta 10.49 ± 0.02 0.45 ± 0.02 16.1 ± 0.2

Substrate Al2O3 0.38 ± 0.02 3.99

472 7 Applications

a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(a)

θ (deg)

In
te

n
s
it
y
 (

c
p
s
)

b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

(b)

θ (deg)

In
te

n
s
it
y
 (

c
p
s
)

Fig. 7.54. Comparison of experimental and simulated X-ray reflectivity curves for
a Ta layer on Al2O3, a before and b after the fitting procedure has converged. The
dashed lines represent the measurements and the solid lines are the simulations.

The parameter values for the simulated curve shown in Fig. 7.54a were
chosen to be far from the anticipated best-fit parameter values. This was a
deliberate choice in order to demonstrate that the fitting procedure rapidly

7.10 The Analysis of X-Ray Reflectivity Data 473

converges to the global minimum in the objective function without getting
trapped in local minima. The progress of the fitting procedure is illustrated
in Fig. 7.55, which shows the value of the objective function versus the
number of generations (iterations of the DE algorithm). Horizontal sec-
tions are times during which the fitting procedure is temporarily in local
minima. The fitting procedure is seen to have converged to the global
minimum after only 1000 generations.

0 500 1000 1500 2000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Generations

f
(a

rb
.u

n
it
s
)

Fig. 7.55. Variation of the objective function, f, with the number of DE genera-
tions. The fitting procedure has converged after approximately 1000 generations.

5 10 15 20 25 30
0.00

0.25

0.50

0.75

1.00

1.25

1.50

t (nm)

f
(a

rb
.

u
n
it
s
)

Fig. 7.56. Variation of the objective function, f, with the Ta layer thickness. All
other adjustable parameters in the model are held constant at their best-fit values.

474 7 Applications

Figure 7.56 shows the value of the objective function as a function of
the thickness of the Ta layer, with all other parameters held at their best-fit
values. We note that the objective function has a single, deep global mini-
mum and many local minima. Harmonic minima, which occur at half and
twice the best-fit Ta layer thickness, are the deepest of the local minima.
The global minimum is “shielded” by fairly large maxima on either side.
This is a typical feature in such curves when the thickness is varied, and
turns out to be caused by the beating of two sets of oscillations (Kiessig
fringes) in which one period is fixed and the other is variable. This charac-
teristic shape is very useful for recognizing whether the global minimum is
in fact within the range specified for the thickness parameters in question.

Example II – GaAs/Al0.3Ga0.7As Layers on GaAs

For our next example we consider an Al0.3Ga0.7As (50 nm) layer capped
with a GaAs (50 nm) layer grown on a GaAs substrate. Figure 7.57a shows
the measured and simulated XRR curves prior to fitting. We see that the
Kiessig fringes are far less prominent than in the previous example be-
cause the refractive index of Al0.3Ga0.7As is similar to that of GaAs. Fur-
thermore, the period of the Kiessig fringes is much smaller than in the pre-
vious example because of the thicker layers considered. The measured
curve and best-fit simulation are shown in Fig. 7.57b. Whilst more itera-
tions are required than in the previous example, the fitting procedure still
took about 45 seconds to converge and fit ten adjustable parameters. The
best-fit parameters and their respective uncertainties are given in Table
7.16.

We included an additional layer of GaAs in the structural model and al-
lowed its density to be fitted within the range 2.66–5.32 g/cm3 (i.e., 50–
100% of its bulk value) to test for the presence of a surface oxide layer. If
no surface layer were present, the density of the top layer would naturally
converge to 5.32 g/cm3. However, the density converged to 3.19 g/cm3, in-
dicating the presence (most likely) of an oxide.

Finally, we note that detector saturation is evident in the measured data
(see Fig. 7.57), but this has clearly not prevented the fitting procedure from
converging. The reason for this is that we treated the incident intensity as
an adjustable parameter and ignored most of the measured data in the re-
gion of total external reflection. The incident intensity is, in effect, deter-
mined from the initial slope of the reflectivity curve. However, for the
most accurate characterization of a sample it is important to reduce this ef-
fect experimentally, e.g., by using an Al absorber to attenuate the reflected
beam at very low incident angles, or a high dynamic-range detector.

7.10 The Analysis of X-Ray Reflectivity Data 475

a)

0.0 0.5 1.0 1.5 2.0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

θ (deg)

In
te

n
s
it
y
 (

c
p

s
)

b)

0.0 0.5 1.0 1.5 2.0

10
0

10
1

10
2

10
3

10
4

10
5

10
6

θ (deg)

In
te

n
s
it
y
 (

c
p

s
)

Fig. 7.57. Experimental and simulated X-ray reflectivity curves for an AlxGa1 xAs
layer capped with GaAs on a GaAs substrate, a before and b after fitting. The
dashed lines are the measurements and the solid lines represent the simulations.
Experimental data courtesy of Prof. B. K. Tanner (University of Durham).

476 7 Applications

Table 7.16. Best-fit parameter values for the GaAs/Al0.3Ga0.7As layers on GaAs

Layer Material t (nm) (nm) (g/cm3)
3 GaAs 2.28 ± 0.02 0.57 ± 0.02 3.19 ± 0.05
2 GaAs 50.97 ± 0.01 0.64 ± 0.03 5.32
1 Al0.3Ga0.7As 50.40 ± 0.02 0.5 ± 0.1 4.87

Substrate GaAs 0.7 ± 0.1 5.32

Table 7.17. Best-fit parameter values for the Si1 xGex/Si superlattice on Si

Layer Material t (nm) σ (nm)
12 SiO2 1.18 ± 0.02 0.19 ± 0.01
11 Si 9.31 ± 0.02 1.19 ± 0.01

…10 Si0.43Ge0.57 9.08 ± 0.01 0.97 ± 0.01
1… Si 22.89 ± 0.01 0.43 ± 0.01

Substrate Si ∞ 0.3 ± 0.1

Example III – A Si1 xGex/Si Superlattice on Si

In our last example, we have applied our fitting procedure to a superlattice
(i.e., a periodic repetition of two or more layers) with nominal structure
[Si0.5Ge0.5(10 nm)/Si(22 nm)]5 capped with Si(10 nm), grown by molecular
beam epitaxy (MBE) on an Si(001) substrate. The measured curve and its
best-fit simulation are shown in Fig. 7.58. The reflectivity curves contain
much fine detail; Bragg peaks and Kiessig fringes between them are
clearly visible. The angular separation of adjacent Bragg peaks is related to
the superlattice period while the period of the Kiessig fringes is related to
the total thickness of the structure including the Si capping layer. Despite
the reasonably large number of adjustable parameters involved in this ex-
ample (a total of 11), the fitting procedure still managed to converge in ap-
proximately 4 minutes. The best-fit parameters and their uncertainties are
listed in Table 7.17. With the exception of the surface oxide layer (as-
sumed to be SiO2), which had a fitted density of 1.5 ± 0.1 g/cm3, all den-
sity values were fixed at their bulk values during the fitting. The Ge con-
centration was determined precisely by high-resolution X-ray diffraction to
be x = 57 ± 5% and also remained fixed during the fitting.

7.10 The Analysis of X-Ray Reflectivity Data 477

0.0 0.5 1.0 1.5 2.0 2.5 3.0

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

θ (deg)

In
te

n
s
it
y
 (

c
p
s
)

Fig. 7.58. X-ray reflectivity curves for an Si1 xGex/Si superlattice on an Si sub-
strate. The dashed line represents the measurements and the solid line is the best-
fit simulation.

Note that the fitting procedure automatically found an asymmetry be-
tween the SiGe-on-Si and Si-on-SiGe interfaces. The width of the latter in-
terfaces was almost twice that of the former. This asymmetry is due to
“waviness” at the Si-on-SiGe interfaces and has been observed by imaging
the interface using transmission electron microscopy (TEM).

7.10.5 Conclusions

We have developed an effective data-fitting and parameter optimization
method using a combination of the differential evolution algorithm and a
thoughtful consideration of the objective function. The procedure is robust
against nonlinearity, local minima in the objective function, data that spans
many orders of magnitude, and the choice of initial parameter values. The
method is conceptually simple, easy to implement and rapid in execution.
We have specifically applied the data-fitting method to the analysis of X-
ray reflectivity data; however, the method is general and could be applied
to many problems in science and engineering.

References

Bevington PR (1969) Data reduction and error analysis for the physical sciences.
McGraw-Hill, New York

478 7 Applications

Bowen DK, Tanner BK (1998) High-resolution x-ray diffraction and topography.
Taylor & Francis, London

Holý V, Pietsch U, Baumbach T (1999) High-resolution X-ray scattering from
thin-films and multilayers. Springer-Verlag, New York

Ibers JA, Hamilton WC (eds) (1974) International tables for crystallography, vol
IV. Kynoch, Birmingham

Névot L, Croce P (1980) Caractérisation des surfaces par reflexion rasante de ray-
ons X. Application à l’étude du polissage de quelques verres silicates. Revue
Physique Appliquée 15:761–779

Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys.ical
Review 95:359–369

Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1989) Numerical recipes
in Pascal – the art of scientific computing, Chaps. 10 and 14. Cambridge Uni-
versity Press

Storn R, Price K (1995) Differential evolution – a simple and efficient adaptive
scheme for global optimization over continuous spaces. Technical report TR-
95-012, ICSI, March 1995. PostScript file is downloadable from:
http://www.icsi.berkeley.edu/techreports/1995.abstracts/tr-95-012.html

Storn R, Price K (1997) Differential evolution – a simple evolution strategy for
fast optimization. Dr. Dobb’s Journal 22(4):18–24 and 78

Wormington M, Bowen DK, Tanner BK (1992) Principles and performance of a
PC-based program for simulation of grazing incidence X-ray reflectivity pro-
files. Materials Research Society Symposium Proceedings 238:119–124

Wormington M, Panaccione C, Matney KM, Bowen DK (1999) Characterization
of structures from X-ray scattering data using genetic algorithms. Philosophi-
cal Transactions of the Royal Society: Mathematics, Physics and Engineering
Science 357(1761):2827–2848

7.11 Inverse Fractal Problem

Ivan Zelinka

Abstract. This contribution focuses on the so-called inverse fractal prob-
lem and its solution by means of a new evolutionary algorithm – the dif-
ferential evolution algorithm. The principles behind the inverse fractal
problem are briefly explained here. The contribution then discusses the use
of differential evolution for the solution of the inverse fractal problem and
selected results.

7.11.1 General Introduction

The inverse fractal problem (IFP) arises where some appropriate mathe-
matical methods are searching for so-called “coefficients of affine trans-
formations”. These coefficients are used in fractal geometry to generate
“special” objects called fractals. The main aim of IFP is such that the dif-
ference between an observed object and an object generated by means of
identified coefficients of affine transformations is minimal. A good de-
scription of this problem can be found in Barnsley (1993) and a description
of fractal geometry in Peitgen et al. (1992), Barnsley (1993), Hastings and
Sugihara (1993) and Bunde and Shlomo (1996). The solution of IFP can be
based on two algorithms, i.e., IFS (Iterated Function System, Barnsley
1993) or TEA (Time Escape Algorithm, Barnsley 1993). Because there is a
clear relation between the IFS and TEA (Barnsley 1993), the IFS solved in
this contribution focuses on use of the TEA for ease of cost function con-
struction.

Other research articles on IFP from various points of view and by means
of various methods can be found in the literature (e.g., Arneodo et al.
1994, 1995; Muzy et al. 1994; Arul and Kanmani 1995; Struzik 1995,
1996; Deliu et al. 1997; Gutierrez et al. 2000).

Fractal Geometry – An Introduction

The basic idea of fractal geometry is that the geometric structure of the
main object body repeats itself at smaller scales inside the main body of
the observed object (Peitgen et al. 1992; Barnsley 1993; Hastings and Su-
gihara 1993; Bunde and Shlomo 1996). This geometrical repetition can be

480 7 Applications

extended to infinity but only in a mathematical sense. The term “infinity”
has to be taken into account only in such a sense, because in the real world
physical borders appear. Fractal structures behind these borders usually
disappear, such as, for example, in a bush–root system.

In fractal geometry fractals are divided into two main groups, i.e.,

• self-similar
• self-affine.

Self-similar fractals can usually be observed in the artificial–
mathematical world. Their characteristic attribute is that the structure of
the main body of the observed object repeats itself everywhere in the main
body at different levels of magnification (Fig. 7.59a). Any subset of such
an object is an exact copy of the main object.

Self-affine fractals are objects which can be observed everywhere at any
time. Examples are trees (Fig. 7.59b), clouds, water surface, etc. Their
characteristic attribute is that the structure of the main body of the ob-
served object does not repeat itself in the main body as an exact copy of
the original object. Any subset of such an object is an affine copy of the
main object.

a) b)

Fig. 7.59. Self-similar a and self-affine b fractals

Fractal construction can be performed by means of so-called affine

transformations. Transformations of this kind involve three geometrical

7.11 Inverse Fractal Problem 481

operations with the object under consideration – rotation, scaling and shift.
The mathematical description of the affine transformation is given by Eq.
7.118:

() .
cossin

sincos

2

1

21

21

1

1 +
−

==
f

e

x

x

rr

rr

x

x
wxw

ϑθ
ϑθ (7.118)

Basic body Scaling

Rotation Movement

Fig. 7.60. Affine transformations

The parameters in Eq. 7.118 have the following sense: r1 and r2 are so-
called scaling parameters which define the change in size – the reduction
along the x and y axes. The angles define rotation of the object around the
x and y axes, and parameters e and f define the shift along the x and y axes.
The action of all three types of transformations is represented artificially in

482 7 Applications

Fig. 7.60. By means of their composition very complicated structures can
be generated (Figs. 7.61–7.65).

Usually more than one affine transformation is needed to build up frac-
tal structure. For example, the fractal called the “Sierpinski triangle” (Fig.
7.59a) needs three affine transformations to be properly generated. By
means of repetition of a whole set of affine transformations, also called it-
eration, the fractal structure begins to emerge from the main object body
(Figs. 7.61–7.65).

a) b)

c) d)

Fig. 7.61. Affine transformations in action

As examples of the principles mentioned above, some fractals are gen-
erated here. One concerns three transformations applied on a basic object
called “Mr. Head”, namely rotation, shrinking and shifting (see second
head from bottom in Fig. 7.61b. They were repeated on the second head

7.11 Inverse Fractal Problem 483

and the third head was obtained. This was done again and again till 20 it-
erations had been completed and b) was finished. The same approach and
set of iterations as used on b) were used on one graphical object and c) and
then d) were created. A similar philosophy but with different transforma-
tions was used in Fig. 7.62. From both figures it is clearly visible that the
shape of the initial object is not important – which means that any structure
can be generated from any other structure.

Fractal construction by means of these described affine transformations
is also referred to as the iterated function system (IFS) algorithm (Barnsley
1993); it is able to generate black and white fractals.

Fig. 7.62. The same basic object and different final shape

The second algorithm which can be used for fractal creation is the so-
called time escape algorithm (TEA), also well described in Barnsley
(1993). This algorithm also has an iterative nature like the IFS and is based
on complex numbers using the philosophy of a user-defined “area” inside
which the trajectory starts. This trajectory is calculated in an iterative way
(the next point from the previous one) and after each calculation it is
checked whether the border of the user-defined area has been overstepped.
If so, then the start point is marked by a color which is proportional to the
number of iterations needed for overstepping, otherwise the point is black.
This means that black points are points which “show” or “are sources” of

484 7 Applications

“stable” behavior (the trajectory does not run away from the user-defined
area). Thus if coordinates of recalculated points are control parameters of
some dynamical system, then the TEA can be used for example for check-
ing the stability of a system etc.

After the first iteration After 10 iterations

Fig. 7.63. The fern

After the first iteration After 10 iterations

Fig. 7.64. The tree

7.11 Inverse Fractal Problem 485

“Alley” from fractal Tree

(other 5 iterations with Tree)

“Orchard” from Alley

(other 3 iterations with Alley)

Fig. 7.65. Alley and orchard

Fig. 7.66. Principle of TEA…

The whole principle of the TEA is demonstrated in Fig. 7.66 and Fig.
7.67, which are in principle based on Mandelbrot’s simple fractal given by
the equation

Cczczz nn ∈+=+ ""and""where2
1

(7.119)

Transformation into the colored version reveals a few “reefs”. The first
one is that fractal conversion from a black and white version into a colored
one is easy only for those fractals that do not contain the transformation of
rotation, and sets (black points) are not mutually overlapping. The second
“reef” is that the color composition of the final colored version of black
and white fractals depends on what color “rule” is associated with appro-

486 7 Applications

priate areas (where the IFS acts) or with areas where no IFS transformation
acts.

Fig. 7.67. …and its result.

Fig. 7.68. Various versions of a Christmas tree by TEA

7.11 Inverse Fractal Problem 487

Different ways of how to paint sectors are shown in Fig. 7.68 for a frac-
tal Christmas tree. Shown in Fig. 7.69 is a mix of both, i.e., the painting of
areas where no IFS transformation acts (left upper sector of the Sierpinski
triangle) and different color rules for whole fractal repainting (all four pic-
tures). All this means that there are different ways of how to generate col-
ored fractals. Only one part of the colored fractals is “stable”: a set of
black points which represents the original fractal from the IFS algorithm.
This is the main reason why only black and white versions of TEA fractals
were used for cost functions, as is described in the next subsection.

The third “reef” concerns the size of the grid which is used for TEA cal-
culation. From Fig. 7.66 and Fig. 7.67 it is clear that in the ideal case each
point should be recalculated, but practically this is impossible. Thus some
grid has to be defined (see Fig. 7.71). The size of the grid used then deter-
mines the time of calculations and precision of the depicted (or identified)
fractals.

Fig. 7.69. Various versions of the Sierpinski triangle by TEA

488 7 Applications

Inverse Fractal Problem

IFP is a process during which so-called coefficients of affine transforma-
tions are identified, or the coefficients of the TEA, which is complemen-
tary to the IFS algorithm (Barnsley 1993) as mentioned above. Fractal re-
construction is one of the well-known problems of fractal geometry and
was solved not just by evolutionary algorithms. IFP might be an artificial
problem, but its solution can help in time series processing (see fractal in-
terpolation of time series in Barnsley 1993) or as part of artificial intelli-
gence in computer vision (Hlavá and Šonka 1992). In computer vision
fractal geometry can be used in object description. Such a description is
not large in terms of data size and is exact – each pixel position is given by
the coefficients of affine transformations (Peitgen et al. 1992; Barnsley
1993; Hastings and Sugihara 1993; Bunde and Shlomo 1996; Zelinka
1999a).

Algorithms like the differential evolution algorithm (Lampinen 1999;
Lampinen and Zelinka 1999; Zelinka 2002a, 2002b; Storn 2002) can be
used for the solution of IFP here. For this purpose the cost function is de-
fined whose minimization “produces” coefficients of affine transforma-
tions. For IFP the TEA was chosen with a grid resolution of 100 × 100
cells. The rule of color association of the original TEA was modified so
that a recalculated cell remained black if its color was calculated as black,
otherwise the color was white. In this way colored fractals were trans-
formed into black and white versions. As a result of this transformation
black cells were associated to 1 and white cells to 0. The principle of the
cost function is shown in Fig. 7.70 and is given by Eq. 7.120:

Original

-

Identified

=

Difference

=

3153
different

cells

Fig. 7.70. Graphical principle of cost function of IFP

−=
yx

identorguc yxyx
PPf

,
,,

(7.120)

7.11 Inverse Fractal Problem 489

In Eq. 7.120 the terms Porg and Pident represent respectively the original
and actually identified elements of the matrix of cells of the fractal picture.
This formula calculates the sum of cells in which both fractals differ.
Minimization of this cost function (zero in the ideal case) leads to optimal
coefficients, which should be the same as the coefficients of the original
fractal. For each combination of coefficients the cost function returns the
total sum – a scalar. For simple and maximally identified two-coefficient
fractals such a cost function can be depicted like the geometrical surface
shown in Fig. 7.71. This picture represents the surface of the cost function
of the fractal “Spider” (for the equation, see Eq. 7.123). The global ex-
treme (the black spot set on position {41,11}) is surrounded by a flat land-
scape which makes finding the global extreme harder especially for gradi-
ent-based methods. This is not a problem for the class of evolutionary
algorithms. IFP has been solved many times by different evolutionary al-
gorithms such as the hybrid evolutive–genetic strategy (Gutierrez et al.
2000), genetic algorithms, etc. Also, hybrid or different approaches like
wavelet analysis have been used for the solution of IFP (Arneodo et al.
1994; Muzy et al. 1994). Differential evolution was chosen for the solution
of IFP here for two reasons, as follows.

Fig. 7.71. Landscape of the “Spider” cost function. The global extreme is ap-
proximately located near coordinates b = 4.15 and a = 1.11 (axes divided by 10).
The global extreme is in fact a point – here a black “spot” due to quite a rough
grid that was used to increase the speed of calculations.

The first reason is that DE’s population is floating-point encoded. Indi-
viduals of the population, which is binary encoded, have limited precision
(in recalculating from the binary to the decimal domain), which can lead

Global extreme

490 7 Applications

evolutionary process into a local extreme instead of global one, while
floating-point encoded population doesn’t suffer by such “property”. The
second reason is the fact that DE is very capable of finding global ex-
tremes on surfaces which are surrounded by a “flat landscape”; it does not
matter what size of dimension is determined for the solved problem. This
ability of DE was demonstrated for example in a “pathological function”,
see Zelinka (2001, 2002b). For all simulations here the DE version
“DE/Rand/1/Bin” was chosen, which in the author’s opinion is one of the
best versions of DE. It was used for many problems with good success (see
for example Lampinen 1999; Storn 2002; Zelinka 2001, 2002a, 2002b).
The parameter settings of DE in the frame of IFP were similar for all simu-
lations. Table 7.18 describes the parameter settings for the basic simula-
tions of IFP.

Table 7.18. Parameter settings for basic simulations of IFP (Eqs. 7.121–7.123)

Fractal NP D Generations F CR Parameters
(a,b,c,d)

Mandelbrot 20 2 100 0.82 0.3 <0, 3>
Vortex 20 2 100 0.82 0.3 <0, 3>
Spider 200 4 1000 0.2 0.73 <0, 5>

Identification of fractal objects was done by DE so that a population of
individuals of size = number of searched coefficients (Eqs. 7.121–7.123)
was generated. For Mandelbrot set individuals of size = 2 (a, b, see Eq.
7.121), for vortex individuals of size = 2 (a, b, see Eq. 7.122) and for spi-
der individuals of size = 4 (a, b, c, d, see Eq. 7.123), then

>∈<∈+=+ 3,0,&""&""1 baCczwhereczaz b
nn

(7.121)

>∈<∈+=+ 3,0,&""68.1 baCzwhereizaz b
nn

(7.122)

>∈<∈++=+ 3,0,,,&""78.1 dcbaCzwherezczaz d
n

b
nn

(7.123)

In this basic IFP three fractals were identified in total, i.e., the Mandel-
brot set (Eq. 7.121), the vortex (Eq. 7.122) and the spider (Eq. 7.123) (see
Figs. 7.73–7.75). Each IFP was repeated 100 times to check the validity
and robustness of the results obtained. Shown in Fig. 7.72 for demonstra-
tion purposes are the histories of all 100 simulations done by DE for the
Mandelbrot set. Original fractals for which IFP was done are not depicted
here because the results of IFP (Figs. 7.73–7.75) are almost the same.

7.11 Inverse Fractal Problem 491

Fig. 7.72. Simulation of IFP repeated 100 times for the Mandelbrot set by DE

Start Evolution

Evolution End

Fig. 7.73. IFP of Mandelbrot set

492 7 Applications

Start Evolution

Evolution End

Fig. 7.74. IFP of vortex

In the context of all three basic simulations good results were obtained
by means of DE. All three simulations were done under the presumption
that Eqs. 7.121–7.123 are known and only parameters should be estimated.
These presumptions are usually not valid, because in the real world there is
no a priori known structure of Eqs. 7.121–7.123 which generates the ob-
served object.

To show that DE is able to solve IFP, including estimation of the struc-
ture of “fractal” equations, some additional simulations were done. These
simulations were based on Eqs. 7.124–7.126:

>∈<∈
++=+

3,0,,,&""&""
1

edbaCczwhere

czdzaz e
n

b
nn

(7.124)

>∈<∈
+++=+

3,0,,,,,&""&""
1

gfedbaCczwhere

czfzdzaz g
n

e
n

b
nn

(7.125)

]1,0[,&3,0,,,&""&""
1

∈>∈<∈
++=+

gfedbaCczwhere

czdgzafz e
n

b
nn

(7.126)

7.11 Inverse Fractal Problem 493

Start Evolution

Evolution End

Fig. 7.75. IFP of spider

The first equation, Eq. 7.124, is basically Eq. 7.121 enriched with an
additional term as well as Eq. 7.125 and Eq. 7.126. IFP simulations based
on Eqs. 7.124–7.125 demonstrate by their numerical and graphical outputs
(Table 7.19, Fig. 7.76) that the same fractal can be generated by different
equations, which can be called “redundant” for the sake of additional
terms, which are not needed for generation of the final fractal structure.

If the different equations can generate the same fractal, then the question
arises: “how can one select the optimal equation (not redundant) of all pos-
sible equations?” There is probably more than one approach to solving this
problem. Here the simplest one is discussed and demonstrated. The main
idea is that redundant terms can be “disabled” from the equation during
evolutionary searching for IFP. This disabling is satisfied by converting
Eq. 7.124 to Eq. 7.126 by means of additional parameters f and g which
belong to the discrete set [0,1]. Their values in multiplication are responsi-
ble for disabling or enabling the appropriate term in the relevant equation.

494 7 Applications

Table 7.19. IFP simulations, selected results of 100 repeated simulations.

a) Eq. 7.124 b) Eq. 7.125 c) Eq. 7.126

Fig. 7.76. Graphical “output” of simulations based on Eqs. 7.124–7.126, selected
results of 100 repeated simulations.

The results in Table 7.19, selected from 100 repeated simulations, show
that this approach is viable because parameter f = 0, i.e., the first term in
Eq. 7.126 is disabled, and because g = 1 the second term in Eq. 7.126 is
enabled. It can be seen that the enabled second term has exactly the same
parameters as the Mandelbrot set which was identified originally. The
graphical representation of the finally identified and consequently gener-
ated structure appears in Fig. 7.76c.

Software Support

All the above-mentioned examples are supported in the C language, a
Mathematica environment notebook and are accessible on the Internet (Ze-
linka 2002b). In C++ for running IFP special initial files have to be used.
The syntax for their use in a DOS environment is “Der1b IFP”. For DE,
version DE/Rand1//Bin is used (remaining versions are in development
now). Term IFP represents one of the three names of initializing files, i.e.,
“Mandelbrot”, “Vortex” or “Spider”. After completion two files will be

IFP simulation according to equation Estimated
parameters Eq. 7.124 Eq. 7.125 Eq. 7.126

a 0.53743 0.01714 0.45900
b 1.94713 2.96700 2.26800
d 0.50508 0.06780 1.03154
e 2.08631 0.00600 2.00110
f – 1.02654 0
g – 1.99800 1

7.11 Inverse Fractal Problem 495

created with extension *.HST and *.OUT (where * represents the appro-
priate name of the IFP initial file). In the HST file the history of the evolu-
tion (migration loops or generations) is shown. In the OUT file is a report
with all the details about the simulation including estimated parameters.
The content of initializing files can be changed, but it is important to re-
member that results can differ from simulation to simulation because the
parameters of the algorithm may be modified. For more details see Zelinka
(2002b).

The cost function of, for example, the Mandelbrot set is shown in Fig.
7.77. Code for other fractals is similar to this one.

For the Mathematica environment Zelinka (2002b) provides an accessi-
ble notebook which contains the DE, some examples and selected simula-
tions of basic IFP depicted in this section. All-important information on
how to handle this notebook is given on the web site.

7.11.2 Conclusion

In this contribution the inverse fractal problem was solved by means of a
differential evolution algorithm. Two kinds of inverse fractal problem
simulations were undertaken using differential evolution. Both sets of
simulations were based on the time escape algorithm, which is the source
of colored fractals. This algorithm was chosen because of its “complemen-
tarity” with the algorithm called the iterated function system (Barnsley
1993) or multiple reduction copy machine (Peitgen et al. 1992). The term
“complementarity” here means that the iterated function system (or multi-
ple reduction copy machine) can be converted into the time escape algo-
rithm and vice versa (Barnsley 1993). In the case of the time escape algo-
rithm it is easier to build up the cost function – the main reason why this
algorithm was chosen for the inverse fractal problem.

The first set of simulations focused on identification of appropriate pa-
rameters with a priori knowledge of the equation structure. Three well-
known fractals, i.e., the Mandelbrot set (Eq. 7.121), vortex (Eq. 7.122) and
spider (Eq. 7.123), were selected for these simulations. According to re-
sults from the simulations in Figs. 7.72–7.75 it can be seen that the inverse
fractal problem is solvable by means of differential evolution as well as by
other evolutionary algorithms. In the second set of simulations attention
was focused on parameter estimation as well as on optimal equation struc-
ture. Results were again satisfactory. Despite the fact that the simulations
here can look like easy ones, results show that the inverse fractal problem
is solvable quite well if the appropriate technique is used.

496 7 Applications

//Inverse Fractal Problem - Mandelbrot
//See http://www.ft.utb.cz/people/zelinka/soma.htm
//** Mandelbrot for constant k and power n -> kz^2-c **

#ifdef __cplusplus
 #include <complex.h>
#endif
double absval,Im,Re,incIm,incRe,m,n;
int TEA,UserArea,UserNunmIts,Org,Ident,Difference;
#ifdef __cplusplus /* if C++, use class complex */
complex Mand(0,0);
complex MandOrg(0,0);
complex C(0,0);
complex COrg(0,0);

m=getPopulation(0,Individual);
n=getPopulation(1,Individual);
UserArea=10;
UserNunmIts=50;
Difference=0;
for(Im=-2;Im<0.5+incIm;Im=Im+incIm)
 for(Re=-1;Re<1+incRe;Re=Re+incRe)
 {
 Org=Ident=0;
 Mand = complex(0,0);
 C = complex(Re,Im);
 MandOrg = complex(0,0);
 COrg = complex(Re,Im);
 for(TEA=0;TEA<UserNunmIts;TEA++)
 {
 if(Ident=0)
 {
 if(abs(Mand)>UserArea)
 Mand = m * pow(Mand,n) + C;
 Ident=1;
 }
 if(Org=0)
 {
 if(abs(MandOrg)>UserArea)
 MandOrg = 1 * pow(MandOrg,2) + COrg;
 Org=1;
 }
 }
 Difference = Difference + abs(Org-Ident);
 }
CostValue=Difference;
#endif

Fig. 7.77. Cost function for “Mandelbrot set” in the C language, see Zelinka
(2002b).

From a general point of view the inverse fractal problem is not just an
“academic toy” because its use can be very practical. Future possible uses
lie for example in computer vision (Zelinka 1999b, 1999c) where the se-
lected object in the digital picture can be described by fractal geometry.

7.11 Inverse Fractal Problem 497

This type of description consists in high compression of the object de-
scribed (see the fern, 24 numbers in the fractal approach or megabytes in,
for example, the bitmap description) without loss of any information about
its structure. In standard computer vision methods this is a problem. The
object is usually described roughly (low amount of data, no information
about structure) or described in high detail (huge amount of data) and the
object classification based on such a large data set is thus problematic. For
more details see Hlavá and Šonka (1992) and Zelinka (1999b, 1999c).
Another possible use of the inverse fractal problem is in fitting missing
data if a data set has fractal properties. For more details see fractal interpo-
lation in Arneodo et al. (1995).

The simulations done here can be taken as basic simulations, which
show not only how the inverse fractal problem can be solved and to what
quality, but also how robust differential evolution is in finding the global
extreme.

References

Arneodo A, Bacry E, Muzy J (1994) Solving the Inverse Fractal Problem from
Wavelet Analysis. Europhysics Letters 25(7):479–484

Arneodo A, Bacry E, Muzy J (1995) The Thermodynamics of Fractals Revisited
with Wavelets. Physica A 213(1–2):232–275

Arul A, Kanmani S (1995) A Conjugate Transform Solution to the Inverse Fractal
Problem. Europhysics Letters 32(1):1–5

Barnsley MF (1993) Fractals everywhere. Academic Press, New York
Bunde A, Shlomo H (1996) Fractals and disordered systems. Springer, Berlin
Deliu A, Geronimo J, Shonkwiler R (1997) On the inverse fractal problem for

two-dimensional attractors. Philosophical Transactions of The Royal Society
of London, Series A: Mathematical, Physical and Engineering Sciences
355(1726):1017–1062

Gutierrez J, Cofino A, Ivanissevich M (2000) An hybrid evolutive-genetic strategy
for the inverse fractal problem of IFS models. In: Advances in Artificial Intel-
ligence. Lecture notes in artificial intelligence, vol 1952. Springer, Berlin, pp
467–476

Hastings HM, Sugihara G (1993) Fractals: a user’s guide for the natural sciences.
Oxford University Press

Hlavá V, Šonka M (1992) Po íta ové vid ní (Computer Vision, Czech edn).
Grada, Prague

Lampinen J (1999) A bibliography of differential evolution algorithms. Technical
report, Lappeenranta University of Technology, Department of Information
Technology, Laboratory of Information Processing, October 16. Available at:

 http://www.lut.fi/~jlampine/debiblio.htm

498 7 Applications

Lampinen J, Zelinka I (1999) Mechanical engineering design optimization by dif-
ferential evolution. In: New ideas in optimization. McGraw-Hill, London

Muzy J, Bacry E, Arneodo A (1994) The multifractal formalism revisited with
wavelets. International Journal of Bifurcation and Chaos 4(2):245–302

Peitgen HO, Jürgens H, Saupe D (1992) Chaos and fractals: new frontiers of sci-
ence. Springer, Berlin

Storn R (2002) Homepage of DE. Available at:
 http://www.icsi.berkeley.edu/~storn/code.html
Struzik Z (1995) The wavelet transform in the solution to the inverse fractal prob-

lem. Fractals – An Interdisciplinary Journal on the Complex Geometry of Na-
ture 3(2):329–350

Struzik Z (1996) Solving the two-dimensional inverse fractal problem with the
wavelet transform. Fractals – An Interdisciplinary Journal on the Complex
Geometry of Nature 4(4):469–475

Zelinka I (1999a) Aplikovaná informatika, vol 1. Edi ní st edisko, Fakulty tech-
nologické, VUT, Zlín

Zelinka I (1999b) Inverse fractal problem by means of evolutionary algorithms.
In: Mendel’99, 5th international conference on soft computing, PC-DIR,
Brno, pp 430–435

Zelinka I (1999c) Fraktální vid ní pomocí neuronových sítí. In: Process control
’99, vol 1. Slovak University of Technology, Vydavatelstvo STU Bratislava,
pp 318–322

Zelinka I (2001) Prediction and analysis of behavior of dynamical systems by
means of artificial intelligence and synergetics, Ph.D. thesis, Tomas Bata
University, Zlín, Czech Republic

Zelinka I (2002a) Um lá inteligence v problémech globální optimalizace (Artifi-
cial intelligence in problems of global optimization, Czech ed). BEN, Prague.
ISBN 80-7300-069-5

Zelinka I (2002b) Information on DE algorithm. Available at:
http://www.ft.utb.cz/people/zelinka/soma

7.12 Active Compensation in RF-Driven Plasmas by
Means of Differential Evolution

Ivan Zelinka and Lars Nolle

Abstract. In this section two different stochastic optimization methods are
discussed and compared. They were applied to the deduction of 14 Fourier
terms in a radio-frequency (RF) waveform to tune a Langmuir probe.
Langmuir probes are diagnostic tools used to analyze the electron energy
distribution in plasma processes. RF plasmas are inherently nonlinear, and
many harmonics of the driving fundamental are generated in the plasma.
RF components across the probe sheath distort the measurements made by
the probes. To improve the quality of the measurements, these RF compo-
nents must be removed. In this research, this was achieved by applying an
RF signal to the probe tip that matches both the phase and amplitude of the
driving RF signal. It also had to match the waveform of the plasma, which
is determined by the nonlinearity of the plasma. Here, seven harmonics are
used to generate the waveform. Therefore, 14 mutually interacting parame-
ters (seven phases and seven amplitudes) had to be tuned on-line. In this
work, two stochastic optimization algorithms were used for automated tun-
ing of the probe – simulated annealing (SA) and differential evolution
(DE). SA was previously used for this problem, whereas DE was chosen
and compared with SA because of its reported global optimization per-
formance.

7.12.1 Introduction

Radio-frequency (RF) driven discharge plasmas, which are partially ion-
ized gases that are not in thermal equilibrium with their surroundings, are
widely used in the material processing industry for etching, deposition and
surface treatment, e.g., in the semiconductor industry. In order to achieve
best-quality products, it is essential for users of such plasmas to have tight
control over the plasma and hence they need appropriate diagnostic tools
in order to close the control loop. Better diagnostics lead to better control
of the plasma and hence to better-quality products. In this work, simulated
annealing (SA) and differential evolution (DE) are used and compared to
control a Langmuir probe, which is a diagnostic measurement system for
industrial RF-driven plasma systems.

500 7 Applications

7.12.2 RF-Driven Plasmas

Under normal conditions gases do not conduct electrically. Almost all
electrons are bound to atoms or molecules. If, however, electrons are in-
troduced and given enough energy by an external power source (e.g., elec-
tromagnetic fields, light, heat, etc.), then they have the potential on collid-
ing with gas atoms or surfaces to release more electrons, which themselves
may release other electrons. This resulting electrical breakdown is known
as an avalanche effect. The ionized gas or plasma so formed is now con-
ducting.

In the case of industrial RF-powered plasmas, an RF generator is used
as an external power source, usually operating at 13.56 MHz. The use of
RF rather than DC has developed for a number of reasons including effi-
ciency and compatibility with systems in which direct electrical contact
with the plasma is not feasible. This frequency is assigned for industrial,
non-telecommunications use. The RF is inductively or capacitively cou-
pled into a constant gas flow through a vacuum vessel using electrodes, see
Fig. 7.78.

~Plasma

RF Generator

Output

Input

Massflow controller

Vacuum Vessel

Fig. 7.78. Principle of RF-driven plasmas

The main application of RF-powered plasmas is to produce a flux of en-
ergetic ions, which can be applied continuously to a large area of a work-
piece, e.g., for etching or deposition. This flux is generated by the RF
plasma because the mass of the electrons is only a fraction of the mass of
the atoms, and hence they can follow the electric field, while the ions re-
spond only to slower variations in electrical structure. Electrons near the

7.12 Active Compensation in RF-Driven Plasmas 501

electrodes can thus escape, which results in electric fields, pointing from
the plasma to the electrodes. These fields then generate a flux of energetic
ions.

7.12.3 Langmuir Probes

Langmuir probes, developed in 1924 by Irving Langmuir, are one of the
oldest probes used to obtain information about low-pressure plasma prop-
erties. They are metallic electrodes, which are inserted into a plasma. By
applying a positive or negative DC potential to the probe, either an ion or
an electron current can be drawn from the plasma, returning via a large
conducting surface such as the walls of the vacuum vessel or an electrode.
This current is used to analyze the plasma properties, e.g., for the determi-
nation of the energy of electrons, electron particle density, etc.

The region of space charge (or sheath) that forms around a probe im-
mersed in a plasma has a highly nonlinear electrical characteristic. As a re-
sult, harmonic components of potential across this layer give rise to serious
distortion of the probe’s signal. In RF-generated plasmas this is a major is-
sue as the excitation process necessarily leads to the space potential in the
plasma having RF components. As a consequence of this fact a serious dis-
tortion of the probe’s signal can be observed. It is caused by harmonic
components of potential across this layer.

7.12.4 Active Compensation in RF-Driven Plasmas

To eliminate the time variation of RF potential difference, which is be-
tween the probe and plasma, the probe potential has to follow that of the
exciting RF signal (Benjamin et al. 1988). This can be achieved by super-
imposing a synchronous signal of appropriate amplitude and phase onto
the probe tip. Because plasmas are inherently nonlinear, they generate
many harmonics of the exciting fundamental. As a consequence, the RF
signal necessary for satisfactory compensation has not only to match the
amplitude and the phase of the exciting RF, but also to match the wave-
form of the harmonics generated in the plasma.

Conveniently, the electrostatic probe and the plasma spontaneously gen-
erate a useful control signal. In the presence of plasma, an isolated electro-
static probe adopts a “floating potential”, at which it draws zero current.
The effect of inadequate compensation on a probe in an RF plasma is to
drive the DC potential of the probe less positive (or less negative). Thus,
optimal tuning is identical with the probe adopting the most positive (or

502 7 Applications

least negative) potential. The “floating potential” is also referred to here as
a DC bias.

7.12.5 Automated Control System Structure and Fitness
Function

During previous work, an additive synthesizer (harmonic box) with seven
harmonics was developed (Nolle et al. 2002) to generate the appropriate
waveform for a Langmuir probe system attached to a Gaseous Electronics
Conference (GEC) reference reactor (Sobolewski 1992). Figure 7.79
shows the schematics of the control system for waveform tuning.

PC with Xwos system

DC Buffer

DC Bias

Harmonic Generator RF Generator

Langmuir Probe GEC Cell

Sync

Plasma

RFRF Signal

Floating Potencial

14 Control Signals

Floating Potential

Fig. 7.79. Closed control loop for waveform tuning

The control software selects set points for the harmonic generator and
sets the parameters using 14 D/A converter channels. The harmonic box,
which is synchronized with the main RF power generator, outputs the re-
quired waveform to the Langmuir probe. The Langmuir probe’s floating
potential (DC bias) is used as a fitness measure. It is read on-line via a DC
buffer and an A/D converter by the computer system. Depending on the
optimization algorithm used in the system, the software then calculates a
new set point based on the actual measure of the fitness (DC bias). It can
be seen that all the fitness evaluations are actually measurements rather
than simulation results. This implies time restrictions on the search proc-
ess.

The 14 input parameters (seven amplitudes and seven phases) are
strongly interacting due to the technical realization of the synthesizer and
the nature of the problem. For example, the slightest departure from an
ideal sinusoidal shape in one of the channels introduces harmonics. In
practice, even after careful electronic design, it is found that there is a
weak but significant coupling between amplitude control and phase and

7.12 Active Compensation in RF-Driven Plasmas 503

vice versa. As a consequence, the number of points in the discrete search
space has to be calculated as follows:

()

optimized.be toparametersofnumber

bitsinchannelperresolution

spacesearchinpointsofnumber

:where

2

=
=
=

=

p

b

n

n
pb (7.127)

The D/A and A/D converters used in this project had a resolution of 12
bits and the dimensionality of the search space was 14. Hence, the search
space consisted of n ≈ 3.7 × 1050 search points. In this case, mapping out
the entire search space would take approximately 1041 years with the
plasma system used. This was clearly not an option!

In previous work, SA was used successfully to tune the Langmuir probe
(Nolle et al. 2002). The results could even be improved further by intro-
ducing step width adaptation to SA (Nolle et al. 2001). However, small
variations in fitness indicated that the SA algorithm had not always found
the precise global solution, even if it always came quite close to it. There-
fore, in this research DE (Price 1999) was used for the optimization and
compared with SA.

For this application domain, only simplified physical models are avail-
able. For the tuning of the Langmuir probe, these models were not accurate
enough to simulate the complex plasma system used. Hence, the fitness
function f could not be calculated, but was an actual measurement of the
DC bias produced by the real process during the experiments (Fig. 7.79):

()

phases.seven,,

amplitudesseven,,

where

,,,,,

71

71

7171

pp

aa

ppaafDCBiasf reactorfitness == (7.128)

Therefore, the fitness value was obtained on-line from the real process.
This means that from the observer’s point of view, the fitness function was
basically a “black box”.

504 7 Applications

a)

b)

Fig. 7.80. Laboratory equipment: a computer with control software (right), wave
synthesizer (left bottom) and oscilloscope (left top); b plasma reactor with Lang-
muir probe.

7.12.6 Experimental Setup

All experiments were carried out at the Oxford Research Unit, The Open
University, UK. Figure 7.80 shows the experimental setup. Apart from the
control system described above, a digital oscilloscope was used to measure
the actual waveforms found by the two optimization algorithms. The con-
trol software was run on a PC under the Linux operating system. The algo-
rithms used for this experiments were written in C++ and integrated in the

7.12 Active Compensation in RF-Driven Plasmas 505

existing Langmuir probe control software. The plasma system used was a
standard GEC cell.

7.12.7 Parameters and Experimental Design

Table 7.20 shows the plasma parameters used for the experiments, whereas
Table 7.21 states the parameter settings for the optimization algorithms.

The parameter settings for SA were chosen to be the same as in previous
experiments (Nolle et al. 2001). The DE parameters were then selected
empirically (Lampinen and Zelinka 1999; Price 1999; Zelinka 2002). Find-
ing the optimum parameter settings is not an easy task, because the plasma
drifts over time, i.e., its behavior is not constant. The plasma can change
its behavior constantly over time as well as spontaneously.

Table 7.20. Plasma parameters

Plasma parameters
Gas Argon
Power 50 W
Pressure 100 mTorr
Flow rate 95 sccm

Table 7.21. The best parameter settings used in experiments

Simulated annealing Differential evolution
Tstart 25,000 CR 0.5
Temperature coeff. 0.8 F 0.8
Iterations per
temperature

50
NP 50

Smax 4000 Generations 250
Number of particles 3
Iterations 4000

The experiments were designed so that for both algorithms one optimi-
zation cycle took no longer than 4 minutes, which was a requirement made
by users of such plasma diagnostic systems. Despite the fact that the search
time was limited to 4 minutes, approximately 12,000 cost function evalua-
tions, i.e., DC bias measurements, were achieved in one optimization run.

506 7 Applications

a) DE

b) SA

Fig. 7.81. Fitness value history

7.12 Active Compensation in RF-Driven Plasmas 507

a) DE

b) SA

Fig. 7.82. Waveform

508 7 Applications

a) DE

b) SA

Fig. 7.83. Estimated parameters and diversity

7.12 Active Compensation in RF-Driven Plasmas 509

7.12.8 Results

The experimental results can be seen in Figs. 7.81–7.84 for both algo-
rithms. Figure 7.81 shows a typical search run over time. The average fit-
ness of the population, the best individual in the current generation and the
standard deviation are given. In Fig. 7.82 the average waveform found by
the algorithms is depicted and Fig. 7.83 shows the average values and the
deviation for all the 14 parameters found by the algorithm.

In Fig. 7.84 it can be seen that DE had outperformed SA not only by
finding a greater average fitness, but also by having a smaller standard de-
viation than SA.

Fig. 7.84. Diversity and average value of fitness value (highest DC bias).

7.12.9 Conclusion

Two stochastic optimization algorithms, SA and DE, were used for on-line
optimization to tune an actively compensated Langmuir probe system.
These algorithms were selected because of the complexity of the problem.
Based on the experimental results, which are depicted in Figs. 7.81–7.84,
one can draw the following conclusions:

Ability to be used. Both algorithms can be used for active compensation
in RF-driven plasmas. However, based on the results in Figs. 7.81–7.83 it
is clear that DE has greater potential for this task.

Preciseness and reproducibility. One of the crucial points in science is
reproducibility, i.e., the ability to achieve the same results for two identical

510 7 Applications

experiments. In practical applications like this one, a high degree of repro-
ducibility is needed. From Fig. 7.83 it can be seen that DE has a greater
reproducibility than SA. It is also more precise than SA.

Speed. The speed of the optimization process was not determined by the
computer power available, but by the time constants of the analogue
equipment, e.g., the harmonic box. Therefore, both algorithms have shown
similar speed performance in this specific application.

Diversity. This is closely connected with preciseness and reproducibil-
ity. From this point of view, DE performed almost three times better than
SA. If one remembers that plasmas are highly nonlinear dynamical sys-
tems with complicated behavior, then the results produced by DE are very
sufficient.

Although only two algorithms were used for these experiments, the time
needed for setting up the experiments and the actual realization took
slightly more than 2 weeks. The time needed for each experiment was 4
minutes. This time can be reduced by using previous results, e.g., by using
solutions from previous runs as start points for new search runs. This
modification should be considered for future experiments with active com-
pensation in RF-driven plasmas.

Acknowledgments

This work was supported by grant NO. MSM 26500014 from the Ministry
of Education of the Czech Republic and by grants from the Grant Agency
of the Czech Republic (GACR 102/00/0526 and GACR 102/02/0204). The
authors wish to express their thanks to Professor Nicholas St. J.
Braithwaite, Director of the Oxford Research Unit, and Professor Adrian
Hopgood, Head of School of Computing and Mathematics, The Notting-
ham Trent University, for supplying resources and advice.

References

Benjamin NMP, Braithwaite NSJ, Allen JE (1988) Self bias of an r.f. driven probe
in an r.f. plasma. Materials Research Society Symposium Proceedings
117:275–280

Lampinen J, Zelinka I (1999) Mechanical engineering design optimization by dif-
ferential evolution. In: Corne D, Dorigo M, Glover F (eds) New ideas in op-
timization. McGraw-Hill, London, pp 127–146

Nolle L, Goodyear A, Hopgood AA, Picton PD, Braithwaite NSJ (2001) On step
width adaptation in simulated annealing for continuous parameter optimisa-

7.12 Active Compensation in RF-Driven Plasmas 511

tion. In: Reusch B (ed) Computational intelligence – theory and applications.
Lecture notes in computer science, vol 2206. Springer, Berlin Heidelberg New
York, pp 589–598

Nolle L, Goodyear A, Hopgood AA, Piction PD, Braithwaite NSJ (2002) Auto-
mated control of an actively compensated Langmuir probe system using simu-
lated annealing. Knowledge-Based Systems 15(5–6):349–354

Price K (1999) Differential evolution. In: Corne D, Dorigo M, Glover F (eds) New
ideas in optimization, McGraw-Hill, London

Sobolewski MA (1992) Electrical characterization of radio frequency discharges
in the Gaseous Electronics Conference reference cell. Journal of Vacuum Sci-
ence & Technology A – Vacuum Surfaces and Films 10(6):3550–3562

Zelinka I (2002) Um lá inteligence v problémech globální optimalizace (Artifi-
cial intelligence in problems of global optimization, Czech ed). BEN, Prague.
ISBN 80-7300-069-5

Appendix

This appendix contains a total of twenty test functions that have been di-
vided into three categories: unconstrained uni-modal (5), unconstrained
multi-modal (12) and bound-constrained multi-modal (3). Functions range
from trivially simple to very challenging. Most test functions can be evalu-
ated at more than one dimension. Each function definition includes a set of
upper and lower initial parameter bounds. In this test bed, a function’s ini-
tial parameter bounds apply to all of its parameters. For bound-constrained
functions, initial parameter bounds also constrain the search.

Each test problem description also lists the minimum objective function
value. In most cases, the minimum is independent of the function’s dimen-
sion. If, however, the objective function’s minimum depends on its dimen-
sion, then the optimal function values for selected dimensions are given.
Problem descriptions also include a value for ε to indicate how close to the
minimum objective value an optimizer’s best point must be before the op-
timization can be considered a success. In all cases, this value-to-reach, or
“VTR”, is VTR = f(x*) + ε, where x* is the globally optimal vector.

In most cases, a picture is included that illustrates the function’s two-
dimensional landscape. Usually, these two-dimensional figures provide in-
sight into the characteristics of the higher-dimensional functions, but in a
couple of cases (e.g., Storn’s Chebyshev function) the restriction to two
dimensions does not permit the difficulties posed by the function to be
faithfully rendered. In some cases, figures are not possible due to technical
reasons. Not all functions listed here are used in the text of this book, but
all appear on the accompanying CD-ROM.

Some functions in this appendix are taken from the test bed developed
for the Second International Contest on Evolutionary Optimization (2nd

ICEO). The actual contest was not held due to a lack of participation, but
code and data for functions described as 2nd ICEO functions can be found
on both the CD-ROM that accompanies this book and on the Internet
(Second ICEO 1997). For a moderately challenging test bed of constrained
functions, the interested reader is referred to Michalewicz and Shoenauer
(1996).

514 Appendix

A.1 Unconstrained Uni-Modal Test Functions

This section includes five unconstrained, uni-modal test functions, none of
which should pose a problem for a robust optimizer. Not all sources agree
on the initial parameter bounds for these functions, but in practice these
variations do not dramatically affect run times or the probability of suc-
cess. For many EAs, the most difficult function to optimize in this uni-
modal test bed is the generalized Rosenbrock function. In addition, some
GAs may have problems solving Schwefel’s ridge function because it is a
highly eccentric, rotated hyper-ellipsoid with dependent parameters.

A.1.1 Sphere

This simple function tests a search method’s local optimization speed and
its response to changing dimension. To accommodate bit-encoded GAs,
early test beds usually specified the initial parameter bounds as [–5.12,
5.12], but Yao and Liu’s more recent and widely referenced test bed (Yao
and Liu 1997) initializes parameters with values chosen from the interval
[–100, 100].

()

() .100.10,,0

,1,...,2,0,100100

,

6**

1

0

2

−

−

=

×===

−=≤≤−

=

εj

j

D

j

j

xf

Djx

xf

x

x
(A.1)

-5

0

5
-5

0

5
0

20

40

60

80

x
1

x
0

f(
x
)

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x
0

x
1

10

10

20

2
0

3
0

3
0

30
40

4
0

4
0

40

50

50

50

50

60

60

60

60

Fig. A.1. The sphere function

A.1 Unconstrained Uni-Modal Test Functions 515

A.1.2 Hyper-Ellipsoid

Some literature specifies [–5.12, 5.12] as the bounds for initializing this
function, but this book adopts the limits given in Yao and Liu (1997). To
decrease the eccentricity of the hyper-ellipsoid, some versions of this func-
tion use a term like (j + 1)2 as the pre-factor to xj instead of putting the pa-
rameter index in the exponent. This function can take a long time to solve
if an optimizer cannot adapt step sizes to suit each dimension.

()

() .100.10,,0

,1,...,1,0,100100

,2

6**

1

0

2

−

−

=

×===

−=≤≤−

⋅=

εj

j

D

j

j
j

xf

Djx

xf

x

x
(A.2)

-5

0

5
-5

0

5
0

50

100

150

x
1

x
0

f(
x
)

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x
0

x
1

20

20

40

40

60

60

80

80

80

80

Fig. A.2. The unrotated hyper-ellipsoid

A.1.3 Generalized Rosenbrock

The original Rosenbrock function was just two-dimensional, but it was
later generalized to this higher-dimensional version. The ridge in Fig. A.3
shows that this uni-modal function is non-convex. This function exhibits
limited parameter dependence that poses a problem for many optimizers.
Some studies use [–2.048, 2.048], while others use [–5.12, 5.12] for initial
parameter bounds. Yao and Liu initialized parameters with values chosen
from [–32, 32], but initial parameter bounds were [–30, 30] for studies in
this book.

516 Appendix

() () ()

() .100.1,1,0

,1,1,...,1,0,3030

,1100

6**

2

0

222
1

−

−

=
+

×===

>−=≤≤−

−+−⋅=

εj

j

D

j

jjj

xf

DDjx

xxxf

x

x
(A.3)

-2

-1

0

1

2 -2

0

2

0

1000

2000

3000

4000

x
1

x
0

f(
x
)

-2 -1 0 1 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
0

x
1

500

500

1000

1000

1500

1500

2000

2000

2500

2500

Fig. A.3. Rosenbrock’s function

A.1.4 Schwefel’s Ridge

When this function is posed as a minimization problem, the “ridge” in its
landscape becomes an elliptical “valley”. For some EAs, adapting to both
the orientation and high eccentricity of the ellipse can be a significant chal-
lenge. Some studies have used [–65.536, 65.536] as initial parameter
bounds, but this book adopts the bounds published in Yao and Liu (1997).

()

() .101.00,,0

,1,...,1,0,100100

,

6-**

1

0

2

0

×===

−=≤≤−

=
−

= =

εj

j

D

k

k

j

j

xf

Djx

xf

x

x

(A.4)

A.1 Unconstrained Uni-Modal Test Functions 517

-5

0

5
-5

0

5
0

50

100

150

200

x
1

x
0

f(
x
)

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

x
0

x
1

20

2
0

4
0

40

60

6
0

80

80

100

1
00

1
20

1
20

1
40

1
40

Fig. A.4. Schwefel’s ridge function

A.1.5 Neumaier #3

This function also displays elliptical contours that are aligned with coordi-
nate diagonals, but the optimum is not centered in the initial bounding box.

() ()

() () () () ().1,614

,100.1,1,...,1,0,

,1,1

**

622

1

0

1

1
1

2

jDjxDDDf

DjDxD

Dxxxf

j

j

D

j

D

j

jjj

−⋅+=−⋅+⋅−=

×=−=≤≤−

>⋅−−=

−

−

=

−

=
−

x

x

ε

(A.5)

-4
-2

0
2

4 -4

-2

0

2

4

-20

0

20

40

60

x
1

x
0

f(
x
)

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

3

4

x
0

x
1

0

10

10

2
0

20

30

3
0

30

40

40

Fig. A.5. Neumaier’s function number three

518 Appendix

A.2 Unconstrained Multi-Modal Test Functions

Uni-modal functions can reveal how an algorithm responds to dimension,
parameter dependence and disparities in step size, but few practical prob-
lems are so simple. The following multi-modal functions range from mod-
erately challenging to very difficult depending in part on the dimension at
which they are evaluated and on the amount of special knowledge about
the function that an optimizer exploits. Not all functions can be evaluated
at arbitrarily high dimensions.

A.2.1 Ackley

One of the most commonly cited multi-modal test functions is Ackley’s
function. At high dimension (e.g., D ≥ 30), care must be taken with com-
puter code to ensure a precise result. For example, the constant e =
2.71828… in Eq. A.6 is best implemented as e = exp(1). Bounds are usu-
ally given as [–32, 32], but this book uses [–30, 30].

() ()

() .100.1,0,0

,1,...,1,0,3030

,202cos
1

exp
1

2.0exp20

6**

1

0

1

0

2

−

−

=

−

=

×===

−=≤≤−

++⋅⋅−⋅⋅−⋅−=

ε

π

j

j

D

j

j

D

j

j

xf

Djx

ex
D

x
D

f

x

x

(A.6)

-20

0

20 -20

-10

0

10

20

0

5

10

15

20

25

x
1

x
0

f(
x
)

-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

x
0

x
1

24
4

4

4

4

4

6

6

6

6

6

6

6

6

6

6

6

8

8

8
8

8

8

8

8

8
8

8
8

10

10

1
0

1
0

Fig. A.6. The Ackley function at large scale

A.2 Unconstrained Multi-Modal Test Functions 519

Fig. A.7. The Ackley function at small scale

Fig. A.8. Griewangk’s function

A.2.2 Griewangk

This mildly parameter-dependent function becomes relatively easier to
solve as D increases. The summation term creates a parabolic bowl while
the product of cosine terms generates the local optima. As D increases, the
contribution from the cosine terms becomes less significant and the local
basins of attraction become shallower. At the same time, the relative size
of the optimal basin of attraction increases. See Whitley et al. (1996) for
details. It is not uncommon that this function will require a relatively large
population to forestall premature convergence.

520 Appendix

()

() .100.1,0,0

,1,...,1,0,600600

,1
1

cos
4000

1

6**

1

0

1

0

2

−

−

=

−

=

×===

−=≤≤−

+
+

−⋅= ∏

εj

j

D

j

D

j

i
j

xf

Djx

j

x
xf

x

x
(A.7)

-10

0

10 -10

-5

0

5

10

0

50

100

150

200

250

x
1

x
0

f(
x
)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

x
0

x
1

5

5

5

5

5

5

5

5

5

10

10
1
0

10

10

10

10

10

10

1
5

15

1
5

15

15

15

15

15

1
5

20

20

20

20

20

20

20

20

2
0

25

25

25

25

25

25

25

25

25
2
5

25

2
5

2
5

25

25

25

30

30

30

30

30

30

3
0

3
0

30

30

3
0

30

35

35

35

35

3
5

3
5

3
5

3
5

3
5

35

35

3
5

Fig. A.9. Rastrigin’s function

A.2.3 Rastrigin

Like the Ackley and Griewangk functions, Rastrigin’s function has many
local optima arrayed on the side of a larger bowl-shaped depression. This
function is separable as written and easily solved by methods that can ex-
ploit decomposable functions. It is much harder to solve when rotated.
Like Rosenbrock’s function, Rastrigin’s function is a generalization of a
two-dimensional function. Like the Ackley and Griewangk’s functions,
Rastrigin’s function is symmetric about its solution. Optimizers that search
the vicinity of the mean population vector will do well on these symmetric
functions because, like the local minima, the population will also be sym-
metrically distributed.

A.2 Unconstrained Multi-Modal Test Functions 521

() ()()

() .100.1,0,0

,1,...,1,0,12.512.5

,102cos10

6**

1

0

2

−

−

=

×===

−=≤≤−

+⋅⋅−=

ε

π

j

j

D

j

jj

xf

Djx

xxf

x

x
(A.8)

A.2.4 Salomon

The landscape for this parameter-dependent function resembles a pond
with ripples. Because this function is symmetric, methods that search the
vicinity of the population’s mean vector will likely perform well.

() ()

() .100.1,0,0

,1,...,1,0,100100

,

,11.02cos

6**

1

0

2

−

−

=

×===

−=≤≤−

=

+⋅+⋅−=

ε

π

j

j

D

j

j

xf

Djx

x

f

x

x

xxx (A.9)

-2

0

2 -2

-1

0

1

2

0

0.5

1

1.5

2

2.5

x(2)

x(1)

f(
x
)

-1 0 1

-1.5

-1

-0.5

0

0.5

1

1.5

x(1)

x
(2

)

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1

1

1

1

1

1

1.5

1.5

1
.5

1.5

1
.5

1
.5

1.5

1
.5

2

2

2 2

2

2

2

2

Fig. A.10. Salomon’s function

522 Appendix

A.2.5 Whitley

Whitley’s function is a composition of the Griewangk and Rosenbrock
functions. This implementation uses the unweighted full matrix expansion
detailed in Whitley et al. (1996). This function’s landscape resembles
Rosenbrock’s function at large scale and Griewangk’s function at small
scale.

() ()

() ()

() .100.1,1,0

,1,...,1,0,100100

,1100

,1cos
4000

6**

222
,

1

0

1

0
,

2
,

−

−

=

−

=

×===

−=≤≤−

−+−⋅=

+−=

εj

j

jjkkj

D

k

D

j

kj

kj

xf

Djx

xxxy

y
y

f

x

x
(A.10)

-10

0

10 -10

-5

0

5

10

0

5

10

15

x 10
8

x
1

x
0

f(
x
)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x
0

x
1

1
0
0

100

200
2

0
0

300

3
0
0

400

4
0
0

500

5
0

0

Fig. A.11. Whitley’s function (large scale)

A.2 Unconstrained Multi-Modal Test Functions 523

-1
0

1
-1

0

10

2

4

6

8

10

x
1

x
0

f(
x
)

-1 -0.5 0 0.5 1 1.5
-1

-0.5

0

0.5

1

1.5

x
0

x
1

1

1

1

2
2

2

2

2

2

2

3

3

3

3
3

3

3

3

3

33

3

3

3

3

3

3
3

3

4
4

4

4

4
4

4

4

4

4

4

4

4

5

5

5

5

5

5

5

5
5

5

5

5

5

6

6

6

6
6

6

6
6

6

66

6

6

6
6

7

7

7

8

8

8

9

9

9

Fig. A.12. Whitley’s function with values above 10 clipped

-0.5
0

0.5
1

1.5 -0.5

0

0.5

1

1.5
0

0.5

1

1.5

2

x
1

x
0

f(
x
)

-0.5 0 0.5 1 1.5
-0.5

0

0.5

1

1.5

x
0

x
1

1

1

1
1

1
1

1.2

1.2

1
.2

1
.4

1.4

1
.4

1.6

1.6

1
.6

1
.6

1.6

1.6

1.8

1
.8

1.8

1.8

1.81
.8

1.
8

1.8

Fig. A.13. Whitley’s function with values above 2 clipped

A.2.6 Storn’s Chebyshev

The goal of this 2nd ICEO problem (Second ICEO 1997) is to find the coef-
ficients of a polynomial such that the value of the polynomial oscillates be-
tween 1 and –1 as its argument, z, varies in the same range. In addition, the
polynomial’s value is also constrained when z = 1.2 and z = –1.2. The solu-
tion gives the coefficients of a Chebyshev polynomial. The coefficients for
a Chebyshev polynomial of degree D – 1 can be expressed recursively as
TD + 1(z) = 2z⋅TD(z) – TD – 1(z), D > 0 and odd, T0(z) = 1, T1(z) = z. The ob-
jective function is designed as a three-term error function. The term, pk, is

524 Appendix

the sum of m + 1, regularly sampled, squared deviations of the trial vec-
tor’s objective function value in the [–1, 1] containment zone. Optimal pa-
rameter values for this problem grossly differ in magnitude. The picture of
the two-dimensional version of this function does not give any indication
of the multiple local optima that occur at higher dimensions.

()
() ()

() ()

()
()

()

()
[]
[

] =−−
−−

=−−
=

=

×=>−=≤≤−

=
=

≈=

⋅===

−⋅=−<+

>−

=

−⋅=<−=

⋅=<−=

++=

−

−

=

−−−

=

−

=

−−

−

=

−−

.17for10,128,0,2688,0,21504,0,84480,0,

180224,0,212992,0,131072,0,32768,

9for10,32,0,160,0,256,0,128,

,0

100.1,oddand1,1,...,1,0,22

17for145.10558

9for661.72
2.1

,32,,...,1,0,

,1
2

,

otherwise0

1if1

1if1

,2.1,
otherwise0

if

,2.1,
otherwise0

if

,

*

*

8

1

0
3

11

0

2

2

1

0

1
2

2

1

0

1
2

1

321

D

D

f

DDjx

D

D
Td

Dmmkpp

m

k
xwww

ww

p

xv
dvdv

p

xu
dudu

p

pppf

D

j

D

D

m

k

k

jDD

j

jkkk

kk

k

D

j

jD

j

D

j

jD

j

x

x

x

ε

(A.11)

A.2 Unconstrained Multi-Modal Test Functions 525

-5

0

5

-5

0

5

0

1000

2000

3000

x
0

x
1

f(
x
)

-5 0 5
-5

0

5

x
0

x
1

5
0

0 5
0

0

1000

1
0

0
0

15002000 2000

Fig. A.14. Storn’s Chebyshev polynomial fitting problem

A.2.7 Lennard-Jones

This problem is based on the Lennard-Jones atomic potential energy func-
tion. The goal is to position n atoms in three-dimensional space to mini-
mize their total potential energy. Since neither the cluster’s position nor its
orientation is specified, optimal parameter values are not unique.

() ()

.01.0,...3,2,3,1,...,1,0,22

,,
21

32

0

2
33,

2

0

1

1 ,
2
,

==⋅=−=≤≤−

−=−=
=

++

−

=

−

+=

εnnDDjx

xxd
dd

f

j

k

kjkiji

n

i

n

ij jiji

x

(A.12)

Table A.1. Optimal function values for n=2 to n=19 “atoms”

n f(x*) n f(x*)
2 −1.0 11 −37.967600
3 −3.0 12 −44.326801
4 −6.0 13 −47.845157
5 −12.712062 14 −52.322627
6 −16.505384 15 −56.815742
7 −19.821489 16 −61.317995
8 −24.113360 17 −66.530949
9 −28.422532 18 −72.659782

10 −32.765970 19 −77.177704

526 Appendix

A.2.8 Hilbert

The elements of an n×n Hilbert matrix, H, are hi,j=1 / (i + j + 1), i = 0, 1, 2,
…, n – 1, j = 0, 1, 2, …, n – 1. The goal of this problem is to find H-1, the
inverse Hilbert matrix. Because it is ill defined, H-1 becomes increasingly
difficult to accurately compute as n increases. For this function, parameters
in x (D = n2) are first are mapped to a square matrix, Z. Next, the identity
matrix, I, is subtracted from the matrix product HZ. The (error) function
returns the sum of the absolute value of the elements of W = HZ–I. Like
the Chebyshev problem, parameter values are of grossly different magni-
tude. Equation A.13 provides a sample result for D = 9 (n = 3).

()

()

()
()

()

.3for,

180180-30

180-19236-

3036-9

,0

,100.1,1,...,1,0,22

,,

,,1,...,1,0,,
1

1
,

...100

0...10

0...01

,

,

*

*

8

,,

2
,,

,

1

0

1

0
,

==

=

×=−=≤≤−

==

=−=
++

==

===−

=

−

+

−

=

−

=

n

f

Djx

xzz

nDnki
ki

hh

w

wf

D
j

D

nkikiki

kiki

ki

n

i

n

k

ki

Z

x

Z

H

IWIHZ

x

ε

(A.13)

A.2.9 Modified Langerman

This 2nd ICEO function (Second ICEO 1997) function relies on a vector (c
in Table A.2) and a matrix (A in Table A.3) of real-valued constants. The
vector, c, contains thirty constants, while A is a matrix that contains the
coordinates of thirty points in ten dimensions. Points are indexed by rows
and coordinates are indexed by columns, e.g., numbers in the kth row are
the coordinates of the point Ak, k = 0, 1, 2, …, 29. The optimum is the

A.2 Unconstrained Multi-Modal Test Functions 527

point in A that has the lowest corresponding value of c. Although origi-
nally designed to use all thirty points in A, this implementation, like the
code posted for the 2nd ICEO, uses only the first five. Data for both c and
A are available on the CD-ROM that accompanies this book.

() ()

()
() ()

() .,96500.0:5for

,001.0,10,1,...,1,0,100

,,

,291,...1,0,

,cosexp

5
*

5
*

,

1

0

2
,

2

1

0

2
2

Axcx

Ac

Ax

Ax
Ax

x

=−===

=≤−=≤≤

==

≤−=−=−

−⋅⋅
−−

⋅=

−

=

−

=

fm

DDjx

ac

mkax

cf

j

jkk

D

j

jkjk

m

k

k

k

k

ε

π
π

(A.14)

-5
0

5
10

15 -5

0

5

10

15

-1.5

-1

-0.5

0

0.5

1

x
1

x
0

f(
x
)

8 9 10 11
-1

-0.5

0

0.5

1

1.5

2

x
0

x
1

-1

-0.5

-0.5

-0
.5

-0.5

0

0

0

0

0

0

0

0

0 0
0

0

0.
5

0.5

0.
5

0.5

0.5

0.5

0
.5

Fig. A.15. The Modified Langerman function

Table A.2. Values for c=(ck)

k ck k ck k ck k ck k ck

0 0.806 6 0.524 12 0.463 18 0.828 24 0.332
1 0.517 7 0.902 13 0.714 49 0.964 25 0.817
2 0.100 8 0.531 14 0.352 20 0.789 26 0.632
3 0.908 9 0.876 15 0.869 21 0.360 27 0.883
4 0.965 10 0.462 16 0.813 22 0.369 28 0.608
5 0.669 11 0.491 17 0.811 23 0.992 29 0.326

528 Appendix

Table A.3. Values for A=(aj,k). The columns are counted by j (parameter index)
while the points, Ak, are numbered by row and are counted by k.

9.681 0.667 4.783 9.095 3.517 9.325 6.544 0.211 5.122 2.020
9.400 2.041 3.788 7.931 2.882 2.672 3.568 1.284 7.033 7.374
8.025 9.152 5.114 7.621 4.564 4.711 2.996 6.126 0.734 4.982
2.196 0.415 5.649 6.979 9.510 9.166 6.304 6.054 9.377 1.426
8.074 8.777 3.467 1.863 6.708 6.349 4.534 0.276 7.633 1.567
7.650 5.658 0.720 2.764 3.278 5.283 7.474 6.274 1.409 8.208
1.256 3.605 8.623 6.905 4.584 8.133 6.071 6.888 4.187 5.448
8.314 2.261 4.224 1.781 4.124 0.932 8.129 8.658 1.208 5.762
0.226 8.858 1.420 0.945 1.622 4.698 6.228 9.096 0.972 7.637
7.305 2.228 1.242 5.928 9.133 1.826 4.060 5.204 8.713 8.247
0.652 7.027 0.508 4.876 8.807 4.632 5.808 6.937 3.291 7.016
2.699 3.516 5.874 4.119 4.461 7.496 8.817 0.690 6.593 9.789
8.327 3.897 2.017 9.570 9.825 1.150 1.395 3.885 6.354 0.109
2.132 7.006 7.136 2.641 1.882 5.943 7.273 7.691 2.880 0.564
4.707 5.579 4.080 0.581 9.698 8.542 8.077 8.515 9.231 4.670
8.304 7.559 8.567 0.322 7.128 8.392 1.472 8.524 2.277 7.826
8.632 4.409 4.832 5.768 7.050 6.715 1.711 4.323 4.405 4.591
4.887 9.112 0.170 8.967 9.693 9.867 7.508 7.770 8.382 6.740
2.440 6.686 4.299 1.007 7.008 1.427 9.398 8.480 9.950 1.675
6.306 8.583 6.084 1.138 4.350 3.134 7.853 6.061 7.457 2.258
0.652 2.343 1.370 0.821 1.310 1.063 0.689 8.819 8.833 9.070
5.558 1.272 5.756 9.857 2.279 2.764 1.284 1.677 1.244 1.234
3.352 7.549 9.817 9.437 8.687 4.167 2.570 6.540 0.228 0.027
8.798 0.880 2.370 0.168 1.701 3.680 1.231 2.390 2.499 0.064
1.460 8.057 1.336 7.217 7.914 3.615 9.981 9.198 5.292 1.224
0.432 8.645 8.774 0.249 8.081 7.461 4.416 0.652 4.002 4.644
0.679 2.800 5.523 3.049 2.968 7.225 6.730 4.199 9.614 9.229
4.263 1.074 7.286 5.599 8.291 5.200 9.214 8.272 4.398 4.506
9.496 4.830 3.150 8.270 5.079 1.231 5.731 9.494 1.883 9.732
4.138 2.562 2.532 9.661 5.611 5.500 6.886 2.341 9.699 6.500

A.2.10 Shekel’s Foxholes

This 2nd ICEO version of the Shekel’s foxholes function (Second ICEO
1997) also relies on the set of points listed in A and on the constants in c,
but unlike the Modified Langerman function, this function uses all thirty
points. Minima for both D = 5 and D = 10 are provided below. This func-
tion is hard for optimizers that tend to prematurely converge.

A.2 Unconstrained Multi-Modal Test Functions 529

()

() ()

()
.,D

D

D
f

DDjx

mmkac

c
f

j

kjk

m

k kk

105for

,10for2088.10

5for4056.10

,01.010,,1,...,1,0,100

,30,1,...,1,0,,

,
1

3
*

*

,

1

0
2

==

=−
=−

=

=≤−=≤≤

=−===

−−
−=

−

=

Ax

x

Ac

Ax
x

ε

(A.15)

0
5

10
0

5
10-12

-10

-8

-6

-4

-2

0

x
1

x
0

f(
x
)

0 2 4 6 8 10

0

2

4

6

8

10

x
0

x
1

-8

-6

-4

-4

-4

-4

-4

-4

-4

-4

-4

-2

-2

-2

Fig. A.16. The Shekel’s foxholes function

A.2.11 Odd Square

This 2nd ICEO function (Second ICEO 1997) resembles Salomon’s func-
tion except that the ripples are rectangular, not circular. Because the Odd
Square is symmetric about the solution, methods that search the vicinity of
the population’s mean vector will likely do well on this problem. In
Eq. A.16, d is D times the square of the single, largest coordinate differ-
ence between the trial vector and the center point, b.

530 Appendix

() ()

()() ()

()
[

].1.40.5,0.6,0.2,1.6,1.3,0.4,0.8,,3.1,1

,1.40.5,0.6,0.2,1.6,1.3,0.4,0.8,,3.1,1

,nearsolutionsmany,14383.1

,01.020,,1,...,1,0,55

,,max

,
01.0

02.0
1cos

2
exp

**

1

0

22

−−−−
−−−−=

=−=

=≤−=⋅≤≤⋅−

−=−⋅=

+
⋅+⋅⋅⋅−−=

−

=

b

bxx

x

f

DDjx

bxhbxDd

d

h
d

d
f

j

D

j

jjjj

εππ

π
π

(A.16)

Fig. A.17. The Odd Square function

A.2.12 Katsuura

To be computed accurately, this function needs a floating-point format that
supports more than 32 bits of precision when m ≥ 32. The function “nint()”
returns the nearest integer to the argument.

() () ()

() .100.1,0,1

,1,...,1,0,10001000

,32,...,1,0,22nint11

6*

1

0 1

−

−

= =

−

×===

−=≤≤−

==⋅⋅⋅++= ∏

εj

j

D

j

m

k

k
j

k

xf

Djx

mkxjf

x

x
(A.17)

A.3 Bound-Constrained Test Functions 531

A.3 Bound-Constrained Test Functions

A.3.1 Schwefel

This classic test function has a solution that lies on a coordinate system di-
agonal. In this version, the objective function is normalized by D so that
f(x*) is the same regardless of dimension. Success here can depend heavily
on how bound constraints are handled. This function is separable.

()

() .968746.420,983.418

,01.0,110,500500

,sin
1

**

1

0

=−=

==≤≤−

⋅−=
−

=

j

j

D

j

jj

xf

,...,D-,jx

xx
D

f

x

x

ε

(A.18)

-500

0

500 -500

0

500

-500

0

500

x
1

x
0

f(
x
)

0 100 200 300 400 500
0

100

200

300

400

500

x
0

x
1

-400-300

-200-200

-2
00

-200

-200

-100

-1
0

0

-100

-100

-100

-1000

0 0

0

0

0

0
0

0

100 100

1
00

1
0

0

100

1
0
0

100

1
0

0

200

2
0
0

2
0
0

200

2
0
0

Fig. A.18. Schwefel’s function

A.3.2 Epistatic Michalewicz

This 2nd ICEO function (Second ICEO 1997) also has a solution that lies
near the limits of the allowed search space.

532 Appendix

() ()

() ()

()

()
[]
[

] =

=
=

=−
=−

=

>−=≤≤

−==

−≠=+⋅+⋅

=+⋅−⋅

=

=
⋅+

⋅=

−−

−

+

−

=

01for1.5707962.818757,0.793609,2.137603,0.500115,

2.275369,1.022922,2.074365,0.258897,2.693170,

5for1.7204701.022922,2.074365,0.258897,2.693170,

10for9.66015

5for4.68766

,1,1,...,1,0,0

1if

1,0)2mod(1if
6

cos
6

sin

12mod1if
6

sin
6

cos

,10,
1

sinsin)(

*

*

11

1

1

2
1

0

2

D

D

D

D
f

DDjx

Djxy

Djjxx

jxx

y

m
yj

yxf

j

DD

jj

jj

j

m
D

j

j

j

x

x

π

ππ

ππ

π

(A.19)

-4
-2

0
2

4 -4

-2

0

2

4

-2

-1

0

1

2

x
1

x
0

f(
x
)

0 1 2 3
0

0.5

1

1.5

2

2.5

3

x
0

x
1 -1

-0.8
-0.8

-0
.6

-0.6

-0
.6

-0.6

-0
.4

-0.4

-0
.4

-0.4 -0.4

-0.4

-0
.2

-0
.2

-0.2
-0.2

-0.2

-5.5511e-017

-5.5511e-017

Fig. A.19. The epistatic Michalewicz function

A.3.3 Rana

This is one of the extended functions described in Whitley et al. (1996) in
which a two-dimensional primitive function is evaluated with consecutive
pairs of parameters, e.g., (0, 1), (1, 2), …, (D – 1, 0), so that the last term
pairs the trial vector’s first and last parameters (a “full-wrap” evaluation).

References 533

() () () () () ()

() .01.0,512,708.511

,1,1,...,1,0,512512

,1,1

,sincoscossin

**

11

mod1

1

0

=−=−=

>−=≤≤−

++=−+=

⋅⋅+⋅⋅=

++

+

−

=

ε

βα

βαβα

j

j

jjjj

Dj

D

j

j

xf

DDjx

xxxx

xxf

x

x
(A.20)

Fig. A.20. Rana’s function

References

Michalewicz Z, Shoenauer M (1996) Evolutionary algorithms for constrained pa-
rameter optimization problems. Evolutionary Computation 4(1):1–32; the test
problems are also available via the Internet at:
http://www.lut.fi/~jlampine/testset.pdf

Second ICEO (1997) Code for 2nd ICEO test functions is available via the Internet
at: http://iridia.ulb.ac.be/~aroli/ICEO/Functions/Functions.html

Yao X, Liu Y (1997) Fast evolution strategies. In: Angeline PJ, Reynolds RG,
McDonnell JR, Eberhart R (eds) Evolutionary programming VI, Lecture notes
in computer science 1213, Springer, Berlin, pp 151–161

Whitley D, Mathias K, Rana S, Dzubera J (1996) Evaluating evolutionary algo-
rithms. Artificial Intelligence 85:1–32

Index

a posteriori weight, 245
a priori weight, 245
Ackley’s function, 115, 142, 146,

154, 155, 156, 161, 165, 518
adaptive penalty, 203
adjacency matrix, 233
AES, 139
age-based replacement, 119
annealing schedule, 19
arithmetic recombination, 67, 73,

91, 104

backward transformation, 233
barrier function, 206
base index, 38
base vector selection, 61, 72
benchmarking, 135
binary genetic algorithm, 372
binomial crossover, 95
bipartite graph, 414
bit string encoding, 48
bounce back, 204
boundary constraints, 202
breeder genetic algorithm, 51
brick wall penalty, 203
brute force method, 13

Cauchy distribution, 52
center index, 242
centroid, 23, 29
Chebyshev, 55, 86, 116, 142, 147,

154, 155, 156, 293, 305
classic DE, 41, 42
clustering method, 20
combinatorial optimization, 227
combinatorial problem, 227
complex, 28

compressor supply system, 339
conjugate gradient method, 11
constrained optimization, 201
constraint relaxation, 210
constraint satisfaction, 208, 223
constraints, 201
continuous recombination, 67, 91
contour matching, 44
controlled random search, 29
convergence plot, 137
correlation matrix, 22
cost function, 1
covariance matrix, 22, 59
crossover, 92
crossover probability, 39, 76

data flow diagram, 291, 300
decomposable function, 22
degenerate vector combination, 65
degree distribution, 416
DeMat, 287
density clustering, 20
derivative based optimization, 6
design centering, 239
DeWin, 295
difference vector, 38
difference vector distribution, 44
differential evolution, 30, 37
differential mutation, 38, 74
diffusion model, 269
digital filter, 199, 224, 429
dimensionality, 2
direct constraint handling, 210
direct search, 12, 465
discrete recombination, 39
dither, 80
divergence, 240

536 Index

downhill simplex, 384, 385, 465
drift, 259
dual crossover, 92
dynamic objective function, 255

earthquake hypocenter, 379
earthquake relocation, 176
either/or algorithm, 117
elimination of variables, 220
elitism, 120
ENES, 138
enumeration, 13
epistasis, 23
epistatic Michalewicz function, 531
equality constraints, 201, 220
erasure codes, 413
error function, 1
evolutionary algorithm, 20
exclusive or, 234
expansion step, 24
exponential crossover, 93
extended intermediate

recombination, 105

far initialization, 53, 60
farming model, 268
filter, 4
finite element method, 454
fitness function, 1
fitness proportional selection, 122
FIWIZ, 199, 429
floating point, 50
flowgraph, 43
forward transformation, 233
function quantization, 189

Gaussian distribution, 14, 21, 52, 59,
79, 81

genetic algorithm, 313
global discrete recombination, 92
global selection, 124
gradient vector, 6
Gray code, 49
Griewangk’s function, 117, 142,

148, 154, 155, 156, 162, 165, 519

Halton point, 56
Hammersley point, 56
Hamming distance, 49
Hessian matrix, 7
Hilbert function, 116, 526
Hooke and Jeeves, 15
hyper-ellipsoid, 83, 84, 115, 127,

142, 143, 154, 155, 156, 515
hyper-ellipsoid, rotated, 84, 99, 102,

104
hypersphere, 82

ICEO, 136
image registration, 179, 393
inequality constraints, 201, 206
initialization, 38, 53
intermediate recombination, 21
inverse fractal problem, 479

jitter, 80

Katsuura’s function, 530
knock-out competition, 123

L2 norm, 380
Langerman’s function, 142, 150,

154, 155, 156, 526
Langmuir probe, 501
least mean square, 260
Lennard-Jones function, 115, 142,

153, 154, 155, 156, 525
Levenberg-Marquardt method, 465
limited resource, 276
line recombination, 105, 106
linear programming, 419
local selection, 124
log-normal distribution, 88

magnetic bearing, 447
masking of minima, 197
master process, 273
Mathematica, 30
memory saving DE, 282
Metropolis algorithm, 19
migration, 268

References 537

mixed variables, 201
modality, 2
modified DE, 342
Monte Carlo method, 465
multi-modal, 2, 16
multi-objective DE, 250
multi-objective optimization, 244
multi-sensor fusion, 175, 353
multi-start technique, 19
mutation, 38
mutation constraint, 108
mutation operation, 29, 32
mutation rate, 97
mutation scale factor, 75

nabla operator, 6
Nelder and Mead, 23, 111, 384
Neumaier, 517
No Free Lunch (NFL) theorem, 136
non-dominated solution, 247
non-uniform quantization, 191
normalization constraint, 107
notation, 47
N-point crossover, 93

objective function, 1
objective function evaluation noise,

258
objective function quantization, 192
odd square, 116, 529
one-point crossover, 93
one-to-one selection, 122
optical design, 327

parallel DE, 127, 267, 401
parameter dependence, 2, 23, 51, 99
parameter noise, 257
parameter quantization, 1, 189, 195
parameter representation, 48
parent selection, 118
Pareto optimality, 246
Pareto-DE, 254
Pareto-dominance, 246
Pareto-front, 246, 247
particle swarm optimization, 123
pattern search, 15

peaks function, 16, 45
penalty method, 202, 222
permutation generator, 279
permutation matrix, 230
permutation selection, 63, 124
phase portrait, 112, 142
polyhedron search, 23
polynomial fitting problem, 293,

305
pooling, 239
Powell’s method, 384, 385
power law distribution, 90
problem domains, 189
progress plot, 137
progressive weight, 245

quantization, 189
Quasi-Newton methods, 10

Rana’s function, 532
random number generator, 276
random offset selection, 63
random re-initialization, 204
random walk, 14
Rastrigin’s function, 142, 149, 154,

155, 156, 163, 165, 520
recombination, 91
recombination constraint, 109
reflection operation, 23, 29
region of acceptability, 215, 239
relative position indexing, 231
replacement, 119
resetting scheme, 202
RF plasma, 499
ridge function, 516
ROA, 215, 239
Rosenbrock, 114, 142, 145, 154,

155, 156, 159, 165, 294, 515
rotational invariance, 101
roulette wheel selection, 61

Salomon’s function, 521
scatter matrix, 22
Schwefel’s function, 163, 165, 531
selection, 32, 118
selection neighborhood, 124

538 Index

selection pressure, 125
self-affine, 480
self-similar, 480
self-steering, 239
sequential DE, 399
Shekel’s foxholes, 116, 142, 151,

154, 155, 156, 528
Si–H cluster, 313
simplex, 23
simulated annealing, 6, 18, 313, 465,

499
sorting, 282
speedup, 271
sphere, 193, 514
stagnation, 79, 195
standard model, 268, 271
starting point problem, 17
stationary distribution, 256
steepest descent, 9
step size, 79
step size problem, 10
stochastic universal sampling, 61
Storn’s Chebyshev, 523
strategy parameter, 23
strongly efficient, 246
survival criteria, 119
survivor selection, 119

table-based quantization, 192
target vector, 40, 67

Taylor series, 7
termination criteria, 128
test bed, 142
testing, 135
three-vector recombination, 108
tight-binding model, 315
tournament selection, 121
transposition, 122
Traveling Salesman Problem (TSP),

229
trial vector, 30, 40
TSP matrix, 234
two-exchange, 236

uniform arithmetic recombination,
105

uniform crossover, 39, 92, 95
uniform distribution, 56, 89
uniform quantization, 190
uni-modal, 2, 8
urn algorithm, 125, 279

value-to-reach (VTR), 138
Whitley’s function, 115, 142, 152,

154, 155, 156, 522

X-ray reflectivity, 463

Zaharie, 75, 192, 240

Natural Computing Series

W.M. Spears: Evolutionary Algorithms. The Role of Mutation and Recombination.
XIV, 222 pages, 55 figs., 23 tables. 2000

H.-G. Beyer: The Theory of Evolution Strategies. XIX, 380 pages, 52 figs., 9 tables. 2001

L. Kallel, B. Naudts, A. Rogers (Eds.): Theoretical Aspects of Evolutionary Computing.
X, 497 pages. 2001

G. Paun: Membrane Computing. An Introduction. XI, 429 pages, 37 figs., 5 tables. 2002

A.A. Freitas: Data Mining and Knowledge Discovery with Evolutionary Algorithms.
XIV, 264 pages, 74 figs., 10 tables. 2002

H.-P. Schwefel, I. Wegener, K. Weinert (Eds.): Advances in Computational Intelligence.
Theory and Practice. VIII, 325 pages. 2003

A. Ghosh, S. Tsutsui (Eds.): Advances in Evolutionary Computing. Theory and
Applications. XVI, 1006 pages. 2003

L.F. Landweber, E. Winfree (Eds.): Evolution as Computation. DIMACS Workshop,
Princeton, January 1999. XV, 332 pages. 2002

M. Hirvensalo: Quantum Computing. 2nd ed., XI, 214 pages. 2004 (first edition
published in the series)

A.E. Eiben, J.E. Smith: Introduction to Evolutionary Computing. XV, 299 pages. 2003

A. Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, G. Rozenberg: Computation in Living
Cells. Gene Assembly in Ciliates. XIV, 202 pages. 2004

L. Sekanina: Evolvable Components. From Theory to Hardware Implementations.
XVI, 194 pages. 2004

G. Ciobanu, G. Rozenberg (Eds.): Modelling in Molecular Biology. X, 310 pages. 2004

R.W. Morrison: Designing Evolutionary Algorithms for Dynamic Environments.
XII, 148 pages, 78 figs. 2004

R. Paton†, H. Bolouri, M. Holcombe, J.H. Parish, R. Tateson (Eds.): Computation in Cells
 and Tissues. Perspectives and Tools of Thought. XIV, 358 pages, 134 figs. 2004

M. Amos: Theoretical and Experimental DNA Computation. XIV, 170 pages, 78 figs. 2005

M. Tomassini: Spatially Structured Evolutionary Algorithms. XIV, 192 pages, 91 figs.,
21 tables. 2005

G. Ciobanu, G. Paun, M.J. Pérez-Jiménez (Eds.): Applications of Membrane Computing.
X, 441 pages, 99 figs., 24 tables. 2006

K. V. Price, R. M. Storn, J. A. Lampinen: Differential Evolution. XX, 538 pages,
292 figs., 48 tables and CD-ROM. 2006

A. Brabazon, M. O’Neill: Biologically Inspired Algorithms for Financial Modelling.
XVI, 275 pages, 92 figs., 39 tables. 2006

°

°

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [439.200 666.000]
>> setpagedevice

